Hydration Status and Cardiovascular Function
Abstract
:1. The Physiology of Hypohydration
2. Clinical Relevance
3. Vascular Health and Function
3.1. Inflammation
3.2. Endothelial Function
3.3. Arterial Stiffness
3.4. Cutaneous Vascular Function
3.5. Circulating Factors
3.6. Summary
4. Cerebral Blood Flow Regulation
5. Resting Cardiovascular Regulation
5.1. Sympathetic Nervous System
5.2. Circulating Factors
6. Cardiovascular Regulation During Orthostatic Stress
7. Cardiovascular Regulation During Exercise
8. Cardiovascular Regulation and Body Water Balance During Hypobaric Hypoxia
9. Summary
10. Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- McDermott, B.P.; Anderson, S.A.; Armstrong, L.E.; Casa, D.J.; Cheuvront, S.N.; Cooper, L.; Kenney, W.L.; O’Connor, F.G.; Roberts, W.O. National Athletic Trainers’ Association Position Statement: Fluid Replacement for the Physically Active. J. Athl. Train. 2017, 52, 877–895. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, L.E.; Johnson, E.C. Water Intake, Water Balance, and the Elusive Daily Water Requirement. Nutrients 2018, 10, 1928. [Google Scholar] [CrossRef] [PubMed]
- Laitano, O.; Kalsi, K.K.; Pearson, J.; Lotlikar, M.; Reischak-Oliveira, A.; González-Alonso, J. Effects of graded exercise-induced dehydration and rehydration on circulatory markers of oxidative stress across the resting and exercising human leg. Eur. J. Appl. Physiol. 2012, 112, 1937–1944. [Google Scholar] [CrossRef] [PubMed]
- González-Alonso, J.; Mora-Rodríguez, R.; Below, P.R.; Coyle, E.F. Dehydration markedly impairs cardiovascular function in hyperthermic endurance athletes during exercise. J. Appl. Physiol. 1997, 82, 1229–1236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González-Alonso, J.; Mora-Rodríguez, R.; Below, P.R.; Coyle, E.F. Dehydration reduces cardiac output and increases systemic and cutaneous vascular resistance during exercise. J. Appl. Physiol. 1995, 79, 1487–1496. [Google Scholar] [CrossRef] [PubMed]
- Posch, A.M.; Luippold, A.J.; Mitchell, K.M.; Bradbury, K.E.; Kenefick, R.W.; Cheuvront, S.N.; Charkoudian, N. Sympathetic neural and hemodynamic responses to head-up tilt during iso-osmotic and hyper-osmotic hypovolemia. J. Neurophysiol. 2017, 118, 2232–2237. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, L.E.; Maresh, C.M.; Gabaree, C.V.; Hoffman, J.R.; Kavouras, S.A.; Kenefick, R.W.; Castellani, J.W.; Ahlquist, L.E. Thermal and circulatory responses during exercise: Effects of hypohydration, dehydration, and water intake. J. Appl. Physiol. 1997, 82, 2028–2035. [Google Scholar] [CrossRef] [PubMed]
- Shore, A.C.; Markandu, N.D.; Sagnella, G.A.; Singer, D.R.; Forsling, M.L.; Buckley, M.G.; Sugden, A.L.; MacGregor, G.A. Endocrine and renal response to water loading and water restriction in normal man. Clin. Sci. 1988, 75, 171–177. [Google Scholar] [CrossRef]
- Black, D.A.; McCance, R.A.; Young, W.F. A study of dehydration by means of balance experiments. J. Physiol. 1944, 102, 406–414. [Google Scholar] [CrossRef]
- Adams, J.D.; Sekiguchi, Y.; Suh, H.; Seal, A.D.; Sprong, C.A.; Kirkland, T.W.; Kavouras, S.A. Dehydration Impairs Cycling Performance, Independently of Thirst: A Blinded Study. Med. Sci. Sports Exerc. 2018. [Google Scholar] [CrossRef]
- Johnson, E.C.; Bardis, C.N.; Jansen, L.T.; Adams, J.D.; Kirkland, T.W.; Kavouras, S.A. Reduced water intake deteriorates glucose regulation in patients with type 2 diabetes. Nutr. Res. 2017, 43, 25–32. [Google Scholar] [CrossRef]
- Ganio, M.S.; Wingo, J.E.; Carrolll, C.E.; Thomas, M.K.; Cureton, K.J. Fluid ingestion attenuates the decline in VO2peak associated with cardiovascular drift. Med. Sci. Sports Exerc. 2006, 38, 901–909. [Google Scholar] [CrossRef]
- James, L.J.; Moss, J.; Henry, J.; Papadopoulou, C.; Mears, S.A. Hypohydration impairs endurance performance: A blinded study. Physiol. Rep. 2017, 5. [Google Scholar] [CrossRef]
- Nadel, E.R.; Fortney, S.M.; Wenger, C.B. Effect of hydration state of circulatory and thermal regulations. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1980, 49, 715–721. [Google Scholar] [CrossRef]
- Mack, G.W.; Weseman, C.A.; Langhans, G.W.; Scherzer, H.; Gillen, C.M.; Nadel, E.R. Body fluid balance in dehydrated healthy older men: Thirst and renal osmoregulation. J. Appl. Physiol. 1994, 76, 1615–1623. [Google Scholar] [CrossRef]
- Fortney, S.M.; Wenger, C.B.; Bove, J.R.; Nadel, E.R. Effect of hyperosmolality on control of blood flow and sweating. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1984, 57, 1688–1695. [Google Scholar] [CrossRef]
- Stachenfeld, N.S.; DiPietro, L.; Nadel, E.R.; Mack, G.W. Mechanism of attenuated thirst in aging: Role of central volume receptors. Am. J. Physiol. 1997, 272, 148. [Google Scholar] [CrossRef]
- Armstrong, L.E.; Ganio, M.S.; Casa, D.J.; Lee, E.C.; McDermott, B.P.; Klau, J.F.; Jimenez, L.; Le Bellego, L.; Chevillotte, E.; Lieberman, H.R. Mild dehydration affects mood in healthy young women. J. Nutr. 2012, 142, 382–388. [Google Scholar] [CrossRef]
- Stachenfeld, N.S.; Leone, C.A.; Mitchell, E.S.; Freese, E.; Harkness, L. Water intake reverses dehydration associated impaired executive function in healthy young women. Physiol. Behav. 2017, 185, 103–111. [Google Scholar] [CrossRef]
- Faraco, G.; Wijasa, T.S.; Park, L.; Moore, J.; Anrather, J.; Iadecola, C. Water deprivation induces neurovascular and cognitive dysfunction through vasopressin-induced oxidative stress. J. Cereb. Blood Flow Metab. 2014, 34, 852–860. [Google Scholar] [CrossRef]
- Patsalos, O.C.; Thoma, V. Water supplementation after dehydration improves judgment and decision-making performance. Psychol. Res. 2019. [Google Scholar] [CrossRef]
- Kenney, W.L.; Tankersley, C.G.; Newswanger, D.L.; Hyde, D.E.; Puhl, S.M.; Turner, N.L. Age and hypohydration independently influence the peripheral vascular response to heat stress. J. Appl. Physiol. 1990, 68, 1902–1908. [Google Scholar] [CrossRef]
- Fujii, N.; Honda, Y.; Hayashi, K.; Kondo, N.; Nishiyasu, T. Effect of hypohydration on hyperthermic hyperpnea and cutaneous vasodilation during exercise in men. J. Appl. Physiol. 2008, 105, 1509–1518. [Google Scholar] [CrossRef]
- McNeely, B.D.; Meade, R.D.; Fujii, N.; Seely, A.J.E.; Sigal, R.J.; Kenny, G.P. Fluid replacement modulates oxidative stress- but not nitric oxide-mediated cutaneous vasodilation and sweating during prolonged exercise in the heat. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2017, 313, R739. [Google Scholar] [CrossRef]
