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Abstract: The human breast milk (HBM) bacteriome is an important, continuous source of microbes
to the neonate in early life, playing an important role in shaping the infant’s intestinal bacteriome.
Study of the composition of the HBM bacteriome is an emerging area of research, with little
information available, particularly from low- and middle-income countries. The aim of this study was
to characterize the diversity of bacterial communities in HBM samples collected between 6–10 weeks
postpartum from lactating South African women and to study potential influencing factors of the
bacteriome. Using 16S rRNA gene sequencing of samples from 554 women, we demonstrated that the
HBM bacteriome was largely dominated by the phyla Firmicutes (mean relative abundance: 71.1%)
and Actinobacteria (mean relative abundance: 16.4%). The most abundant genera identified from the
HBM bacteriome were Streptococcus (mean relative abundance: 48.6%), Staphylococcus (mean relative
abundance: 17.8%), Rothia (mean relative abundance: 5.8%), and Corynebacterium (mean relative
abundance: 4.3%). “Core” bacterial genera including Corynebacterium, Streptococcus, Staphylococcus,
Rothia, Veillonella, Gemella, Acinetobacter, Micrococcus and a genus belonging to the Enterobacteriaceae
family were present in 80% of samples. HBM samples were classified, according to their bacteriome,
into three major clusters, dominated by the genera Staphylococcus (cluster 1), a combination of
Staphylococcus and Streptococcus (cluster 2), and Streptococcus (cluster 3). The cluster groups differed
significantly for Shannon and chao1 richness indices. Bacterial interactions were studied using
co-occurrence networks with positive associations observed between the abundances of Staphylococcus
and Corynebacteria (members of the skin microflora) and between Streptococcus, Rothia, Veillonella, and
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Gemella (members of the oral microflora). HBM from older mothers had a higher Shannon diversity
index. The study site was associated with differences in HBM bacteriome composition (permutational
multivariate analysis of variance using distance matrices (PERMANOVA), p < 0.05). No other tested
socio-demographic or psychosocial factors were associated with HBM bacterial composition.

Keywords: human breast milk; bacteriome; microbiome; 16S rRNA gene sequencing; bacterial
profiles; socio-economic; psychosocial; Africa

1. Introduction

The bacterial community (the bacteriome) present in human breast milk (HBM) is diverse and
plays an important role in the health of both mothers and their infants [1,2]. HBM bacteria are one
of the main sources of continuous microbes to the infant in early life and play a role in shaping the
infant’s intestinal bacteriome [3]. Several bacterial genera, including Streptococcus, Staphylococcus,
Corynebacterium, Pseudomonas, and lactic acid bacteria (LAB; Lactobacillus spp. and Bifidobacterium
spp.) have been identified as key components of the HBM bacteriome, with the phyla Firmicutes and
Proteobacteria typically dominating [4–6].

The concept of a core bacteriome has been proposed [7], with Staphylococcus and Streptococcus
uniformly present [2,8,9], but with variation in other genera [10]. Despite a core bacteriome, substantial
variability in HBM bacterial profiles occurs and has been linked to various exposures. For example,
HBM from women who delivered vaginally showed a different bacterial profile compared to those
who had caesarean section delivery [6]. Other factors, such as geographical location, maternal weight
and body mass index, maternal health, maternal dietary intake, and lactational stage, have also been
shown to influence the HBM bacteriome composition [5,6,11–13]. However, previous studies have
been limited by sample size (n = 10 to 133), with few studies having been performed in sub-Saharan
Africa [5,14], and studies have not yet evaluated socio-demographic and psychosocial factors in detail.

We therefore conducted a large cross-sectional study, nested within an existing birth cohort,
to describe the bacteriome of HBM from a cohort of South African women and the associated factors.

2. Materials and Methods

2.1. Study Settings: Drakenstein Child Health Study

This was a cross-sectional study nested within an existing birth cohort study, the “Drakenstein
Child Health Study” (DCHS) [15]. The primary aim of the DCHS is to investigate the early life
determinants of child health in two poor communities in South Africa, a low- and middle-income
country (LMIC). The birth cohort is based in the Drakenstein sub-district, a semi-rural area 60 km
outside Cape Town, South Africa and has an estimated population of 200,000. The study sites
include the TC Newman community health clinic (which serves a population with mixed ancestry),
and Mbekweni (which serves a population with predominately black African isiXhosa ancestry).
These two study sites are approximately 5 km apart. Inhabitants live in informal housing or crowded
conditions, with high levels of unemployment, a high prevalence of tobacco smoke exposure, alcohol
misuse, malnutrition, and other poverty-related exposures [15].

2.2. Clinical Data and Sample Collection

Pregnant women, 18 years of age or older (n = 1137), were enrolled between 20 and 28 weeks of
gestation and were followed up until their infants were 5 years old. Written informed consent was
obtained from all participating mothers. On recruitment, detailed demographic and risk factor data
were collected. Mothers underwent physical examination, and metrics such as maternal height and
weight were collected [15].
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HBM samples were collected from 554 women at 6–10 weeks postpartum. All participating
women were asked to wash their hands, nipples, and surrounding breast area with soap and water
to minimize the presence of skin bacteria. HBM was collected manually by hand expression into
a sterile collection container after discarding the first few drops. After collection, the samples were
transported on ice to the research laboratory at the University of Cape Town and stored at −80 ◦C until
further processing.

Ethical approval for the present study and the parent study (DCHS) was obtained from the
University of Cape Town (UCT) Human Research Ethics committee (reference numbers 649/2016
and 401/2009).

