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Abstract: A substantial burden of disease and mortality globally is attributable to both sleep disruption
and low intakes of fruit and vegetable (FV) and there is increasing mechanistic and epidemiological
evidence to support a reciprocal relationship between the two. This review provides an overview of
experimental and observational studies assessing the relations between sleep and FV consumption
from 52 human adult studies. Experimental studies are currently limited and show inconsistent
results. Observational studies support a non-linear association with adults sleeping the recommended
7–9 hours/day having the highest intakes of FV. The potential mechanisms linking sleep and FV
consumption are highlighted. Disrupted sleep influences FV consumption through homeostatic and
non-homeostatic mechanisms. Conversely, FV consumption may influence sleep through polyphenol
content via several potential pathways. Few human experimental studies have examined the effects
of FV items and their polyphenols on sleep and there is a need for more studies to address this.
An appreciation of the relationship between sleep and FV consumption may help optimize sleep and
FV consumption and may reduce the burden of chronic diseases. This review provides implications
for public health and directions for future work.
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1. Introduction

Sleep is a universal need and humans spend about one-third of their lives asleep but its function
remains to be fully elucidated. Sleep health encompasses sleep architecture [1], sleep duration, quality
(efficiency which is the time in bed spent asleep, sleep onset latency (SOL) which is the amount of
time it takes to fall asleep) [2], timing (sleep onset is the time sleeping starts and sleep offset is waking
time), variability, daytime sleepiness, and napping [3]. However, most studies have focused on sleep
duration since it is easier to report accurately by participants [4]. Sleep is regulated by a two-process
model that interplay akin to an hourglass timer [5]. The two-processes include process S—which is the
homeostatic drive to sleep which accumulates across the day, peaks before bedtime and dissipates
throughout the night—and process C which is regulated by the circadian system [6].

Sleep disruption is defined as changes in sleep continuity, timing, or duration. It is intertwined
with circadian rhythm disruption and their causes could be environmental, such as shift work and
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jetlag, and behavioral, such as the disruption of the fasting/feeding cycle and the rest/activity cycle [7].
The National Sleep Foundation (a US non-profit organization) recommends different sleep durations for
individuals according to age. Adults aged between 18–64 years are recommended to sleep 7–9 h/day [8].

1.1. Economic Cost of Sleep Disruption and Low Intakes of FV

Hafner and colleagues reported the economic cost of insufficient sleep from 62,000 people in
the UK, US, Canada, Germany, and Japan. Insufficient sleep costs $411 billion annually for the US,
$138 billion for Japan, £40 billion for UK, $60 billion for Germany, and $21 billion for Canada [9].
Sleep disruption has detrimental consequences and identifying the factors that influence it is a public
health priority.

Few studies have assessed the economic cost of “unhealthy diets” that include low consumption of
FV, probably due to the conceptual challenges of its definition [10]. Popkin et al. defined an “unhealthy
diet” as high in saturated and trans-fat, heavy alcohol drinking, and low consumption of whole
grains and FV. Using this definition, the estimated annual cost of “unhealthy diets” for China was
calculated as €3.5 billion per capita [11]. The economic burden attributable to low FV consumption in
Australia was estimated to be $AUS 269 million [12]. For Canada, the economic burden of inadequate
consumption of FV was $CAN 3.3 billion per year, of which 30% is direct for health-care costs and 69%
is indirect costs due to productivity losses [13]. The estimates of the economic cost to the NHS in the
UK in 2007 was £5.8 billion for “poor diet”, the consumption of <600 g/day of FV was one aspect of
“poor diet” [14].

