Table <mark>S1</mark> Nutrient	Studies included in this review						
	Study subjects	Hearing test	Study design	Main findings	Author and year		
		method					
Low fat diet	C57BL/6J mice	ABR	Experimental	High-fat food delays ARHI. The antioxidant of vitamin E	Fujita et al.,		
	CBA/N-slc mice		study design	is rich in the high fat diet.	2015 [<mark>58</mark>]		
	Sprague-Dawley	ABR	Experimental	High fat diet may induce oxidative stress, mitochondrial	Du et al.,		
	rats		study design	damage, and apoptosis in the inner ear which increases	2012 [55]		
				risk of ARHI.			
	CBA/CaJ mouse	ABR,	Experimental	Induction of diabetes significantly accelerates hearing	Vasilyeva et al.,		
		DPOAEs	study design	impairment.	2009 [<mark>56</mark>]		
	CD/1 mice	ABR	Experimental	Diet-induced obesity exacerbates hearing degeneration	Hwang et al., 2013		
			study design	via increased hypoxia, inflammatory responses, and	[57]		
				apoptosis signaling pathways.			
	Humans	PTA	Retrospective	Dietary intake of cholesterol is associated with	Gopinath et al.,		
	(aged ≥50 y)		cross-sectional	progression of ARHI.	2011 [<mark>59</mark>]		
			analysis				
Statins	Humans	РТА	Retrospective	Statins may have beneficial influence on preventing	Gopinath et al.,		
	(aged ≥50 y)		cross-sectional	ARHI.	2010 [74]		
			analysis				

	C57BL/6J mice	ABR	Experimental	Statins could slow down ARHI by improving blood flow	Syka et al.,
	ApoE-deficient	DPOAEs	study design	of inner ear	2007 [<mark>61</mark>]
	mice				
Aldosterone	Humans	PTA,	Case control	Serum aldosterone level is lower in ARHI. Aldosterone	Tadros et al., 2005
	(aged ≥58y)	TEOAEs	study	may have protective effect on ARHI.	[67]
		HINT			
	CBA/CaJ mice	ABR	Experimental	Protective effect of aldosterone on ARHI is via cellular	Halonen et al.,
			study design	stabilization in cochlear lateral wall cells.	2016 [<mark>66</mark>]
n-3 PUFAs	C57BL/6J mice	ABR,	Experimental	Long-term protective role of n-3 PUFAs on cochlear	Martínez et al.,
		DPOAEs	study design	homocysteine metabolism and progression of ARHI.	2015 [73]
	Humans	РТА	Cross-section	n-3 PUFAs in the diet could be beneficial to preserve	Gopinath et al.,
	(aged ≥50 y)		and longitudinal	cochlear function and reduce ARHI.	2010 [74]
			prospective		
			design		
	Humans	РТА	Cross-section	Inverse association between plasma very long-chain n-3	Dullemeijer C et
	(aged 50-70 y)		and longitudinal	PUFAs and hearing loss.	al., 2010 [75]
			prospective		
			design		
Alpha-	Fischer rats	ABR	Experimental	Alpha-lipoic acid repairs age-induced cochlea	Seidman et al.,
lipoic acid			study design	mitochondrial damage and reduces ARHI	2005 [<mark>76</mark>]
Lecithin	Fischer rats	ABR	Experimental	Lecithin may preserve cochlear mitochondrial function	Seidman et al.,
			study design	and reduced ARHI.	2002 [78]

Теа	Human	PTA	Retrospective	Oolong tea drinking is associated with better central	Hwang et al.,
	(aged ≥55 y)		cohort study	auditory function in the aged.	2012 [80]
Ginseng	C57BL/6 mice	ABR	Experimental	Ginseng has protective effect on ARHI.	Tian et al.,
			study design		2014 [<mark>83</mark>]
	C57BL/ <u>KsI</u> mice	ABR	Experimental	Ginseng could reduce hearing loss by improving insulin	Hong et al.,
		AMLR	study design	sensitivity.	2013 [<mark>84</mark>]
		TEOAEs			

ABR: auditory brainstem response; ARHI: age-related hearing impairment; DPOAEs: distortion product otoacoustic emissions; n-3 PUFA: omega-3 polyunsaturated fatty acids; HINT: Hearing in noise test; PTA: pure-tone audiometry; AMLR: auditory middle latency response; TEOAEs: transient evoked otoacoustic emissions