2.3. Bacterial Nucleic Acid Extraction and Quantification

HBM samples were homogenized by vortexing, and skim milk preparation was adapted from
a previously published protocol [16]. In brief, the samples were centrifuged at 3500 g for 20 min at
−10 ◦C, and the fat layer discarded. The supernatant was then centrifuged at 7600 g for 10 min at room
temperature, and the pellet was used for DNA extraction. Total genomic DNA was extracted using
the commercial manual extraction kit, ZR Fungal/Bacterial DNA MiniPrep™ (Zymo Research Corp.,
Irvine, CA, USA), which incorporates a bead-beading step. All bead-beating steps were performed in
a TissueLyser LT (Qiagen) at a frequency of 50 Hz for 5 min.

The quantity and purity of DNA was measured using a NanoDrop™ND-2000c Spectrophotometer
(Thermo Scientific, Inc.). DNA was stored at −20 ◦C until further processing. The bacterial 16S rRNA
gene was quantified using a 16S qPCR protocol previously described [17]. Each 30 µL PCR reaction
contained 2.5 µL DNA template, 1 µL of probe (16S-P1 (FAM- ATT AGA TAC CCT GGT AGT CCA
–MGB), 15 µL Sensifast Probe No-rox (BIO-86020), 9.5 µL of MilliQ water, and 1 µL each of 0.333 µM
forward and reverse primer (16S-F1: 5′-CGA AAG CGT GGG GAG CAA A -3′ and 16S-R1: 5′-GTT
CGT ACT CCC CAG GCG G-3′, respectively) [17]. PCR cycling conditions were as follows: 50 ◦C for
2 min; 95 ◦C for 10 min; 45 cycles of 95 ◦C for 15 s, 60 ◦C for 60 s, and 72 ◦C for 1 s [17].

2.4. Extraction and Sequencing Controls

Extraction controls were processed alongside HBM specimens and were included for each batch
of extractions (Supplementary Figure S1). Positive extraction controls consisted of 1000 µL elution
buffer (provided by the ZR Fungal/Bacterial DNA MiniPrep™ kit) spiked with 75 µL Zymobiomics™
microbial community standard (Catalogue no. D6300, Zymo Research Corp., Irvine, CA, USA).
Negative extraction controls (NTC; no template control) consisted of 1000 µL of unspiked elution buffer.
DNA extracts from negative extraction controls served as negative PCR and sequencing controls.
A subset of DNA extracts from negative extraction controls were spiked with Mycobacterium smegmatis
(M. smegmatis) DNA (Supplementary Figure S1B) at a 16S rRNA gene concentration similar to that
obtained from HBM samples assessed by qPCR (herein referred to as “M. smegmatis-spiked-NTC”). M.
smegmatis-spiked-NTC were used to correct for potential contamination, resulting from bacterial DNA in
buffers and reagents, during bioinformatics processing of sequenced reads. To determine experimental
reproducibility, library preparation and sequencing were carried out in duplicate for 11 HBM DNA
extracts. These included seven DNA extracts randomly selected for repeat processing within a single
run (“within-run repeats”); and four DNA extracts randomly selected for repeat processing between the
two sequencing runs performed (“between-run repeats”). In addition, the ZymoBIOMICS™Microbial
Community DNA Standard (Catalogue no. D6305, Zymo Research Corp., Irvine, CA, USA) was used
to assess library preparation, sequencing reproducibility, and bias.

2.5. 16S Ribosomal Ribonucleic Acid (rRNA) Gene Amplicon Library Preparation and Sequencing

Previously published primers [18] (with slight modifications [19]), PCR conditions, and library
preparation steps were followed to generate 16S rRNA gene libraries [19]. Libraries were constructed
using a two-step amplification approach described by Wu and colleagues [20]. In the first
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PCR reaction, the hypervariable V4 region of the 16S rRNA gene was amplified using primers
(515Fshort)-5′GTGCCAGCHGCYGCGGT3′ and (806Rshort)-5′GGACTACNNGGGTNTCTAAT3′,
respectively. Each 25.25 µL PCR reaction contained 12.5 µL 2X MyTaq™ HS Mix (BIO-25046),
2 µL each of 0.8 µM forward and reverse primers, 1 µL of MilliQ water, 0.75µL dimethyl sulphoxide
(Sigma-Aldrich®, MO, USA), and 7 µL bacterial genomic DNA. PCR was carried out under the
following conditions: 95 ◦C for 3 min; 10 cycles of 95 ◦C for 30 s, 50 ◦C for 30 s, and 72 ◦C for 1 s; and,
finally, 72 ◦C for 5 min. Amplicon product (7 µL) from the first PCR reaction was used as template
in the second PCR reaction. The second PCR reaction mixture was the same as the first except for
the use of modified reverse primers. Reverse primers were modified at the 3′ end with Illumina
adapter sequences and unique index barcodes for each sample. The use of index sequences allowed
multiplexing of samples in a single sequencing run [18]. The PCR conditions for the second PCR were
the same as for the first PCR but run for 30 cycles.

Amplicon products were cleaned with the Agencourt AMPure system (Beckman Coulter, UK)
using an Agencourt SPRIPlate 96 super Magnet Plate. The QuantiFluor™ dsDNA System (Promega,
Madison, WI, USA) was used to quantify the cleaned amplicons. The integrity of the cleaned amplicons
was assessed by gel electrophoresis. Amplicons were normalized by pooling the different samples
at 100 ng each. The pooled library was purified using the Agencourt AMPure system and extracted
from a 1.5% agarose gel following gel electrophoresis (30 min at 35 V; 45 min at 40 V; and finally,
3 h 30 min at 70 V). Excision of the pooled 16S library was followed by purification using QIAquick
Gel Extraction Kit (Qiagen, Valencia, CA, United States) in accordance with manufacturer’s protocol.
The elution buffer, Tris-EDTA (pH 8.0), was heated at 70 ◦C to improve amplicon recovery (step 13).
Finally, the Qubit® dsDNA BR Assay Kit was used for quantification of the pooled library.