1.2. Sleep Disruption and Low Intakes of FV Are Associated with Morbidity and Mortality

There is growing evidence that sleep disruption has deleterious associations for health. The Centers
for Disease Control and Prevention has declared “insufficient sleep” as a public health problem because
it is associated with type 2 diabetes, heart disease, obesity, and depression [15]. Short sleep duration
was associated with 38% increased risk of obesity in adults from 153 prospective studies in a
meta-analysis [16]. Recent evidence from other meta-analyses found that long sleep duration was
associated with an increased risk of obesity [4,17]. Sleep disruption was shown to increase the risk of
other diseases including; cancer [18–20], type 2 diabetes mellitus [4,16,21], stroke [22], cardiovascular
disease, and coronary heart disease [23,24]. A consistent U-shaped association was shown between
sleep duration and mortality, short and long sleep durations were associated with an increased risk of
mortality [4,16,25–28]. Collectively, sleep disruption is associated with an increased risk of diseases
and mortality. These associations are partly mediated through changes in dietary intake including
the low consumption of FV [29], thus exploring the associations between sleep and dietary intake
is fundamental.

The reciprocal relationship between sleep and diet in humans has been studied since the
1980s [30–32]. Sleep disruption affects dietary intake [29,33,34] and dietary intake affects sleep [2,35,36].
With the reciprocal relationship in mind, The World Health Organization (WHO) recommends
consuming 400 g or more of FV per day to improve overall health and reduce the risk of chronic
diseases [37]. The recommended amount of FV consumption is different between countries [38–42].
Despite these recommendations, FV consumption remains below the recommended levels and below
the WHO recommendations in many countries [37,43,44].

Increased consumption of FV has been shown to protect against type 2 diabetes [45], coronary
heart disease [46], stroke [47], and some cancers [48]. Increasing FV consumption to 600 g/day could
reduce the total worldwide burden of disease by 1.8%, reduce the burden of ischemic heart disease by
31%, ischemic stroke by 19%, stomach cancer by 19%, esophageal cancer by 20%, lung cancer by 12%,
and colorectal cancer by 2% [49]. Recent evidence from a dose–response meta-analysis of prospective
studies reported that the consumption of 800 g/day (10 portions per day) of FV are associated with
lower risks of cardiovascular diseases, cancer, and all-cause mortality [50].
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A substantial burden of premature deaths globally is attributable to low consumption of FV.
In 2005, total worldwide mortality attributable to inadequate consumption of FV is estimated to be up
to 2.635 million deaths per year [49]. In 2013, an estimated 5.6 million premature deaths worldwide
may be attributable to FV intakes below 500 g/day and 7.8 million premature deaths to FV intakes below
800 g/day [50]. In 2017, an estimated 3.9 million deaths worldwide were attributable to inadequate FV
consumption according to WHO [51]. These studies highlight the importance of FV consumption thus,
identifying lifestyle factors which may influence FV intakes is a public health priority.

It is clear that both sleep disruption and low consumption of FV are economically burdensome
and are attributable factors to morbidity and mortality. Consequently, bridging the scientific gap
between them is essential and may have key public health implications. The aim of this review is
to summarize the results from experimental and observational adult human studies assessing the
relationship between sleep and FV consumption. Results from animal and in vitro studies are also
included to support the potential mechanisms involved. This review will also highlight implications
for public health and directions for future work. We used Medline, EMBASE, CINAHL, Cochrane,
and PubMed databases (see Supplementary Material Table S1 for search terms used) to find published
studies exploring the relationships between sleep and FV consumption. Hand searches of reference lists
of retrieved articles were also undertaken. A total of 52 human studies were found and discussed below.

2. Sleep and Fruit and Vegetable Consumption

Several child and adolescent studies have assessed the association between sleep measures and
dietary intake including FV consumption [52–65]. The association was shown to be positive in a
recent meta-analysis [66]. Short sleep duration was associated with lower consumption of FV and an
increased consumption of FV in children was associated with sleeping adequately. The associations
between sleep measures and FV consumption are more consistent in children, however they are
not well characterized in adults [29]. Sleep requirements differ between children, adolescents, and
adults [8] and there is a need for more studies to assess this relationship in adults.

Experimental and observational adult studies assessing the association between sleep measures
and FV consumption are summarized in Table 1 and are explained in detail in Table 2. Fifty-two studies
were identified with only 10 experimental (interventional) studies including either sleep restriction or
extension [67–70] or the effects of FV items on sleep measures [71–76] (Table 1).