- Tucker, M.A.; Six, A.; Moyen, N.E.; Satterfield, A.Z.; Ganio, M.S. Effect of hypohydration on postsynaptic cutaneous vasodilation and sweating in healthy men. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2017, 312, R642. [Google Scholar] [CrossRef]
- Caldwell, A.R.; Tucker, M.A.; Burchfield, J.; Moyen, N.E.; Satterfield, A.Z.; Six, A.; McDermott, B.P.; Mulvenon, S.W.; Ganio, M.S. Hydration status influences the measurement of arterial stiffness. Clin. Physiol. Funct. Imaging. 2018, 38, 447–454. [Google Scholar] [CrossRef]
- Arnaoutis, G.; Kavouras, S.A.; Stratakis, N.; Likka, M.; Mitrakou, A.; Papamichael, C.; Sidossis, L.S.; Stamatelopoulos, K. The effect of hypohydration on endothelial function in young healthy adults. Eur. J. Nutr. 2017, 56, 1211–1217. [Google Scholar] [CrossRef]
- Rabbitts, J.A.; Strom, N.A.; Sawyer, J.R.; Curry, T.B.; Dietz, N.M.; Roberts, S.K.; Kingsley-Berg, S.M.; Charkoudian, N. Influence of endogenous angiotensin II on control of sympathetic nerve activity in human dehydration. J. Physiol. 2009, 587, 5441–5449. [Google Scholar] [CrossRef]
- Kimmerly, D.S.; Shoemaker, J.K. Hypovolemia and neurovascular control during orthostatic stress. Am. J. Physiol. Heart Circ. Physiol. 2002, 282, 645. [Google Scholar] [CrossRef]
- Harrison, M.H.; Geelen, G.; Keil, L.C.; Wade, C.A.; Hill, L.C.; Kravik, S.E.; Greenleaf, J.E. Effect of hydration on plasma vasopressin, renin, and aldosterone responses to head-up tilt. Aviat. Space Environ. Med. 1986, 57, 420–425. [Google Scholar]
- Trangmar, S.J.; Chiesa, S.T.; Stock, C.G.; Kalsi, K.K.; Secher, N.H.; González-Alonso, J. Dehydration affects cerebral blood flow but not its metabolic rate for oxygen during maximal exercise in trained humans. J. Physiol. 2014, 592, 3143–3160. [Google Scholar] [CrossRef]
- Freeman, K.L.; Brooks, V.L. AT(1) and glutamatergic receptors in paraventricular nucleus support blood pressure during water deprivation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007, 292, 1675. [Google Scholar] [CrossRef]
- Phillips, P.A.; Rolls, B.J.; Ledingham, J.G.; Forsling, M.L.; Morton, J.J.; Crowe, M.J.; Wollner, L. Reduced thirst after water deprivation in healthy elderly men. N Engl. J. Med. 1984, 311, 753–759. [Google Scholar] [CrossRef]
- Szinnai, G.; Morgenthaler, N.G.; Berneis, K.; Struck, J.; Müller, B.; Keller, U.; Christ-Crain, M. Changes in plasma copeptin, the c-terminal portion of arginine vasopressin during water deprivation and excess in healthy subjects. J. Clin. Endocrinol. Metab. 2007, 92, 3973–3978. [Google Scholar] [CrossRef]
- Gregory, L.C.; Quillen, E.W.; Keil, L.C.; Chang, D.; Reid, I.A. Effect of vasopressin blockade on blood pressure during water deprivation in intact and baroreceptor-denervated conscious dogs. Am. J. Physiol. 1988, 254, 490. [Google Scholar] [CrossRef]
- Schwartz, J.; Reid, I.A. Role of vasopressin in blood pressure regulation in conscious water-deprived dogs. Am. J. Physiol. 1983, 244, 74. [Google Scholar] [CrossRef]
- Blair, M.L.; Woolf, P.D.; Felten, S.Y. Sympathetic activation cannot fully account for increased plasma renin levels during water deprivation. Am. J. Physiol. 1997, 272, 1197. [Google Scholar] [CrossRef]
- Brooks, V.L.; Keil, L.C. Vasopressin and angiotensin II in reflex regulation of ACTH, glucocorticoids, and renin: Effect of water deprivation. Am. J. Physiol. 1992, 263, 762. [Google Scholar] [CrossRef]
- Brooks, V.L.; Huhtala, T.A.; Silliman, T.L.; Engeland, W.C. Water deprivation and rat adrenal mRNAs for tyrosine hydroxylase and the norepinephrine transporter. Am. J. Physiol. 1997, 272, 1897. [Google Scholar] [CrossRef]
- Aisenbrey, G.A.; Handelman, W.A.; Arnold, P.; Manning, M.; Schrier, R.W. Vascular effects of arginine vasopressin during fluid deprivation in the rat. J. Clin. Invest. 1981, 67, 961–968. [Google Scholar] [CrossRef]
- Kinsman, B.J.; Browning, K.N.; Stocker, S.D. NaCl and osmolarity produce different responses in organum vasculosum of the lamina terminalis neurons, sympathetic nerve activity and blood pressure. J. Physiol. 2017, 595, 6187–6201. [Google Scholar] [CrossRef] [Green Version]
- Duvernoy, H.M.; Risold, P. The circumventricular organs: An atlas of comparative anatomy and vascularization. Brain Res. Rev. 2007, 56, 119–147. [Google Scholar] [CrossRef]
- Danziger, J.; Zeidel, M.L. Osmotic homeostasis. Clin. J. Am. Soc. Nephrol. 2015, 10, 852–862. [Google Scholar] [CrossRef]
- Nomura, K.; Hiyama, T.Y.; Sakuta, H.; Matsuda, T.; Lin, C.; Kobayashi, K.; Kobayashi, K.; Kuwaki, T.; Takahashi, K.; Matsui, S.; et al. [Na+] Increases in Body Fluids Sensed by Central Nax Induce Sympathetically Mediated Blood Pressure Elevations via H+-Dependent Activation of ASIC1a. Neuron 2019, 101, 75. [Google Scholar] [CrossRef]
- Leib, D.E.; Zimmerman, C.A.; Poormoghaddam, A.; Huey, E.L.; Ahn, J.S.; Lin, Y.; Tan, C.L.; Chen, Y.; Knight, Z.A. The Forebrain Thirst Circuit Drives Drinking through Negative Reinforcement. Neuron 2017, 96, 1281. [Google Scholar] [CrossRef]
- Lowell, B.B. New Neuroscience of Homeostasis and Drives for Food, Water, and Salt. N Engl. J. Med. 2019, 380, 459–471. [Google Scholar] [CrossRef]
- Deen, P.M.; Verdijk, M.A.; Knoers, N.V.; Wieringa, B.; Monnens, L.A.; van Os, C.H.; van Oost, B.A. Requirement of human renal water channel aquaporin-2 for vasopressin-dependent concentration of urine. Science 1994, 264, 92–95. [Google Scholar] [CrossRef]
- Owen, J.A.; Fortes, M.B.; Rahman, S.U.; Jibani, M.; Walsh, N.P.; Oliver, S.J. Hydration Marker Diagnostic Accuracy to Identify Mild Intracellular and Extracellular Dehydration. Int. J. Sport Nutr. Exerc. Metab. 2019, 1–23. [Google Scholar] [CrossRef]
- Van Zwalenburg, C. Dehydration in Heat Exhaustion and in Fatigue. Cal. West. Med. 1933, 38, 354–358. [Google Scholar]
- Stookey, J.D. Analysis of 2009⁻2012 Nutrition Health and Examination Survey (NHANES) Data to Estimate the Median Water Intake Associated with Meeting Hydration Criteria for Individuals Aged 12⁻80 in the US Population. Nutrients 2019, 11, 657. [Google Scholar] [CrossRef]
- Drewnowski, A.; Rehm, C.D.; Constant, F. Water and beverage consumption among adults in the United States: Cross-sectional study using data from NHANES 2005-2010. BMC Public Health 2013, 13, 1068. [Google Scholar] [CrossRef]
- Chang, T.; Ravi, N.; Plegue, M.A.; Sonneville, K.R.; Davis, M.M. Inadequate Hydration, BMI, and Obesity Among US Adults: NHANES 2009-2012. Ann. Fam. Med. 2016, 14, 320–324. [Google Scholar] [CrossRef]