Sequencing was carried out at the Centre for Proteomic and Genomic Research, Cape Town,
South Africa. Quality control pre-sequencing steps included quantification of adapter-ligated dsDNA
using the KAPA Library Quantification Kit (Illumina®) (KAPA Biosystems, MA, USA) and analysis
of the fragment size of the pooled library using the Agilent High-Sensitivity (HS) DNA Kit (Agilent
Technologies, CA, USA). The library pool was diluted to 5.5 pM for sequencing, and the internal
sequencing control (PhiX control V3, Illumina, CA, USA) was spiked into the diluted library at 15%
(v/v), in accordance with the manufacturer’s instructions [21]. The first and second library pool had
352 and 202 samples multiplexed per Illumina run. The pooled 16S library was paired-end sequenced
on the Illumina MiSeq® system using the MiSeq® Reagent v3 kit (600 cycles) (Illumina, CA, USA).

2.6. Processing of 16S rRNA Gene Sequences

The 16S rRNA gene sequences were processed using an in-house pipeline. Briefly, the
sequencing quality of FASTQ files was assessed using FastQC and MultiQC packages [22,23].
Forward and reverse sequences were then merged using UPARSE [24], allowing 3 mismatches
in overlaps (uparse_merge_fastq, fastq_maxdiff set to 3), followed by quality filtering using
uparse_filter_fastq fastq_filter (sequences truncated to 250bp). Reads with a maximum expected
error >0.1 were discarded (fastq_maxee set to 0.1). The USEARCH10 [25] sortbysize command was
used to dereplicate and select sequences occurring more than once. Clustering of sequences into
operational taxonomic units (OTUs) (with a clustering radius of 3) was performed with USEARCH10.
The USEARCH10_uchime2_ref tool was used to detect and remove chimeras, and OTU counts were
obtained using USEARCH10 usearch-global.

In silico correction for contamination of biological HBM samples was carried out using a procedure
to control for “over-compensation” during contaminant removal (Supplementary Figure S1). Firstly,
M. smegmatis sequences were removed from the “M. smegmatis-spiked-NTC” controls. Background
sequences present in the M. smegmatis-spiked-NTC controls after the removal of M. smegmatis sequences
were screened against biological sample sequences by aligning biological sample sequences to
background sequences at 100% identity using align_seq.py, based on PyNAST [26] algorithm and
uclust [25] (Supplementary Figure S1D). The average number of reads was calculated for each of the
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“background sequences” across M. smegmatis-spiked-NTCs, and the corresponding number of reads was
thereafter removed from the biological HBM samples (Supplementary Figure S1E). Further processing of
data was performed using Quantitative Insights Into Microbial Ecology (QIIME) 1.9.0 suite of software
tools [27]. Taxonomy was assigned to representative sequences of the OTUs using assign_taxonomy.py
(method set to the Ribosomal Database Project (RDP)) classifier [26], and identity was set to 97%
with the SILVA 132 release database [28]. Sequence alignment and filtering was performed with
align_seqs.py (97% identity) and filter_alignment.py, while construction of a phylogenetic tree was
done using the make_phylogeny.py script.

Chao1 species richness [29] was used to estimate species richness, and a rarefaction plot of
Shannon diversity against sequencing depth was generated using alpha_rarefaction.py in QIIME 1.9.0.
Samples with <1000 reads were removed from further analysis as the rarefaction curve plateaued at
a sequence depth of 1000 read counts. The core bacteriome, defined as the OTUs that were present in at
least 80% of the samples, was determined with QIIME with the script “compute_core_microbiome.py”.
Nextflow [30] was used to loop the entire processing workflow. The 16S rRNA gene sequencing
datasets used in this study are stored in the National Center for Biotechnology Information (NCBI)
Sequence Read Archive (SRA) repository (BioProject PRJNA520889).

2.7. Statistical Analyses

Statistical analysis and graphical illustrations of the data (barplots, boxplots, dendograms) were
generated in R statistical package (version 3.4.4) [31] and R studio 1.1.456, respectively. Alpha diversity
was calculated using the Shannon–Weaver index [32]. Analysis of variance (Type II test) [33] was
used to test the difference in alpha diversity between groups, while error estimates were based on
Pearson residuals.

Agglomerative clustering was performed for all OTUs with relative abundance of >0.5% and
was generated by complete linkage hierarchical clustering [34] using the [hclust] function [35].
This hierarchical clustering method is based on the Bray–Curtis dissimilarity index [36] of the R vegan
package [37]. To determine the relative abundances of bacterial profiles, the operational taxonomic unit
(OTU) table (clustered at 97% sequence similarity) was transformed from count data to compositional
data [38]. The hierarchical clustering tree was cut at a height of 0.8 to cluster samples into groups based
on relative abundance of bacteria in HBM samples at genus level. The optimal number of clusters was
determined using the Calinski–Harabasz index [39] and validated by the silhouette width index [40].

Log–ratio biplots using a Bayesian prior technique for adjustments of zero counts were made as
previously described [41], and lambda-scaling was employed to ensure evenness in the “total spread”
of the data sets [42]. Box-plots [43] were used for visualization of distribution of the data.

A co-occurrence network was constructed using the R network package with centered log–ratio
data [44]. The cut-off was set to 0.28 to generate the network for each of the different clusters and for
all samples, using bacteria with genus-level abundances >0.5%. A bivariate correlation analysis for the
16 most abundant genera was performed using Pearson correlation.

