Table S1. Unhealthy food retailers (by type) found within 400-m of schools ($n=6530$) city-wide (Madrid, 2017).

	n	$\%$
Supermarkets	1005	15.39
Grocery stores	2176	33.32
Convenience stores	54	0.83
Bakeries (for immediate consumption)	1367	20.93
Candy and confectionary stores	97	1.49
Fast-foods (e.g., McDonalds)	805	12.33
Coffee shops (e.g., selling packaged foods, hot		
chocolate, etc)		

Table S2. Association between neighborhood-level socioeconomic status and counts of unhealthy retailers, using multilevel negative binomial regression.

	Undjusted models ${ }^{1}$ $(n=1321$ schools $)$		Adjusted model ${ }^{2}$ $(n=1321$ schools $)$	
Neighborhood-level SES		95% CI	IRR ${ }^{3}$	95% CI
High	$0.59^{* * *}$	$[0.48,0.72]$	$0.61^{* * *}$	$[0.49,0.74]$
Middle-High	$0.76^{* * *}$	$[0.65,0.89]$	$0.77^{* * *}$	$[0.66,0.90]$
Middle	- ref-		-ref-	
Middle-Low	$1.32^{* * *}$	$[1.14,1.52]$	$1.29^{* * *}$	$[1.12,1.50]$
Low	$1.67^{* * *}$	$[1.40,1.99]$	$1.62^{* * *}$	$[1.35,1.95]$
Population density $\left(10^{3}\right.$ residents/km $\left.{ }^{2}\right)$	$0.98^{* * *}$	$[0.97,0.99]$	0.99	$[0.98,1.00]$

${ }^{1}$ Estimates obtained from separate unadjusted negative binomial models, ${ }^{2}$ All estimates are mutually adjusted for all variables listed, ${ }^{3}$ IRR=incidence rate ratio; $95 \% \mathrm{CI}=95 \%$ confidence interval. * $p<0.05,{ }^{* *} p<0.01$ *** $p<0.001$

Table S3. Sensitivity analysis: Association between neighborhood-level socioeconomic status and counts of unhealthy retailers (without including supermarkets), using multilevel negative binomial regression.

	Undjusted model ${ }^{1}$ $(n=1321$ schools $)$		Adjusted model ${ }^{2}$ $(n=1321$ schools $)$	
Neighborhood-level SES	IRR 3		95% CI	IRR ${ }^{3}$

${ }^{1}$ Estimates obtained from separate unadjusted negative binomial models, ${ }^{2}$ All estimates are mutually adjusted for all variables listed, ${ }^{3}$ IRR=incidence rate ratio; $95 \% \mathrm{CI}=95 \%$ confidence Interval, ${ }^{*} p<0.05$, $^{* *} p<0.01^{* * *} p<0.001$.

Table S4. Association between neighborhood-level socioeconomic status and distance to the closest unhealthy retailer (logarithm), using multilevel linear regression.

	Undjusted models ${ }^{1}$ ($n=1321$ schools)		Adjusted model ${ }^{2}$ ($n=1321$ schools)	
	B ${ }^{3}$	95\% CI	β^{3}	95\% CI
Neighborhood-level SES				
High	0.35 ***	[0.14, 0.57]	0.30 **	[0.08, 0.51]
Middle-High	0.17	[-0.01, 0.35]	0.14	[-0.04, 0.32]
Middle	-ref-		-ref-	
Middle-Low	0.07	[-0.09, 0.25]	0.11	[-0.06, 0.29]
Low	-0.01	[-0.20, 0.20]	0.05	[-0.15, 0.26]
Population density (10^{3} residents/ km^{2})	0.02 ***	[0.01, 0.02]	0.01 *	[0.00, 0.02]
${ }^{1}$ Estimates obtained from separate unadjusted negative binomial models, ${ }^{2}$ All estimates are mutually adjusted for all variables listed, ${ }^{3} \beta=$ Coefficient estimates represent percentage changes due to the natural logarithm transformation applied to distance, the dependent variable; 95% CI $=95 \%$ confidence Interval, ${ }^{*} p<0.05,^{* *} p<0.01^{* * *} p<0.001$.				

Table S5. Sensitivity analysis: Association between neighborhood-level socioeconomic status and distance (logarithm) to the closest unhealthy retailer (without including supermarkets), using multilevel linear regression.

	Undjusted models ${ }^{1}$ $(n=1321 ~ s c h o o l s)$		Adjusted model ${ }^{2}$ $(n=1321$ schools $)$	
	β^{3}	$95 \% \mathrm{CI}$	β^{3}	$95 \% \mathrm{CI}$
Neighborhood-level SES			$0.37^{* *}$	$[0.15,0.58]$
High	$0.43^{* * *}$	$[0.22,0.64]$	0.16	$[-0.02,0.34]$
Middle-High	0.19^{*}	$[0.01,0.37]$	- ref-	
Middle	- ref-		0.02	$[-0.15,0.19]$
Middle-Low	-0.01	$[-0.01,0.55]$	-0.06	$[-0.26,0.14]$
Low	-0.11	$[-0.32,0.08]$	0.01^{*}	$[0.00,0.02]$
Population density $\left(10^{3}\right.$ residents $\left./ \mathrm{km}^{2}\right)$	$0.02^{* * *}$	$[0.01,0.03]$		

${ }^{1}$ Estimates obtained from separate unadjusted negative binomial models, ${ }^{2}$ All estimates are mutually adjusted for all variables listed, ${ }^{3} \beta=$ Coefficient estimates represent percentage changes due to the natural logarithm transformation applied to distance, the dependent variable; 95\% CI $=95 \%$ confidence Interval, ${ }^{*} p<0.05$, $^{* *} p<0.01^{* * *} p<0.001$.