- Chan, J.; Knutsen, S.F.; Blix, G.G.; Lee, J.W.; Fraser, G.E. Water, other fluids, and fatal coronary heart disease: The Adventist Health Study. Am. J. Epidemiol. 2002, 155, 827–833. [Google Scholar] [CrossRef]
- Xu, J.; Murphy, S.L.; Kochanek, K.D.; Bastian, B.; Arias, E. Deaths: Final Data for 2016. Natl. Vital Stat. Rep. 2018, 67, 1–76. [Google Scholar]
- Lang, F.; Guelinckx, I.; Lemetais, G.; Melander, O. Two Liters a Day Keep the Doctor Away? Considerations on the Pathophysiology of Suboptimal Fluid Intake in the Common Population. Kidney Blood Pres. Res. 2017, 42, 483–494. [Google Scholar] [CrossRef]
- Dmitrieva, N.I.; Burg, M.B. Elevated sodium and dehydration stimulate inflammatory signaling in endothelial cells and promote atherosclerosis. PLoS ONE 2015, 10, 1–22. [Google Scholar] [CrossRef]
- Bulpitt, C.J.; Shipley, M.J.; Semmence, A. Blood pressure and plasma sodium and potassium. Clin. Sci. 1981, 61, 85s–87s. [Google Scholar] [CrossRef]
- Komiya, I.; Yamada, T.; Takasu, N.; Asawa, T.; Akamine, H.; Yagi, N.; Nagasawa, Y.; Ohtsuka, H.; Miyahara, Y.; Sakai, H.; et al. An abnormal sodium metabolism in Japanese patients with essential hypertension, judged by serum sodium distribution, renal function and the renin-aldosterone system. J. Hypertens. 1997, 15, 65–72. [Google Scholar] [CrossRef]
- Wannamethee, G.; Whincup, P.H.; Shaper, A.G.; Lever, A.F. Serum sodium concentration and risk of stroke in middle-aged males. J. Hypertens. 1994, 12, 971–979. [Google Scholar] [CrossRef]
- Lago, R.M.; Pencina, M.J.; Wang, T.J.; Lanier, K.J.; D’Agostino, R.B.; Kannel, W.B.; Vasan, R.S. Interindividual variation in serum sodium and longitudinal blood pressure tracking in the Framingham Heart Study. J. Hypertens. 2008, 26, 2121–2125. [Google Scholar] [CrossRef] [Green Version]
- Stookey, J.D. High Prevalence of Plasma Hypertonicity among Community-Dwelling Older Adults: Results from NHANES III. J. Am. Diet. Assoc. 2005, 105, 1231–1239. [Google Scholar] [CrossRef]
- Davy, K.P.; Seals, D.R. Total blood volume in healthy young and older men. J. Appl. Physiol. 1994, 76, 2059–2062. [Google Scholar] [CrossRef]
- Phillips, P.A.; Johnston, C.I.; Gray, L. Disturbed fluid and electrolyte homoeostasis following dehydration in elderly people. Age Ageing 1993, 22, S33. [Google Scholar] [CrossRef]
- Phillips, P.A.; Bretherton, M.; Risvanis, J.; Casley, D.; Johnston, C.; Gray, L. Effects of drinking on thirst and vasopressin in dehydrated elderly men. Am. J. Physiol. 1993, 264, 877. [Google Scholar] [CrossRef]
- Bevilacqua, M.; Norbiato, G.; Chebat, E.; Raggi, U.; Cavaiani, P.; Guzzetti, R.; Bertora, P. Osmotic and nonosmotic control of vasopressin release in the elderly: Effect of metoclopramide. J. Clin. Endocrinol. Metab. 1987, 65, 1243–1247. [Google Scholar] [CrossRef]
- Crowe, M.J.; Forsling, M.L.; Rolls, B.J.; Phillips, P.A.; Ledingham, J.G.; Smith, R.F. Altered water excretion in healthy elderly men. Age Ageing 1987, 16, 285–293. [Google Scholar] [CrossRef]
- Savoie, F.; Kenefick, R.; Ely, B.; Cheuvront, S.; Goulet, E. Effect of Hypohydration on Muscle Endurance, Strength, Anaerobic Power and Capacity and Vertical Jumping Ability: A Meta-Analysis. Sports Med. 2015, 45, 1207–1227. [Google Scholar] [CrossRef]
- Adams, W.M.; Ferraro, E.M.; Huggins, R.A.; Casa, D.J. Influence of body mass loss on changes in heart rate during exercise in the heat: A systematic review. J. Strength Cond Res. 2014, 28, 2380–2389. [Google Scholar] [CrossRef]
- Murray, B. Hydration and Physical Performance. Am. Coll. Nutrition 2007, 26, 542S. [Google Scholar] [CrossRef]
- Sawka, M.N.; Cheuvront, S.N.; Kenefick, R.W. High skin temperature and hypohydration impair aerobic performance. Exp. Physiol. 2012, 97, 327–332. [Google Scholar] [CrossRef]
- Sawka, M.N.; Francesconi, R.P.; Young, A.J.; Pandolf, K.B. Influence of hydration level and body fluids on exercise performance in the heat. JAMA 1984, 252, 1165–1169. [Google Scholar] [CrossRef]
- Sawka, M.N. Physiological consequences of hypohydration: Exercise performance and thermoregulation. Med. Sci. Sports Exerc. 1992, 24, 657–670. [Google Scholar] [CrossRef]
- Roy, B.D.; Green, H.J.; Burnett, M.E. Prolonged exercise following diuretic-induced hypohydration: Effects on cardiovascular and thermal strain. Can. J. Physiol. Pharmacol. 2000, 78, 541–547. [Google Scholar] [CrossRef]
- Cheung, S.S.; McLellan, T.M. Influence of short-term aerobic training and hydration status on tolerance during uncompensable heat stress. Eur. J. Appl. Physiol. Occup. Physiol. 1998, 78, 50–58. [Google Scholar] [CrossRef]
- Hayes, L.D.; Morse, C.I. The effects of progressive dehydration on strength and power: Is there a dose response? Eur. J. Appl. Physiol. 2010, 108, 701–707. [Google Scholar] [CrossRef]
- McLellan, T.M.; Cheung, S.S.; Latzka, W.A.; Sawka, M.N.; Pandolf, K.B.; Millard, C.E.; Withey, W.R. Effects of dehydration, hypohydration, and hyperhydration on tolerance during uncompensable heat stress. Can. J. Appl. Physiol. 1999, 24, 349–361. [Google Scholar] [CrossRef]
- Maughan, R.J. Impact of mild dehydration on wellness and on exercise performance. Eur. J. Clin. Nutr. 2003, 57, 19. [Google Scholar] [CrossRef]
- Cheuvront, S.N.; Carter, R.; Castellani, J.W.; Sawka, M.N. Hypohydration impairs endurance exercise performance in temperate but not cold air. J. Appl. Physiol. 2005, 99, 1972–1976. [Google Scholar] [CrossRef] [Green Version]
- MacLeod, H.; Sunderland, C. Previous-day hypohydration impairs skill performance in elite female field hockey players. Scand J. Med. Sci. Sports 2012, 22, 430–438. [Google Scholar] [CrossRef]
- Kenefick, R.W.; Cheuvront, S.N.; Palombo, L.J.; Ely, B.R.; Sawka, M.N. Skin temperature modifies the impact of hypohydration on aerobic performance. J. Appl. Physiol. 2010, 109, 79–86. [Google Scholar] [CrossRef] [Green Version]
- Montain, S.J.; Sawka, M.N.; Latzka, W.A.; Valeri, C.R. Thermal and cardiovascular strain from hypohydration: Influence of exercise intensity. Int. J. Sports Med. 1998, 19, 87–91. [Google Scholar] [CrossRef]
- Merry, T.L.; Ainslie, P.N.; Cotter, J.D. Effects of aerobic fitness on hypohydration-induced physiological strain and exercise impairment. Acta Physiol. 2010, 198, 179–190. [Google Scholar] [CrossRef]
- Bardis, C.N.; Kavouras, S.A.; Arnaoutis, G.; Panagiotakos, D.B.; Sidossis, L.S. Mild dehydration and cycling performance during 5-kilometer hill climbing. J. Athl. Train. 2013, 48, 741–747. [Google Scholar] [CrossRef]