Permutational multivariate analysis of variance using distance matrices (PERMANOVA)
via “adonis” in the R package vegan [45,46] with Aitchison’s distance [47,48] in the R package
robCompositions [49] was used to test the effects of potential influencing factors on the composition and
diversity of HBM bacteriome. ADONIS was performed with 999 x permutations and method “bray”.
The Benjamini–Hochberg method for multiple correction was used to correct all p-values, set at a 5%
significance level, by the false discovery rate (FDR) [50]. All OTUs irrespective of their abundance
at each taxonomy level were tested in the model, and a multivariate p-value was generated for the
covariates. Linear discriminant analysis (LDA) effect size (LEfSe) with default parameters [51] was
used to assess taxa that differed between groups, for any covariate significant by ADONIS.

The Beck depression inventory (BDI-II) is a self-report measure of depressive symptoms
that assesses key symptoms of depression between 0 (absence of symptom) and 3 (severe, often
with functional impairment). Individual items are summed, and scores of ≥20 is indicative of
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moderate/severe depression [52,53]. The self-regulation questionnaire (SRQ) is a WHO-endorsed
self-report measure assessing psychological distress, including symptoms of depressive and anxiety
disorders in which individual items are scored according to whether or not the symptom is present.
SRQ scores ≥8 is indicative of “high risk” participants [54,55]. PTSD was measured by the modified
posttraumatic stress disorder symptom scale (MPSS) [56], which is a self-report measure with scale
including items which assess 3 symptom clusters for PTSD: re-experiencing, avoidance/emotional
numbing, and increased arousal. Items assessing the re-experiencing symptom cluster were scored as
“above threshold” if their sum totaled ≥1; avoidance/emotional numbing ≥3; and increased arousal ≥2.
Participants who scored above threshold across all three symptom clusters and reported symptom
duration of at least 1 month (scored ≥1 for item 18) were classified as “suspected PTSD cases”.
An intimate partner violence (IPV) questionnaire was used to assess recent exposure to physical,
emotional, and sexual IPV as previously described [57]. The psychosocial variables described above
were collected at the 28–32-week antenatal visit.

The alcohol, smoking, and substance involvement screening test (ASSIST) was used to assess
maternal alcohol consumption based on a scoring system as previously described [57]. Scores of 0–10
for alcohol indicate that a participant is at a low risk for substance-related health problems.

Infant length was measured in centimeters to the nearest completed 0.5 cm, and weight was
measured in kilograms to the nearest completed 10 g at the hospital as previously described [58].

A coefficient of multiple determination was generated using linear regression analysis [59] to
determine the reproducibility of the eleven DNA extracts which were processed in duplicate. The total
read count of each OTU in a sample was compared with the total read count of each OTU in its
duplicate set.

3. Results

3.1. Participant Characteristics

HBM samples were collected from 554 mothers at 6–10 weeks (median 7.5 weeks) postpartum.
Maternal characteristics can be found as Supplementary Table S1. The median maternal age at
enrolment was 25.3 years. The median maternal weight and body mass index (BMI) at time of HBM
collection was 63.7kg and 25 kg/m2, respectively. The majority of the mothers were unemployed,
and only 13% of participants had a household income of >ZAR5000/month (>360 USD/month).
HIV prevalence was higher at the Mbekweni study site (18.4% of mothers) compared to TC Newman
(2% of mothers). Smoking status, as measured by urine cotinine levels at the 28–32-week antenatal
visit, classified 13% of women at Mbekweni as active smokers compared to 52% of mothers at TC
Newman. At the 6–10-week postpartum study visit, only 53% of women were exclusively breastfeeding
their babies. Most of the women delivered their infants vaginally (81%). Maternal posttraumatic
stress disorder (PTSD) was documented in 8% of mothers, while 25% and 22% of women were above
the Beck depression inventory (BDI) and self-regulation questionnaire (SRQ) threshold, respectively.
The median household size was 5 people across both sites. Twenty-three percentage (23%) of infants
were delivered pre-term (Supplementary Table S1).

3.2. Sequencing Results and OTU Analysis

A total of 16,835,376 high-quality raw paired-end reads were obtained. The total number of
postfiltered reads was 4,865,561. The median and mean sequence read count per sample was 8007
and 8782.6 (range 48–40,919), respectively. A rarefaction curve of Shannon diversity plateaued at
a sequence depth of 1000 read counts (Supplementary Figure S2), therefore 32 samples with sequence
read counts <1000 were removed from further analysis. USEARCH9 mapping of sequences revealed
that the sequence reads clustered into 2284 OTUs. The OTUs were classified into 58 phyla, 133 classes,
263 orders, 596 families, and 1300 genera.
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3.3. Profiling of Human Breast Milk Bacteriome

HBM bacterial profiles revealed diverse bacterial communities. Four phyla had mean relative
abundances >0.5%: Firmicutes (mean relative abundance (MRA): 72%), Actinobacteria (16%),
Proteobacteria (10%), and Cyanobacteria (0.9%) (Figure 1). At the genus level, 16 genera had
MRAs >0.5%, of which Streptococcus (49%), Staphylococcus (18%), and Rothia (6%) were most abundant
(Supplementary Figure S3). A core bacteriome consisting of 14 OTUs from 9 genera, Corynebacterium,
Streptococcus, Staphylococcus, Rothia, Veillonella, Gemella, Acinetobacter, Micrococcus, and a genus belonging
to the Enterobacteriaceae family, was observed (these genera were all present in HBM samples from
>80% of women) (Supplementary Table S2).