2.1. Sleep Affects FV Consumption: Experimental Studies

Sleep restriction and extension (increasing sleep duration) studies and their effects on FV
consumption are summarized in Table 2. Sleep restriction in young healthy men increased appetite for
FV by 17% for fruit and fruit juices and 21% for vegetables compared to sleep extension [67]. In contrast,
sleep restriction had no effect on healthy snack intake composed of 1 piece of fresh fruit and 1 packet
of 40 g of dried fruit and nuts in healthy Australian men [68]. Similarly, calories consumed from FV
and salad did not differ between sleep restriction and baseline. However, there was an interaction
between race and sleep for FV intakes and salad with African Americans consuming fewer calories
from FV and salad during baseline but it did not differ from whites during sleep restriction [69]. Tasali
and colleagues studied the effects of sleep extension using a home based approach in 10 overweight
adults on the desire for various foods including FV, however, the study did not have a control group.
Sleep extension did not change the desire for FV [70]. There is a need for more experimental studies to
clarify the effects of sleep disruption on FV consumption.

2.2. Fruit Affects Sleep: Experimental Studies

Few studies assessed the effects of tart cherry juice and products [71–73,75] and kiwifruit [74] on
sleep measures. However some studies had no control group to compare the effects of cherry [71,72]
and kiwifruit [74] on sleep measures, whereas other studies included a control group [73,75,76].
The previous studies included a small sample size and a short period of intervention and did not meet
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the scoring of methodological quality to be included in a systematic review of dietary interventions
targeting sleep behavior [77]. There is a need for more interventional studies to identify the effects of
FV on sleep measures.

2.3. Observational Studies

Table 1 shows that all studies included were cross-sectional apart from two prospective
studies [78,79] that had different objectives, including assessment of the association between sleep
duration and lifestyle factors [78] and sleep quality and survival in elderly [79]. Most of the studies were
conducted in US populations and only two observational studies had their primary objective to assess
the association between sleep duration and FV consumption in pregnant women [80] and Chinese
older adults (≥65 years) [81]. We conducted the other two prospective studies between sleep duration
and FV consumption in UK adults [82,83]. Testing for non-linear associations has been recommended
between sleep measures and dietary intakes [29], however—apart from our studies [82,84]—no study
assessed non-linear associations (Table 1). We showed that sleep duration (exposure) was non-linearly
associated with FV consumption (outcome) with short and long sleepers consuming less FV compared
to those sleeping 7–8 h/day in a representative sample of UK adults [84]. This study strengthens the
notion that people sleeping the recommended hours have a healthier lifestyle compared to short and
long sleepers [85–89]. Potter et al. used the same dataset and found no association between sleep
duration and FV consumption [90], this may be because non-linear associations were not explored
between sleep duration and FV consumption. Our study [84] reinforces the need for non-linear
exploration between sleep and diet in future studies.

Causal relationships cannot be inferred from cross-sectional studies and prospective studies help to
clarify associations. Among UK adults, no study has assessed the associations between sleep duration
and FV consumption, as well as the non-linear associations. Therefore, we addressed this question by
exploring the non-linear prospective associations between sleep duration and FV consumption using a
large cohort (~13,000 women) namely the UK Women’s Cohort study (UKWCS) [82]. Interestingly,
cross-sectional and prospective analyses were consistent with the National Diet and Nutrition Survey
(NDNS) analyses [84]. Although sleep duration was categorized differently than the NDNS analyses
due to different sample sizes, we used a continuous variable of sleep duration to assess the non-linear
associations in both studies and modelled this association using restricted cubic splines. Additionally,
both studies assessed FV consumption using a four-day food diary and self-report of sleep duration
providing more consistency. Interestingly, our prospective analyses [82] confirmed the cross-sectional
associations [84] with those sleeping the recommended hours (~7–9 h/day) having the highest intakes
of FV. These findings add a novel association to the literature and provide new insights to consider in
experimental studies addressing the relationship between sleep and diet.