- Bardis, C.N.; Kavouras, S.A.; Kosti, L.; Markousi, M.; Sidossis, L.S. Mild hypohydration decreases cycling performance in the heat. Med. Sci. Sports Exerc. 2013, 45, 1782–1789. [Google Scholar] [CrossRef]
- Sawka, M.N.; Cheuvront, S.N.; Kenefick, R.W. Hypohydration and Human Performance: Impact of Environment and Physiological Mechanisms. Sports Med. 2015, 45, 51. [Google Scholar] [CrossRef]
- Judelson, D.A.; Maresh, C.M.; Farrell, M.J.; Yamamoto, L.M.; Armstrong, L.E.; Kraemer, W.J.; Volek, J.S.; Spiering, B.A.; Casa, D.J.; Anderson, J.M. Effect of hydration state on strength, power, and resistance exercise performance. Med. Sci. Sports Exerc. 2007, 39, 1817–1824. [Google Scholar] [CrossRef]
- Tan, X.R.; Low, I.C.C.; Stephenson, M.C.; Kok, T.; Nolte, H.W.; Soong, T.W.; Lee, J.K.W. Altered Brain Structure with Preserved Cortical Motor Activity Following Exertional Hypohydration: A MRI study. J. Appl. Physiol. 2019. [Google Scholar] [CrossRef]
- Gamble, A.S.; Bigg, J.L.; Vermeulen, T.F.; Boville, S.M.; Eskedjian, G.S.; Jannas-Vela, S.; Whitfield, J.; Palmer, M.S.; Spriet, L.L. Estimated Sweat Loss, Fluid and CHO Intake, and Sodium Balance of Male Major Junior, AHL, and NHL Players During On-Ice Practices. Int. J. Sport Nutr. Exerc. Metab. 2019, 1–25. [Google Scholar] [CrossRef]
- Ely, B.R.; Sollanek, K.J.; Cheuvront, S.N.; Lieberman, H.R.; Kenefick, R.W. Hypohydration and acute thermal stress affect mood state but not cognition or dynamic postural balance. Eur. J. Appl. Physiol. 2013, 113, 1027–1034. [Google Scholar] [CrossRef]
- Moyen, N.E.; Ganio, M.S.; Wiersma, L.D.; Kavouras, S.A.; Gray, M.; McDermott, B.P.; Adams, J.D.; Binns, A.P.; Judelson, D.A.; McKenzie, A.L.; et al. Hydration status affects mood state and pain sensation during ultra-endurance cycling. J. Sports Sci. 2015, 33, 1962–1969. [Google Scholar] [CrossRef]
- Zhang, N.; Du, S.M.; Zhang, J.F.; Ma, G.S. Effects of Dehydration and Rehydration on Cognitive Performance and Mood among Male College Students in Cangzhou, China: A Self-Controlled Trial. Int. J. Environ. Res. Public Health 2019, 16, 1891. [Google Scholar] [CrossRef]
- Benton, D.; Jenkins, K.T.; Watkins, H.T.; Young, H.A. Minor degree of hypohydration adversely influences cognition: A mediator analysis. Am. J. Clin. Nutr. 2016, 104, 603–612. [Google Scholar] [CrossRef]
- Greenleaf, J.E.; Castle, B.L. Exercise temperature regulation in man during hypohydration and hyperhydration. J. Appl. Physiol. 1971, 30, 847–853. [Google Scholar] [CrossRef]
- Candas, V.; Libert, J.P.; Brandenberger, G.; Sagot, J.C.; Kahn, J.M. Thermal and circulatory responses during prolonged exercise at different levels of hydration. J. Physiol. (Paris) 1988, 83, 11–18. [Google Scholar]
- Cadarette, B.S.; Sawka, M.N.; Toner, M.M.; Pandolf, K.B. Aerobic fitness and the hypohydration response to exercise-heat stress. Aviat. Space Environ. Med. 1984, 55, 507–512. [Google Scholar]
- Sawka, M.N.; Gonzalez, R.R.; Young, A.J.; Muza, S.R.; Pandolf, K.B.; Latzka, W.A.; Dennis, R.C.; Valeri, C.R. Polycythemia and hydration: Effects on thermoregulation and blood volume during exercise-heat stress. Am. J. Physiol. 1988, 255, 456. [Google Scholar] [CrossRef]
- Montain, S.J.; Latzka, W.A.; Sawka, M.N. Control of thermoregulatory sweating is altered by hydration level and exercise intensity. J. Appl. Physiol. 1995, 79, 1434–1439. [Google Scholar] [CrossRef]
- Buono, M.J.; Wall, A.J. Effect of hypohydration on core temperature during exercise in temperate and hot environments. Eur. J. Physiol. 2000, 440, 476–480. [Google Scholar] [CrossRef]
- Meade, R.D.; Notley, S.R.; D’Souza, A.W.; Dervis, S.; Boulay, P.; Sigal, R.J.; Kenny, G.P. Interactive effects of age and hydration state on human thermoregulatory function during exercise in hot-dry conditions. Acta Physiol. 2018, e13226. [Google Scholar] [CrossRef]
- Kenefick, R.W.; Sollanek, K.J.; Charkoudian, N.; Sawka, M.N. Impact of skin temperature and hydration on plasma volume responses during exercise. J. Appl. Physiol. 2014, 117, 413–420. [Google Scholar] [CrossRef] [Green Version]
- Raines, J.; Snow, R.; Nichols, D.; Aisbett, B. Fluid intake, hydration, work physiology of wildfire fighters working in the heat over consecutive days. Ann. Occup. Hyg. 2015, 59, 554–565. [Google Scholar]
- Horowitz, M.; Kaspler, P.; Simon, E.; Gerstberger, R. Heat acclimation and hypohydration: Involvement of central angiotensin II receptors in thermoregulation. Am. J. Physiol. 1999, 277, 47. [Google Scholar] [CrossRef]
- Sawka, M.N.; Latzka, W.A.; Matott, R.P.; Montain, S.J. Hydration effects on temperature regulation. Int. J. Sports Med. 1998, 19, 108. [Google Scholar] [CrossRef]
- Sawka, M.N.; Young, A.J.; Francesconi, R.P.; Muza, S.R.; Pandolf, K.B. Thermoregulatory and blood responses during exercise at graded hypohydration levels. J. Appl. Physiol. 1985, 59, 1394–1401. [Google Scholar] [CrossRef]
- Moyen, N.E.; Burchfield, J.M.; Butts, C.L.; Glenn, J.M.; Tucker, M.A.; Treece, K.; Smith, A.J.; McDermott, B.P.; Ganio, M.S. Effects of obesity and mild hypohydration on local sweating and cutaneous vascular responses during passive heat stress in females. Appl. Physiol. Nutr. Metab. 2016, 41, 879–887. [Google Scholar] [CrossRef]
- Tokizawa, K.; Yasuhara, S.; Nakamura, M.; Uchida, Y.; Crawshaw, L.I.; Nagashima, K. Mild hypohydration induced by exercise in the heat attenuates autonomic thermoregulatory responses to the heat, but not thermal pleasantness in humans. Physiol. Behav. 2010, 100, 340–345. [Google Scholar] [CrossRef]
- Ikegawa, S.; Kamijo, Y.; Okazaki, K.; Masuki, S.; Okada, Y.; Nose, H. Effects of hypohydration on thermoregulation during exercise before and after 5-day aerobic training in a warm environment in young men. J. Appl. Physiol. 2011, 110, 972–980. [Google Scholar] [CrossRef] [Green Version]
- Tucker, M.A.; Caldwell, A.R.; Butts, C.L.; Robinson, F.B.; Reynebeau, H.C.; Kavouras, S.A.; McDermott, B.P.; Washington, T.A.; Turner, R.C.; Ganio, M.S. Effect of hypohydration on thermoregulatory responses in men with low and high body fat exercising in the heat. J. Appl. Physiol. 2017, 122, 142–152. [Google Scholar] [CrossRef] [Green Version]
- Roussel, R.; Fezeu, L.; Bouby, N.; Balkau, B.; Lantieri, O.; Alhenc-Gelas, F.; Marre, M.; Bankir, L. Low water intake and risk for new-onset hyperglycemia. Diabetes Care 2011, 34, 2551–2554. [Google Scholar] [CrossRef]
- Manz, F. Hydration and Disease. J. Am. Coll Nutr. 2007, 26, 541S. [Google Scholar] [CrossRef]