Figure 1. Complete linkage unsupervised hierarchical clustering of relative abundances of human
breast milk (HBM) bacterial phyla. Bar-plot of relative abundances of HBM bacteria genera at (A)
Mbekweni and (B) TC Newman study sites. Each bar represents a mother’s HBM bacteriome profile
and each colored box, a bacterial phylum. Phyla with less than 0.5% abundance in a given sample are
grouped together, herein referred to as “other” (grey boxes).

3.4. Breast Milk Bacteriome Profiles Segregate into Three Major Clusters

Hierarchical complete linkage unsupervised clustering based on Bray–Curtis dissimilarities at
the genus level resulted in an eleven-cluster best fit model. Clusters 4–11 however, had very few
participants and were therefore excluded from further analysis (Supplementary Figure S4). Streptococcus
and/or Staphylococcus were responsible for the formation of the three dominant clusters in our study
population. Cluster 1 showed the highest abundance of Staphylococcus spp., cluster 2 was dominated by
relatively equal proportions of both Streptococcus spp. and Staphylococcus spp., while cluster 3 showed
the highest relative abundance of Streptococcus spp. (Figure 2). Similar numbers of HBM samples were
found in clusters 1 and 2, with the majority in cluster 3 (Figure 2A).

Bacterial profiles of many of the most abundant taxa also differed between the cluster groups.
At phylum level, cluster 2 showed the highest abundance of Actinobacteria and Proteobacteria
but lowest abundance of Firmicutes. Cluster 3, on the other hand, showed the highest abundance
of Firmicutes but lowest abundance of Proteobacteria (Supplementary Table S3). At genus level,
cluster 1 showed the highest abundance of OTU_24 (belonging to the family Enterobacteriaceae) and
Corynebacterium, with the lowest abundance of Veillonella and Rothia; cluster 2 showed the highest
abundance of Acinetobacter and the LAB-Lactobacillus and Bifidobacterium; cluster 3 showed the highest
abundance of Veillonella and Rothia but lowest abundance of Corynebacterium, OTU_24 and Acinetobacter
(Figure 2 and Supplementary Table S3).
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Figure 2. Human breast milk (HBM) bacterial profiles of the three clusters in which samples were
grouped at genus level. (A) Pie charts show the mean relative abundances in each cluster at the genus
level (for genera with abundance >0.05%). (B) Notched box plots show the mean relative abundance of
the predominant bacteria genera in each cluster. The notched box signifies the 75% (upper) and 25%
(lower) quartile, showing the distribution of 50% of the samples. The median is represented by the line
inside the box plot, and the notch shows the 95% confidence interval for the median. The whiskers (top
and bottom) represent the maximum and minimum values. Outliers, which are beyond 1.5 times the
interquartile range above the maximum value and below the minimum value, are shown with open
circles. (∗∗∗p < 0.001).

Furthermore, exploration of β-diversity using principal coordinate analysis (PCoA) revealed
distinct separation of HBM samples based on the three dominant bacterial profile cluster groups
(Figure 3A). PERMANOVA “adonis” analysis identified significant dissimilarity in bacterial composition
between the clusters at order, family, and genus taxonomy levels (p ≤ 0.001). Cluster 3 was common at
both study sites but more prevalent at Mbekweni, while cluster 1 was more prevalent at TC Newman
(p = 0.018) (Figure 3B).

Figure 3. Human breast milk (HBM) bacteriome profiles colored by clusters. (A) Principal coordinate
analysis (PCoA) of Bray–Curtis distance matrices of bacteria genera from all 522 HBM samples in the
study. (B) Bar plots showing the proportion of different clusters detected from each study site.
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3.5. Alpha Diversity of Bacterial Communities within the DCHS Cohort Study

Of the 26 covariates tested in this study (Supplementary Table S1), only the phenotypic cluster
groups and infant birth length showed significant differences in both alpha diversity measures (Shannon
diversity and Chao1 index). Figure 4 shows the alpha diversity matrices for 5 selected covariates.
For phenotypic cluster groups, cluster 1 had the lowest diversity by both measures, while cluster 2
had the highest Shannon diversity and cluster 3 had the highest Chao1 species richness (Figure 4).
To analyze the association of infant birth length with HBM bacterial diversity, samples were stratified
into three groups: mothers with infant birth length of 0–40, 40–48, and 48–60 cm. HBM from mothers
with infant birth length 48–60 cm had the lowest bacterial diversity by both measures (Supplementary
Table S4). A significant difference in Shannon diversity was observed based on maternal age in all
samples and at the Mbekweni study site, with older mothers (ages ≥35) having a higher Shannon
diversity index (p < 0.05) (Figure 4 and Supplementary Table S4).

Figure 4. Alpha diversity indices of human breast milk bacteriome profiles. (A) Shannon
diversity index, and (B) Chao1 index of HBM bacteriome profiles of participants based on cluster
group, study site, maternal age (in years), infant feeding at 6–10 weeks, and smoking during
pregnancy. M = Mbekweni, TCN = TC Newman, EBF = exclusive breastfeeding, MF = mixed feeding,
NS = non-smoker, PS = passive smoker, AS = active smoker.

3.6. Human Breast Milk Bacterial Profiles in Relation to Demographic, Socio-Economic, and
Psychosocial Variables

Beta-diversity clustering at the genus level of all HBM samples based on Bray–Curtis dissimilarity
index showed no clear association between bacterial profiles and the different covariates studied
(Figure 5). We also visualized bacterial diversity at the genus level for genera with abundances
>0.5% using log–ratio biplots. Clustering was not observed for any covariates studied (Figure 6 and
Supplementary Figure S5). Figure 6 shows the results for a selection of 4 covariates (study site, maternal
smoking, maternal BMI, and mode of delivery). Mothers with elective caesarean section delivery had
bacterial profiles with less clustering towards Staphylococcus (Figure 6).
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Figure 5. Complete linkage unsupervised hierarchical clustering of human breast milk (HBM) bacterial
profiles. (A) Dendogram of bacterial profiles present in 522 HBM samples at genus level. (B) Horizontal
colored bars below the dendogram summarize covariate data for each sample.