- Yeboah, J.; Folsom, A.R.; Burke, G.L.; Johnson, C.; Polak, J.F.; Post, W.; Lima, J.A.; Crouse, J.R.; Herrington, D.M. Predictive value of brachial flow-mediated dilation for incident cardiovascular events in a population-based study: The multi-ethnic study of atherosclerosis. Circulation 2009, 120, 502–509. [Google Scholar] [CrossRef]
- Yeboah, J.; Crouse, J.R.; Hsu, F.; Burke, G.L.; Herrington, D.M. Brachial flow-mediated dilation predicts incident cardiovascular events in older adults: The Cardiovascular Health Study. Circulation 2007, 115, 2390–2397. [Google Scholar] [CrossRef]
- Lind, L.; Berglund, L.; Larsson, A.; Sundström, J. Endothelial function in resistance and conduit arteries and 5-year risk of cardiovascular disease. Circulation 2011, 123, 1545–1551. [Google Scholar] [CrossRef]
- Widlansky, M.E.; Gokce, N.; Keaney, J.F.; Vita, J.A. The clinical implications of endothelial dysfunction. J. Am. Coll. Cardiol. 2003, 42, 1149–1160. [Google Scholar] [CrossRef] [Green Version]
- Benjamin, E.J.; Muntner, P.; Alonso, A.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Das, S.R.; et al. Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association. Circulation 2019, 139, e56–e528. [Google Scholar] [CrossRef]
- Parati, G.; Pomidossi, G.; Albini, F.; Malaspina, D.; Mancia, G. Relationship of 24-hour blood pressure mean and variability to severity of target-organ damage in hypertension. J. Hypertens. 1987, 5, 93–98. [Google Scholar] [CrossRef]
- Tatasciore, A.; Renda, G.; Zimarino, M.; Soccio, M.; Bilo, G.; Parati, G.; Schillaci, G.; De Caterina, R. Awake systolic blood pressure variability correlates with target-organ damage in hypertensive subjects. Hypertension 2007, 50, 325–332. [Google Scholar] [CrossRef]
- Veloudi, P.; Blizzard, C.L.; Head, G.A.; Abhayaratna, W.P.; Stowasser, M.; Sharman, J.E. Blood Pressure Variability and Prediction of Target Organ Damage in Patients with Uncomplicated Hypertension. Am. J. Hypertens 2016, 29, 1046–1054. [Google Scholar] [CrossRef]
- Mancia, G.; Bombelli, M.; Facchetti, R.; Madotto, F.; Corrao, G.; Trevano, F.Q.; Grassi, G.; Sega, R. Long-term prognostic value of blood pressure variability in the general population: Results of the Pressioni Arteriose Monitorate e Loro Associazioni Study. Hypertension 2007, 49, 1265–1270. [Google Scholar] [CrossRef]
- Pringle, E.; Phillips, C.; Thijs, L.; Davidson, C.; Staessen, J.A.; de Leeuw, P.W.; Jaaskivi, M.; Nachev, C.; Parati, G.; O’Brien, E.T.; et al. Systolic blood pressure variability as a risk factor for stroke and cardiovascular mortality in the elderly hypertensive population. J. Hypertens. 2003, 21, 2251–2257. [Google Scholar] [CrossRef]
- Fleg, J.L.; Evans, G.W.; Margolis, K.L.; Barzilay, J.; Basile, J.N.; Bigger, J.T.; Cutler, J.A.; Grimm, R.; Pedley, C.; Peterson, K.; et al. Orthostatic Hypotension in the ACCORD (Action to Control Cardiovascular Risk in Diabetes) Blood Pressure Trial: Prevalence, Incidence, and Prognostic Significance. Hypertension 2016, 68, 888–895. [Google Scholar] [CrossRef]
- Veronese, N.; De Rui, M.; Bolzetta, F.; Zambon, S.; Corti, M.C.; Baggio, G.; Toffanello, E.D.; Maggi, S.; Crepaldi, G.; Perissinotto, E.; et al. Orthostatic Changes in Blood Pressure and Mortality in the Elderly: The Pro.V.A Study. Am. J. Hypertens. 2015, 28, 1248–1256. [Google Scholar] [CrossRef] [Green Version]
- Tzemos, N.; Lim, P.O.; Mackenzie, I.S.; MacDonald, T.M. Exaggerated Exercise Blood Pressure Response and Future Cardiovascular Disease. J. Clin. Hyper. 2015, 17, 837–844. [Google Scholar] [CrossRef]
- Miyai, N.; Arita, M.; Miyashita, K.; Morioka, I.; Shiraishi, T.; Nishio, I. Blood pressure response to heart rate during exercise test and risk of future hypertension. Hypertension 2002, 39, 761–766. [Google Scholar] [CrossRef]
- Matthews, K.A.; Woodall, K.L.; Allen, M.T. Cardiovascular reactivity to stress predicts future blood pressure status. Hypertension 1993, 22, 479–485. [Google Scholar] [CrossRef]
- Schultz, M.G.; Otahal, P.; Picone, D.S.; Sharman, J.E. Clinical Relevance of Exaggerated Exercise Blood Pressure. J. Am. Coll. Cardiol. 2015, 66, 1843–1845. [Google Scholar] [CrossRef] [Green Version]
- Côté, C.E.; Rhéaume, C.; Poirier, P.; Després, J.P.; Alméras, N. Deteriorated Cardiometabolic Risk Profile in Individuals with Excessive Blood Pressure Response to Submaximal Exercise. Am. J. Hypertens. 2019. [Google Scholar] [CrossRef]
- Costa, R.J.S.; Camoes-Costa, V.; Snipe, R.M.J.; Dixon, D.; Russo, I.; Huschtscha, Z. The impact of exercise-induced hypohydration on gastrointestinal integrity, function, symptoms, and systemic endotoxin and inflammatory profile. J. Appl. Physiol. 2019. [Google Scholar] [CrossRef]
- Martin, J.V.; Liberati, D.M.; Diebel, L.N. Excess sodium is deleterious on endothelial and glycocalyx barrier function: A microfluidic study. J. Trauma Acute Care Surg. 2018, 85, 128–134. [Google Scholar] [CrossRef]
- Tremblay, J.C.; Hoiland, R.L.; Howe, C.A.; Coombs, G.B.; Vizcardo-Galindo, G.A.; Figueroa-Mujíca, R.J.; Bermudez, D.; Gibbons, T.D.; Stacey, B.S.; Bailey, D.M.; et al. Global REACH 2018: High Blood Viscosity and Hemoglobin Concentration Contribute to Reduced Flow-Mediated Dilation in High-Altitude Excessive Erythrocytosis. Hypertension 2019, 73, 1327–1335. [Google Scholar] [CrossRef]
- Parkhurst, K.L.; Lin, H.; Devan, A.E.; Barnes, J.N.; Tarumi, T.; Tanaka, H. Contribution of blood viscosity in the assessment of flow-mediated dilation and arterial stiffness. Vasc. Med. 2012, 17, 231–234. [Google Scholar] [CrossRef]
- Rognmo, O.; Bjørnstad, T.H.; Kahrs, C.; Tjønna, A.E.; Bye, A.; Haram, P.M.; Stølen, T.; Slørdahl, S.A.; Wisløff, U. Endothelial function in highly endurance-trained men: Effects of acute exercise. J. Strength Cond. Res. 2008, 22, 535–542. [Google Scholar] [CrossRef]
- Vlachopoulos, C.; Aznaouridis, K.; Stefanadis, C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: A systematic review and meta-analysis. J. Am. Coll. Cardiol. 2010, 55, 1318–1327. [Google Scholar] [CrossRef]
- McConell, G.K.; Burge, C.M.; Skinner, S.L.; Hargreaves, M. Influence of ingested fluid volume on physiological responses during prolonged exercise. Acta Physiol. Scand. 1997, 160, 149–156. [Google Scholar] [CrossRef]
- Brake, D.J.; Bates, G.P. Fluid losses and hydration status of industrial workers under thermal stress working extended shifts. Occup. Environ. Med. 2003, 60, 90–96. [Google Scholar] [CrossRef] [Green Version]
- Senay, L.C. Temperature regulation and hypohydration: A singular view. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1979, 47, 1–7. [Google Scholar] [CrossRef]
- Sawka, M.N.; Montain, S.J.; Latzka, W.A. Hydration effects on thermoregulation and performance in the heat. Comp. Biochem. Physiol. Part. A Mol. Integr. Physiol. 2001, 128, 679–690. [Google Scholar] [CrossRef]
- Kenefick, R.W.; Cheuvront, S.N. Physiological adjustments to hypohydration: Impact on thermoregulation. Auton. Neurosci. 2016, 196, 47–51. [Google Scholar] [CrossRef]
- Hall, J.E. Guyton and Hall Textbook of Medical Physiology, 13th ed.; Elsevier: Amsterdam, The Nederland, 2016. [Google Scholar]
- Endemann, D.H.; Schiffrin, E.L. Endothelial dysfunction. J. Am. Soc. Nephrol. 2004, 15, 1983–1992. [Google Scholar] [CrossRef]
- Diep, Q.N.; Amiri, F.; Touyz, R.M.; Cohn, J.S.; Endemann, D.; Neves, M.F.; Schiffrin, E.L. PPARalpha activator effects on Ang II-induced vascular oxidative stress and inflammation. Hypertension 2002, 40, 866–871. [Google Scholar] [CrossRef]
- Diep, Q.N.; El Mabrouk, M.; Cohn, J.S.; Endemann, D.; Amiri, F.; Virdis, A.; Neves, M.F.; Schiffrin, E.L. Structure, endothelial function, cell growth, and inflammation in blood vessels of angiotensin II-infused rats: Role of peroxisome proliferator-activated receptor-gamma. Circulation 2002, 105, 2296–2302. [Google Scholar] [CrossRef]
- Rajagopalan, S.; Kurz, S.; Münzel, T.; Tarpey, M.; Freeman, B.A.; Griendling, K.K.; Harrison, D.G. Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. J. Clin. Invest. 1996, 97, 1916–1923. [Google Scholar] [CrossRef]
- Robinson, A.T.; Fancher, I.S.; Sudhahar, V.; Bian, J.T.; Cook, M.D.; Mahmoud, A.M.; Ali, M.M.; Ushio-Fukai, M.; Brown, M.D.; Fukai, T.; et al. Short-term regular aerobic exercise reduces oxidative stress produced by acute in the adipose microvasculature. Am. J. Physiol. Heart Circ. Physiol. 2017, 312, H906. [Google Scholar] [CrossRef]
- Touyz, R.M.; Schiffrin, E.L. Ang II-stimulated superoxide production is mediated via phospholipase D in human vascular smooth muscle cells. Hypertension 1999, 34, 976–982. [Google Scholar] [CrossRef]
- Touyz, R.M.; Chen, X.; Tabet, F.; Yao, G.; He, G.; Quinn, M.T.; Pagano, P.J.; Schiffrin, E.L. Expression of a functionally active gp91phox-containing neutrophil-type NAD(P)H oxidase in smooth muscle cells from human resistance arteries: Regulation by angiotensin II. Circ. Res. 2002, 90, 1205–1213. [Google Scholar] [CrossRef]
- Schwimmer, H.; Gerstberger, R.; Horowitz, M. Nitric oxide and angiotensin II: Neuromodulation of thermoregulation during combined heat and hypohydration stress. Brain Res. 2004, 1006, 177–189. [Google Scholar] [CrossRef]
- Koh, K.K.; Ahn, J.Y.; Han, S.H.; Kim, D.S.; Jin, D.K.; Kim, H.S.; Shin, M.; Ahn, T.H.; Choi, I.S.; Shin, E.K. Pleiotropic effects of angiotensin II receptor blocker in hypertensive patients. J. Am. Coll. Cardiol. 2003, 42, 905–910. [Google Scholar] [CrossRef] [Green Version]
- Willemsen, J.M.; Westerink, J.W.; Dallinga-Thie, G.M.; van Zonneveld, A.; Gaillard, C.A.; Rabelink, T.J.; de Koning Eelco, J.P. Angiotensin II type 1 receptor blockade improves hyperglycemia-induced endothelial dysfunction and reduces proinflammatory cytokine release from leukocytes. J. Cardiovasc. Pharmacol. 2007, 49, 6–12. [Google Scholar] [CrossRef]
- Preumont, N.; Unger, P.; Goldman, S.; Berkenboom, G. Effect of long-term angiotensin II type I receptor antagonism on peripheral and coronary vasomotion. Cardiovasc. Drugs Ther. 2004, 18, 197–202. [Google Scholar] [CrossRef]
- Bellien, J.; Iacob, M.; Eltchaninoff, H.; Bourkaib, R.; Thuillez, C.; Joannides, R. AT1 receptor blockade prevents the decrease in conduit artery flow-mediated dilatation during NOS inhibition in humans. Clin. Sci. 2007, 112, 393–401. [Google Scholar] [CrossRef] [Green Version]
- Warnholtz, A.; Ostad, M.A.; Heitzer, T.; Thuneke, F.; Fröhlich, M.; Tschentscher, P.; Schwedhelm, E.; Böger, R.; Meinertz, T.; Munzel, T. AT1-receptor blockade with irbesartan improves peripheral but not coronary endothelial dysfunction in patients with stable coronary artery disease. Atherosclerosis 2007, 194, 439–445. [Google Scholar] [CrossRef]
- Watanabe, Y.; Kikuchi, T.; Mitsuhashi, T.; Kimura, H.; Tsuchida, Y.; Otsuka, K. Administration of angiotensin receptor II blockade improves vascular function, urinary albumin excretion, and left ventricular hypertrophy in low-risk essential hypertensive patients receiving antihypertensive treatment with calcium channel blockers. Clin. Exp. Hypertens. 2013, 35, 87–94. [Google Scholar] [CrossRef]
- Mizuno, Y.; Jacob, R.F.; Mason, R.P. Effects of calcium channel and renin-angiotensin system blockade on intravascular and neurohormonal mechanisms of hypertensive vascular disease. Am. J. Hypertens. 2008, 21, 1076–1085. [Google Scholar] [CrossRef]
- Płonowski, A.; Szymańska-Debińska, T.; Radzikowska, M.; Baranowska, B.; Woźniewicz, B. Are mu-opioid receptors involved in the control of endothelin-1 release from the pituitary gland in normal and dehydrated rats? Regul. Pept. 1997, 69, 89–94. [Google Scholar] [CrossRef]
- Maeda, S.; Miyauchi, T.; Waku, T.; Koda, Y.; Kono, I.; Goto, K.; Matsuda, M. Plasma endothelin-1 level in athletes after exercise in a hot environment: Exercise-induced dehydration contributes to increases in plasma endothelin-1. Life Sci. 1996, 58, 1259–1268. [Google Scholar] [CrossRef]
- Bellien, J.; Iacob, M.; Monteil, C.; Rémy-Jouet, I.; Roche, C.; Duflot, T.; Vendeville, C.; Gutierrez, L.; Thuillez, C.; Richard, V.; et al. Physiological role of endothelin-1 in flow-mediated vasodilatation in humans and impact of cardiovascular risk factors. J. Hypertens 2017, 35, 1204–1212. [Google Scholar] [CrossRef]
- Nishiyama, S.K.; Zhao, J.; Wray, D.W.; Richardson, R.S. Vascular function and endothelin-1: Tipping the balance between vasodilation and vasoconstriction. J. Appl. Physiol. 2017, 122, 354–360. [Google Scholar] [CrossRef]
- Perry, B.G.; Bear, T.L.K.; Lucas, S.J.E.; Mündel, T. Mild dehydration modifies the cerebrovascular response to the cold pressor test. Exp. Physiol. 2016, 101, 135–142. [Google Scholar] [CrossRef]
- Adams, J.M.; McCarthy, J.J.; Stocker, S.D. Excess dietary salt alters angiotensinergic regulation of neurons in the rostral ventrolateral medulla. Hypertension 2008, 52, 932–937. [Google Scholar] [CrossRef]
- Holbein, W.W.; Bardgett, M.E.; Toney, G.M. Blood pressure is maintained during dehydration by hypothalamic paraventricular nucleus-driven tonic sympathetic nerve activity. J. Physiol. 2014, 592, 3783–3799. [Google Scholar] [CrossRef]