Figure 6. Log–ratio biplot of human breast milk bacterial abundances at the genus level. Samples are
colored according to (A) study site, (B) maternal smoking, (C) body mass index (BMI), and (D) delivery
mode. Each sample is represented by a circle and is colored based on group type. Samples (circles) that
cluster together are similar in bacterial composition and abundance.

Associations between bacterial profiles and socio-demographic and psychosocial characteristics
were also investigated at different taxonomy levels using PERMANOVA. At the phylum, order, family,
and genus levels, only study site (which was also a marker for ethnicity) was associated with significant
dissimilarity of the HBM bacterial communities (ANOVA, p < 0.05). There were no statistically
significant differences between HBM bacterial profiles in relation to the remaining covariates (Table 1).
LEfSe was performed to further explore differences in specific bacterial taxa in relation to study site.
In line with the prevalence of the different cluster groups between study sites, HBM samples from
Mbekweni had significantly higher relative abundance of the genus Streptococcus, while samples from



Nutrients 2019, 11, 1390 11 of 19

TC Newman had significantly higher relative abundances of the genera Staphylococcus, Acinetobacter,
and Escherichia_Shigella (Supplementary Figure S6A).

Table 1. Permutational multivariate analysis of variance (PERMANOVA) analyses of HBM bacteriome
and its association with maternal demographic and psychosocial factors.

Covariates
Phylum
(p-Value)

Class Order Family
(p-Value)

Genus
(p-Value)(p-Value) (p-Value)

Study site (Ethnicity) 0.041 * 0.0628 0.0036 * 0.004 * 0.0028 *
Mode of delivery 0.9756 0.9492 0.8276 0.8358 0.793
Gestational age 0.1266 0.126 0.944 0.3424 0.3538
Infant gender 0.7818 0.8142 0.3084 0.9608 0.7898

Infant feeding options 0.1716 0.2244 0.9502 0.2888 0.4662
Maternal education 0.275 0.3486 0.2202 0.189 0.1734

Maternal employment 0.7434 0.7192 0.2346 0.6372 0.7988
Maternal BMI 0.3886 0.3806 0.6206 0.714 0.5788

Infant birth weight 0.836 0.933 0.6886 0.719 0.7824
Infant birth length 0.9876 0.971 0.9006 0.895 0.9414

Maternal age 0.3286 0.3986 0.8976 0.641 0.7316
Dwelling type 0.5846 0.4892 0.6306 0.136 0.1158
Marital status 0.4194 0.4406 0.1362 0.7608 0.7778

Household income 0.6062 0.6988 0.663 0.0922 0.0988
Maternal HIV status 0.7238 0.6582 0.0836 0.9242 0.9252

Antibiotics 0.4178 0.4446 0.951 0.3334 0.2128
Household size 0.559 0.4248 0.3374 0.9198 0.8276

Maternal smoking 0.867 0.8698 0.837 0.7986 0.7448
Alcohol score 0.1216 0.0974 0.8012 0.2018 0.8706
IPV-emotional 0.9198 0.9132 0.806 0.8394 0.3256
IPV-physical 0.2504 0.2432 0.1708 0.6604 0.817
IPV-sexual 0.7438 0.8552 0.8676 0.2556 0.8092

PTSD 0.847 0.6846 0.724 0.3232 0.1342
BDI score 0.127 0.876 0.2598 0.3168 0.3246

SRQ 0.7408 0.5376 0.2576 0.8204 0.3012

EBF = exclusive breastfeeding; BMI = body mass index; IPV = induced partner violence; PTSD = posttraumatic
stress disorder; BDI = Beck depression inventory; SRQ = self-regulation questionnaire; smoking status was based on
cotinine levels measured during an antenatal visit. Cotinine levels ≥500 (active smoker); cotinine levels >10<500
(passive smoker); cotinine levels ≤10 (non-smoker). p-values were generated by multivariable PERMANOVA
analyses and adjusted using Benjamini–Hochberg’s false discovery rate. Significant results (p < 0.05) are labeled
with asterisks.

3.7. Co-occurrence Networks in Human Breast Milk Bacterial Communities

Bacterial correlations within the HBM bacteriome were explored, since bacteria cohabit ecological
niches, and interactions between bacterial species may be present [60]. We constructed a network for
all HBM samples, and across the 3 main clusters based on Pearson’s correlations of relative abundance
(−0.28 >|r|<0.28) at genus level (Figure 7 and Supplementary Table S5). The network of all HBM
samples contained 12 nodes (bacterial genera) and 19 edges (interconnecting lines denoting correlations)
(Figure 7A). Bacterial correlations within each cluster group were similar except for Streptococcus
spp. and Staphylococcus spp. While a negative correlation was observed between these two genera
in a co-occurrence network involving all samples, a positive interaction was observed in cluster 2,
where the relative abundances of Streptococcus spp. and Staphylococcus spp. were similar.

Within the Firmicutes phylum, the abundance of Staphylococcus spp. was positively correlated
with Corynebacterium spp. (both common commensals of the skin) but was negatively correlated
with Streptococcus spp. and Veillonella spp. Streptococcus spp. abundance, on the other hand, was
positively correlated with other members of the oral flora, Veillonella spp., Gemella spp., and Rothia
spp. and negatively correlated with the Proteobacteria (Acinetobacter spp., and Enhydrobacter spp.),
and with skin commensals such as Micrococcus spp. and Staphylococcus spp. A positive correlation was
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observed between Pseudomonas spp., Acinetobacter spp., and Enhydrobacter spp., all members of the
order Pseudomonadales.