- Stocker, S.D.; Lang, S.M.; Simmonds, S.S.; Wenner, M.M.; Farquhar, W.B. Cerebrospinal Fluid Hypernatremia Elevates Sympathetic Nerve Activity and Blood Pressure via the Rostral Ventrolateral Medulla. Hypertension 2015, 66, 1184–1190. [Google Scholar] [CrossRef] [Green Version]
- Scrogin, K.E.; Grygielko, E.T.; Brooks, V.L. Osmolality: A physiological long-term regulator of lumbar sympathetic nerve activity and arterial pressure. Am. J. Physiol. 1999, 276, 1579. [Google Scholar] [CrossRef]
- Colombari, D.S.A.; Colombari, E.; Freiria-Oliveira, A.H.; Antunes, V.R.; Yao, S.T.; Hindmarch, C.; Ferguson, A.V.; Fry, M.; Murphy, D.; Paton, J.F.R. Switching control of sympathetic activity from forebrain to hindbrain in chronic dehydration. J. Physiol. 2011, 589, 4457–4471. [Google Scholar] [CrossRef]
- Veitenheimer, B.J.; Engeland, W.C.; Guzman, P.A.; Fink, G.D.; Osborn, J.W. Effect of global and regional sympathetic blockade on arterial pressure during water deprivation in conscious rats. Am. J. Physiol. Heart Circ. Physiol. 2012, 303, 1022. [Google Scholar] [CrossRef]
- Grassi, G.; Seravalle, G.; Brambilla, G.; Pini, C.; Alimento, M.; Facchetti, R.; Spaziani, D.; Cuspidi, C.; Mancia, G. Marked sympathetic activation and baroreflex dysfunction in true resistant hypertension. Int. J. Cardiol. 2014, 177, 1020–1025. [Google Scholar] [CrossRef]
- James, M.A.; Robinson, T.G.; Panerai, R.B.; Potter, J.F. Arterial baroreceptor-cardiac reflex sensitivity in the elderly. Hypertension 1996, 28, 953–960. [Google Scholar] [CrossRef]
- Ebert, T.J.; Morgan, B.J.; Barney, J.A.; Denahan, T.; Smith, J.J. Effects of aging on baroreflex regulation of sympathetic activity in humans. Am. J. Physiol. 1992, 263, 798. [Google Scholar] [CrossRef]
- Filomena, J.; Riba-Llena, I.; Vinyoles, E.; Tovar, J.L.; Mundet, X.; Castane, X.; Vilar, A.; Lopez-Rueda, A.; Jimenez-Balado, J.; Cartanya, A.; et al. ISSYS Investigators Short-Term Blood Pressure Variability Relates to the Presence of Subclinical Brain Small Vessel Disease in Primary Hypertension. Hypertension 2015, 66, 634–640. [Google Scholar] [CrossRef]
- Mancia, G.; Parati, G.; Hennig, M.; Flatau, B.; Omboni, S.; Glavina, F.; Costa, B.; Scherz, R.; Bond, G.; Zanchetti, A. Relation between blood pressure variability and carotid artery damage in hypertension: Baseline data from the European Lacidipine Study on Atherosclerosis (ELSA). J. Hypertens. 2001, 19, 1981–1989. [Google Scholar] [CrossRef]
- Madden, J.M.; O’Flynn, A.M.; Dolan, E.; Fitzgerald, A.P.; Kearney, P.M. Short-term blood pressure variability over 24 h and target organ damage in middle-aged men and women. J. Hum. Hypertens. 2015, 29, 719–725. [Google Scholar] [CrossRef]
- Palatini, P.; Penzo, M.; Racioppa, A.; Zugno, E.; Guzzardi, G.; Anaclerio, M.; Pessina, A.C. Clinical relevance of nighttime blood pressure and of daytime blood pressure variability. Arch. Intern. Med. 1992, 152, 1855–1860. [Google Scholar] [CrossRef]
- Ogawa, Y.; Iwasaki, K.; Aoki, K.; Saitoh, T.; Kato, J.; Ogawa, S. Dynamic cerebral autoregulation after mild dehydration to simulate microgravity effects. Aviat. Space Environ. Med. 2009, 80, 443–447. [Google Scholar] [CrossRef]
- Matsukawa, T.; Gotoh, E.; Minamisawa, K.; Kihara, M.; Ueda, S.; Shionoiri, H.; Ishii, M. Effects of intravenous infusions of angiotensin II on muscle sympathetic nerve activity in humans. Am. J. Physiol. 1991, 261, 690. [Google Scholar] [CrossRef]
- Trapani, A.J.; Undesser, K.P.; Keeton, T.K.; Bishop, V.S. Neurohumoral interactions in conscious dehydrated rabbit. Am. J. Physiol. 1988, 254, 338. [Google Scholar] [CrossRef]
- Charkoudian, N.; Halliwill, J.R.; Morgan, B.J.; Eisenach, J.H.; Joyner, M.J. Influences of hydration on post-exercise cardiovascular control in humans. J. Physiol. 2003, 552, 635–644. [Google Scholar] [CrossRef]
- Andrews, C.E., Jr.; Brenner, B.M. Relative contributions of arginine vasopressin and angiotensin II to maintenance of systemic arterial pressure in the anesthetized water-deprived rat. Circ. Res. 1981, 48, 254–258. [Google Scholar] [CrossRef]
- Carroll, H.A.; James, L.J. Hydration, Arginine Vasopressin, and Glucoregulatory Health in Humans: A Critical Perspective. Nutrients 2019, 11, 1201. [Google Scholar] [CrossRef]
- Johnston, C. Vasopressin in Circulatory Control and Hypertension. J. Hyper. 1985, 3, 557–569. [Google Scholar] [CrossRef]
- Liard, J.F. Vasopressin in cardiovascular control: Role of circulating vasopressin. Clin. Sci. 1984, 67, 473–481. [Google Scholar] [CrossRef]
- Flynn, F.W.; Stricker, E.M. Hypovolemia stimulates intraoral intake of water and NaCl solution in intact rats but not in chronic decerebrate rats. Physiol. Behav. 2003, 80, 281–287. [Google Scholar] [CrossRef]
- Collister, J.P.; Nahey, D.B.; Hendel, M.D.; Brooks, V.L. Roles of the subfornical organ and area postrema in arterial pressure increases induced by 48-h water deprivation in normal rats. Physiol. Rep. 2014, 2, e00191. [Google Scholar] [CrossRef]
- Tyagi, M.G.; Thomas, M. Enhanced cardiovascular reactivity to desmopressin in water-restricted rats: Facilitatory role of immunosuppression. Methods Find. Exp. Clin. Pharmacol. 1999, 21, 619–624. [Google Scholar]
- Hiwatari, M.; Johnston, C.I. Involvement of vasopressin in the cardiovascular effects of intracerebroventricularly administered alpha 1-adrenoceptor agonists in the conscious rat. J. Hyper. 1985, 3, 613. [Google Scholar] [CrossRef]
- Brooks, V.L. Vasopressin and ANG II in the control of ACTH secretion and arterial and atrial pressures. Am. J. Physiol. 1989, 256, 339. [Google Scholar] [CrossRef]
- Schreihofer, A.M.; Stricker, E.M.; Sved, A.F. Chronic nucleus tractus solitarius lesions do not prevent hypovolemia-induced vasopressin secretion in rats. Am. J. Physiol. 1994, 267, 965. [Google Scholar] [CrossRef]
- Fejes-Tóth, G.; Náray-Fejes-Tóth, A.; Ratge, D. Evidence against role of antidiuretic hormone in support of blood pressure during dehydration. Am. J. Physiol. 1985, 249. [Google Scholar] [CrossRef]
- Huch, K.M.; Wall, B.M.; Mangold, T.A.; Bobal, M.A.; Cooke, C.R. Hemodynamic response to vasopressin in dehydrated human subjects. J. Investig. Med. 1998, 46, 312–318. [Google Scholar]
- Wenner, M.M.; Stachenfeld, N.S. Blood pressure and water regulation: Understanding sex hormone effects within and between men and women. J. Physiol. 2012, 590, 5949–5961. [Google Scholar] [CrossRef]
- Stachenfeld, N.S.; Silva, C.; Keefe, D.L.; Kokoszka, C.A.; Nadel, E.R. Effects of oral contraceptives on body fluid regulation. J. Appl. Physiol. 1999, 87, 1016–1025. [Google Scholar] [CrossRef]
- Minson, C.T.; Halliwill, J.R.; Young, T.M.; Joyner, M.J. Influence of the menstrual cycle on sympathetic activity, baroreflex sensitivity, and vascular transduction in young women. Circulation 2000, 101, 862–868. [Google Scholar] [CrossRef]
- Carter, J.R.; Lawrence, J.E.; Klein, J.C. Menstrual cycle alters sympathetic neural responses to orthostatic stress in young, eumenorrheic women. Am. J. Physiol. Endocrinol. Metab. 2009, 297, 85. [Google Scholar] [CrossRef]
- Fu, Q.; Okazaki, K.; Shibata, S.; Shook, R.P.; VanGunday, T.B.; Galbreath, M.M.; Reelick, M.F.; Levine, B.D. Menstrual cycle effects on sympathetic neural responses to upright tilt. J. Physiol. 2009, 587, 2019–2031. [Google Scholar] [CrossRef]
- Baker, S.E.; Limberg, J.K.; Ranadive, S.M.; Joyner, M.J. Neurovascular control of blood pressure is influenced by aging, sex, and sex hormones. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2016, 311, R1275. [Google Scholar] [CrossRef]
- Harvey, R.E.; Hart, E.C.; Charkoudian, N.; Curry, T.B.; Carter, J.R.; Fu, Q.; Minson, C.T.; Joyner, M.J.; Barnes, J.N. Oral Contraceptive Use, Muscle Sympathetic Nerve Activity, and Systemic Hemodynamics in Young Women. Hypertension 2015, 66, 590–597. [Google Scholar] [CrossRef] [Green Version]
- Claydon, V.E.; Younis, N.R.; Hainsworth, R. Phase of the menstrual cycle does not affect orthostatic tolerance in healthy women. Clin. Auton. Res. 2006, 16, 98–104. [Google Scholar] [CrossRef]
- Lawrence, J.E.; Ray, C.A.; Carter, J.R. Vestibulosympathetic reflex during the early follicular and midluteal phases of the menstrual cycle. Am. J. Physiol. Endocrinol. Metab. 2008, 294, 1046. [Google Scholar] [CrossRef]
- Robinson, A.T.; Babcock, M.C.; Watso, J.C.; Brian, M.S.; Migdal, K.U.; Wenner, M.M.; Farquhar, W.B. Relation between resting sympathetic outflow & vasoconstrictor responses to sympathetic nerve bursts: Sex differences in healthy young adults. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2019. [Google Scholar] [CrossRef]
- Thompson, W.O.; Thompson, P.K.; Dailey, M.E. The Effect of Posture upon the Composition and Volume of the Blood in Man. J. Clin. Invest. 1928, 5, 573–604. [Google Scholar] [CrossRef]
- Fedorowski, A.; Burri, P.; Melander, O. Orthostatic hypotension in genetically related hypertensive and normotensive individuals. J. Hypertens. 2009, 27, 976–982. [Google Scholar] [CrossRef]
- Ricci, F.; De Caterina, R.; Fedorowski, A. Orthostatic Hypotension: Epidemiology, Prognosis, and Treatment. J. Am. Coll. Cardiol. 2015, 66, 848–860. [Google Scholar] [CrossRef]
- Sheldon, R.S.; Grubb, B.P.; Olshansky, B.; Shen, W.; Calkins, H.; Brignole, M.; Raj, S.R.; Krahn, A.D.; Morillo, C.A.; Stewart, J.M.; et al. 2015 heart rhythm society expert consensus statement on the diagnosis and treatment of postural tachycardia syndrome, inappropriate sinus tachycardia, and vasovagal syncope. Heart Rhythm. 2015, 12. [Google Scholar] [CrossRef]
- Cooke, W.H.; Ryan, K.L.; Convertino, V.A. Lower body negative pressure as a model to study progression to acute hemorrhagic shock in humans. J. Appl. Physiol. 2004, 96, 1249–1261. [Google Scholar] [CrossRef]
- Hinojosa-Laborde, C.; Shade, R.E.; Muniz, G.W.; Bauer, C.; Goei, K.A.; Pidcoke, H.F.; Chung, K.K.; Cap, A.P.; Convertino, V.A. Validation of lower body negative pressure as an experimental model of hemorrhage. J. Appl. Physiol. 2014, 116, 406–415. [Google Scholar] [CrossRef]
- Cheshire, W.P.; Goldstein, D.S. Autonomic uprising: The tilt table test in autonomic medicine. Clin. Auton. Res. 2019, 29, 215–230. [Google Scholar] [CrossRef]
- Goswami, N.; Blaber, A.P.; Hinghofer-Szalkay, H.; Convertino, V.A. Lower Body Negative Pressure: Physiological Effects, Applications, and Implementation. Physiol. Rev. 2019, 99, 807–851. [Google Scholar] [CrossRef]
- Thompson, C.A.; Tatro, D.L.; Ludwig, D.A.; Convertino, V.A. Baroreflex responses to acute changes in blood volume in humans. Am. J. Physiol. 1990, 259, 792. [Google Scholar] [CrossRef]
- Cheuvront, S.N.; Ely, B.R.; Kenefick, R.W.; Buller, M.J.; Charkoudian, N.; Sawka, M.N. Hydration assessment using the cardiovascular response to standing. Eur. J. Appl. Physiol. 2012, 112, 4081–4089. [Google Scholar] [CrossRef]
- Kimmerly, D.S.; Shoemaker, J.K. Hypovolemia and MSNA discharge patterns: Assessing and interpreting sympathetic responses. Am. J. Physiol. Heart Circ. Physiol. 2003, 284, 1198. [Google Scholar] [CrossRef]
- Brooks, V.L.; Freeman, K.L.; Clow, K.A. Excitatory amino acids in rostral ventrolateral medulla support blood pressure during water deprivation in rats. Am. J. Physiol. Heart Circ. Physiol. 2004, 286, 1642. [Google Scholar] [CrossRef]
- Brooks, V.L.; Qi, Y.; O’Donaughy, T.L. Increased osmolality of conscious water-deprived rats supports arterial pressure and sympathetic activity via a brain action. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2005, 288, 1248. [Google Scholar] [CrossRef]
- Watso, J.C.; Babcock, M.C.; Robinson, A.T.; Migdal, K.U.; Wenner, M.M.; Stocker, S.D.; Farquhar, W.B. Water deprivation does not augment sympathetic or pressor responses to sciatic afferent nerve stimulation in rats or to static exercise in humans. J. Appl. Physiol. 2019. [Google Scholar] [CrossRef]
- Riley, C.J.; Gavin, M. Physiological Changes to the Cardiovascular System at High Altitude and Its Effects on Cardiovascular Disease. High Alt. Med. Biol. 2017, 18, 102–113. [Google Scholar] [CrossRef]
- Jain, S.C.; Bardhan, J.; Swamy, Y.V.; Krishna, B.; Nayar, H.S. Body fluid compartments in humans during acute high-altitude exposure. Aviat. Space Environ. Med. 1980, 51, 234–236. [Google Scholar]
- Tannheimer, M.; Fusch, C.; Boning, D.; Thomas, A.; Engelhardt, M.; Schmidt, R. Changes of hematocrit and hemoglobin concentration in the cold Himalayan environment in dependence on total body fluid. Sleep Breath. 2010, 14, 193–199. [Google Scholar] [CrossRef]
- Frayser, R.; Rennie, I.D.; Gray, G.W.; Houston, C.S. Hormonal and electrolyte response to exposure to 17,500 ft. J. Appl. Physiol. 1975, 38, 636–642. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Watso, J.C.; Farquhar, W.B. Hydration Status and Cardiovascular Function. Nutrients 2019, 11, 1866. https://doi.org/10.3390/nu11081866
Watso JC, Farquhar WB. Hydration Status and Cardiovascular Function. Nutrients. 2019; 11(8):1866. https://doi.org/10.3390/nu11081866
Chicago/Turabian StyleWatso, Joseph C., and William B. Farquhar. 2019. "Hydration Status and Cardiovascular Function" Nutrients 11, no. 8: 1866. https://doi.org/10.3390/nu11081866