Figure 7. Bacterial networks within the human breast milk bacteriome community based on correlation
between relative abundances. Figures show correlations between predominant bacteria in (A) all
HBM samples, (B) cluster 1, (C) cluster 2, and (D) cluster 3. Nodes and node sizes represent bacterial
genera and their relative abundances, respectively. Green and red lines represent positive and negative
correlations respectively between the bacteria, with the thickness of the line indicating the degree
of correlation.

3.8. Reproducibility of Bacterial Profiling

The bacterial composition of each sample and its repeat was evaluated to test for reproducibility.
Multiple R-square values of >0.97 for both within-run and between-run repeats showed excellent
reproducibility (Supplementary Figure S7). Hierarchical clustering also showed that replicate samples
clustered together (Supplementary Figure S8).

4. Discussion

In this study, the largest of its kind to date, we described the composition of the HBM bacteriome
in samples from mothers living in South Africa. We identified a core bacteriome consisting of 9 bacterial
genera present in >80% of samples. We also showed that there are three major HBM bacteriome
profiles, distinguished by the relative abundances of the genera Streptococcus and Staphylococcus, and
that bacteria which are commonly found as part of the skin flora correlate in relative abundance in
HBM, as do bacteria which are part of the oral microflora. We were able to demonstrate an association
between study site (a proxy for ethnicity in this study), infant birth length and maternal age, and the
composition of the HBM bacteriome.

Previous studies of the HBM bacteriome have revealed a diverse bacterial population, including
gram positive (Corynebacterium spp., Lactobacillus spp., Bifidobacterium spp., Staphylococcus spp.) and
gram negative (Pseudomonas spp., Veillonella spp.) bacteria [7,9,61,62]. The most abundant bacterial
phyla in our study were Firmicutes and Actinobacteria, in contrast to several other studies [8,9,63,64],
which described a predominance of Proteobacteria and Firmicutes. Our findings are similar, however,
to that of Williams et al. [13], who showed similar relative abundances at the phylum level in HBM from
mothers in the USA. Many factors, including geographical region (which influences diet and cultural
practices) [65], lactational stage, and maternal health, may influence the HBM bacterial community,
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with considerable diversity reported between individuals [5,63]. Methodological differences including
sample processing and analytical techniques may also account for differences between studies.

At the bacterial genus level, Streptococcus spp. and Staphylococcus spp. were most abundant, in
line with previous studies [7–9,63,66,67] and a recent systematic review [68]. Other abundant genera
included Rothia spp., Corynebacteria spp. and Acinetobacter spp. Of note, the relative abundance of
Acinetobacter spp. observed in our cohort (2.2%) was low. When comparing our findings to those
published previously, we found that studies with sample collection protocols similar to ours identified
Acinetobacter spp. proportions comparable to those in our study [66]. By contrast, proportions of
Acinetobacter spp. were higher (32%) when the sample collection protocol omitted cleaning of breast
skin prior to collection and discarding of the first few drops of milk during the collection procedure [66].

Bifidobacterium spp. and Lactobacillus spp. (lactic acid bacteria (LAB)) were detected at low relative
abundances (mean relative abundances of 1.0% and 0.9%) but detected in 72% and 76% of women in our
study. Previous studies using quantitative polymerase chain reaction (qPCR) estimated the absolute
abundance of Lactobacillus spp. and Bifidobacterium spp. as 103–104 cells/mL and 102–105 cells/mL,
respectively [4,69,70]; however, we were not able to determine absolute abundance using 16S rRNA
gene amplicon sequencing. LAB have been identified as probiotics which colonize the infant gut
even at a relatively small dose, and function to competitively exclude pathogens [71,72]. Studies have
suggested that HBM is an important source of Bifidobacterium for the infant gut. In support of this, it
has been shown that Bifidobacterium dominates the gut of a breastfed full-term infant as early as the
first 3–6 days of life and makes up 60%–90% of the total bacteriome of the infant gut [73]. Furthermore,
identical strains of Bifidobacterium breve and Lactobacillus plantarum have been isolated from HBM and
infant feces in a mother–infant pair, confirming vertical transmission [9].

Our study confirmed the existence of a shared and conserved “core” bacteriome in HBM, which is
consistent with previous studies [7–9,64]. The core bacteriome identified from HBM samples assessed
in our study included eight bacterial genera at 80% prevalence. Bifidobacterium and Lactobacillus were
not part of the core bacteriome in our study, in contrast to a previous study in Ireland [9].

Further investigation into HBM bacterial profiles using clustering analysis revealed three major
dominant profiles present in our samples, determined by the relative abundances of Streptococcus spp.
and/or Staphylococcus spp. Cluster 1, dominated by Staphylococcus spp., was associated with a less
diverse bacteriome. A previous study in Taiwan and mainland China similarly described clustering of
bacterial profiles based on the dominance of Streptococcaceae, and Staphylococcaceae, but at the family
taxonomy level [63]. In contrast to our study, however, Pseudomonadaceae contributed to the third
cluster [63].

4.1. Bacterial Interactions within the Human Breast Milk Bacterial Community

We explored the correlation between bacterial genera, based on relative abundance. We showed
a positive relationship between the two skin commensals, Staphylococcus spp. and Corynebacterium
spp., in line with previous findings by Ma et al. (2015) [74]. Recently, an “evil alliance” was
proposed to occur between these two genera, as both have been implicated as the cause of mastitis in
breastfeeding women [74,75]. Staphylococcus epidermidis and Staphylococcus aureus are major causes of
infectious mastitis, a major reason of premature cessation of breastfeeding among lactating women [2].
Corynebacterium spp. has been implicated as the third most prevalent bacterial group causing infectious
mastitis [75].

Veillonella spp., Gemella spp., Rothia spp. and Streptococcus spp., which are commensals of the oral
cavity, demonstrated positive correlations. A similar positive correlation was also observed between
Pseudomonas spp., Acinetobacter spp. and Enhydrobacter spp., which are all members of the order
Pseudomonadales and live in the nasal cavities.

A negative correlation was observed between the abundances of Acinetobacter spp. and Staphylococcus
spp. Unlike in a previous study in Taiwan and Mainland China [63], correlations between Streptococcus
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spp. and Staphylococcus spp. varied between cluster groups, being negative for clusters 1 and 3,
but positive for cluster 2 where both bacterial genera had high relative abundances.

4.2. Impact of Maternal and Infant Factors on Human Breast Milk Bacterial Profiles

We studied a broad range of potential influencing factors of the HBM bacteriome but showed
no association of maternal, socio-economic, and psychosocial variables with the HBM bacteriome,
apart from maternal age, infant birth length, and study site (which almost completely correlated with
ethnicity). Our findings are similar to those of Urbaniak and colleagues (2016), who found that HBM
bacterial profiles did not differ significantly based on mode of delivery, gestation or infant gender in
a Canadian population [8]. In support of our and Urbaniak and colleagues’ findings, a previous study
conducted on HBM samples among Chinese women (n = 90) and a longitudinal study conducted
among American women (n = 104) also found that the mode of delivery had no influence on HBM
bacteriome [13,66].

In contrast to these reports, two recent studies show separation of HBM bacterial profiles on
principal component analysis of beta diversity in relation to mode of delivery [64,76]. Both studies,
however, had relatively small sample sizes (12 and 84 participants). In our study, we observed
separation of HBM bacterial profiles of women who underwent elective caesarean section from HBM
profiles of women who underwent either vaginal or emergency caesarean section delivery in a log–ratio
biplot with less clustering around Staphylococcus; however, this association did not show statistical
significance on PERMANOVA testing. Kumar et al. (2016) showed that while delivery mode was
not associated with HBM bacterial profiles among South African and Finnish women, Chinese and
Spanish women showed different bacterial profiles based on mode of delivery [5]. Li et al. (2017)
found no difference in the abundance of bacterial families in HBM based on delivery mode; however,
the genus, Lactobacillus, differed between the two groups [63]. In another recent study, mode of delivery
was associated with bacterial composition of colostrum. Higher abundances of Pseudomonas spp.,
Staphylococcus spp., and Prevotella spp. were observed in the colostrum of mothers with caesarean
section delivery. It is possible that differences in HBM profiles would be most marked in early HBM
samples where the hormones involved in the delivery process still have an impact.

Other factors which have been associated with HBM bacterial profiles include gestational age,
maternal age, and maternal BMI. Interestingly, one previous study using qPCR showed differences
in HBM composition between preterm and term milk, with higher Bifidobacterium spp. and lower
Enterococcus spp. counts among women who delivered term babies [70]. A more recent study and ours,
using 16S rRNA gene sequencing, showed no impact of gestational age on the HBM bacteriome [8].
With focus on infant gender, a previous study reported higher mean relative abundances of Streptococcus
spp. and lower mean relative abundances of Staphylococcus spp. from HBM of mothers with male
infants [13], although we did not find any significant association. Contrary to our study, BMI within the
normal range was associated with higher proportions of Alphaproteobacteria and Betaproteobacteria at
the class level [77]. Maternal age, on the other hand, influenced the diversity of HBM bacterial profiles
in our study and previous reports [63,77]. How maternal age or infant sex drives the bacteriome is
largely unknown to date.

A study in Taiwan showed no influence of BMI on HBM bacteriome [63], as was found in our
study; however, higher Granulicatella spp. relative abundance was observed in another study of HBM
from overweight and obese mothers [13].

There is increasing awareness of the microbiota–gut–brain axis, with several studies describing
an association between the gut microbiota, neuropsychiatric and psychosocial variables in both mouse
models and humans [78–80]. We, however, did not observe any association between psychosocial
variables and the HBM bacteriome. To the best of our knowledge, this is the first study to examine the
association of psychosocial variables with HBM bacteriome composition.

In our study, we found an association between study site and the HBM bacteriome. However, since
ethnicity was almost completely correlated with study site, we are unable to determine whether these
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differences were due to ethnicity or other unmeasured factors associated with study site. Li et al. [63]
demonstrated similar findings in a study characterizing the HBM bacteriome from various regions
within Taiwan and Mainland China [63]. Ethnicity has been found to have an influence on the gut
microbiome in several studies [65,81] and could be driven by a range of factors, such as genetic
differences or diet [82].

Strengths of our study include large sample size, consistent methods for sample collection,
processing and sequencing, detailed metadata collection, a reproducible sequencing pipeline, and
robust multivariate statistical analysis. The major limitation of our study was the use of a single
sampling time point, which precludes us from studying intra-individual variability or exploring
changes in bacterial profiles and associated risk factors over time.

5. Conclusions

We used 16S rRNA gene sequencing to characterize the HBM bacteriome of a large cohort of
mothers living in South Africa. We showed that the HBM bacteriome was dominated at the phylum
level by Firmicutes and Actinobacteria, and at the genus level by Staphylococcus, Streptococcus, and
Rothia. We identified three major microbiome profile groups, defined by the relative abundances
of Staphylococcus spp. and Streptococcus spp. We found little evidence of the association of various
socio-economic or psychosocial variables with the HBM bacteriome, but we showed that maternal age,
infant birth length, and study site were associated with composition of the HBM bacteriome.
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