2.4. Studies Supporting the Inverse U-shaped Association between Sleep Duration and FV Consumption

The inverse U-shaped association we found between sleep duration and FV consumption [82,84]
may be supported by the U-shaped association found in other studies between sleep disruption
and unfavourable behaviors and characteristics. In a representative sample of US adults, sleep
complaints were associated with sleep duration in a U-shaped relationship. Short sleepers and long
sleepers reported sleep problems and those sleeping 7–8 h reported fewer sleep problems [87]. Other
characteristics including smoking, alcohol drinking, and physical inactivity were associated with
short and long sleep durations [85,86]. This was also shown in Swedish women with short and
long sleepers being physically inactive, smokers, physiologically distressed, and having increased
waist circumference compared to normal sleepers [88]. Both short and long sleep duration were
negatively associated with education level, family income, leisure-time and physical activity in Chinese
women [89] and a large Chinese adult population [91]. In Japanese adults, the U-shaped association
between sleep duration and health were explained by the U-shaped association between sleep duration
and disrupted sleep with psychosocial stress from work and family life. Short sleep duration was
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associated with long work hours and high work–family conflict, whereas long sleep was associated
with daily alcohol drinking. Participants sleeping ~8 h had the lowest prevalence of poor sleep and
unfavorable behaviors and characteristics [92]. Interestingly, the U-shaped association was found
between sleep duration and serum lipid profiles in Chinese women [93], between sleep duration and
diabetic retinopathy [94], and sleep duration and the risk of falls [95].

Overall, the inverse U-shaped associations observed in the previous studies may explain our
findings of the inverse U-shaped association between sleep duration and FV consumption. A nutritious
diet including high intakes of FV are considered one of the main keys to a healthy lifestyle [96].
Therefore, the previous studies showed that sleeping the recommended hours is associated with a
healthier lifestyle, supporting our findings of higher intakes of FV in participants sleeping ~7–9 h/day.
The association between sleep disruption and FV consumption may be part of the complex puzzle of
the U-shaped association between sleep measures, morbidity, and mortality. Future research exploring
whether FV consumption acts as a mediator between sleep disruption and morbidity is necessary to
clarify the underlying mechanisms.
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Table 1. Summary of human studies [references] assessing the association between sleep and FV consumption in adults.

Study Type

Observational Experimental (Intervention)

Cross-Sectional Prospective Sleep Restriction Sleep Extension Fruit Intervention

Exposure/outcome not clearly stated [89,97–100]

Exposure

Sleep [82,84,90,101–121] [78,79,82] [67–69] [67,70]

Diet including FV [80,81,122–129] [83] [71–76]

Outcome

Sleep [80,81,122–129] [83] [71–76]

Diet including FV [82,84,90,101–121] [78,79,82] [67–69] [67,70]

Populations

UK population [82,84,90,109,117] [82,83] [75]

US population [80,97,99,101–105,107,108,111,114,123,125,127] [67,69] [67,70] [73]

Other populations [81,89,98,100,106,110,112,113,115,116,118–122,124,126,128,129] [78,79] [68] [71,72,74,76]

Sleep assessment

Subjective [80–82,84,89,90,97–103,105–109,111–113,115–129] [78,79,82,83] [73]

Objective [104,114] [67–69] [67,70] [71,72,74–76]

Sleep measurements

Sleep duration [80–82,84,89,90,97,99–102,105–118,120,121,123,125–129] [78,82,83] [67–69] [67,70] [71–76]

Sleep quality [81,98,100,103,108,113,114,119–124,126] [79] [71–73,75,76]

Sleep timing [104]

Associations between sleep and FV

Significant association [80–82,84,89,97,99–106,109,111,114–118,120,122–124,126,128,129] [78,79,82,83] [67] [71–76]

No association [90,98,107,108,110,112,113,119,121,125,127] [68,69] [67,70]

No control group [70] [71,72,74]

Primary objective of study was to assess
associations between sleep and FV [80–82,84] [82,83] [71–76]

Assessed non-linear associations between
sleep and FV [82,84] [82]

Legend: FV (fruits and vegetables), UK (United Kingdom), US (United States).
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Table 2. Adult human studies assessing the relationship between sleep measures and fruit and vegetable consumption.

Author, Year
(Ref) Country Population Sample n Exposure Outcome Adjusted Variables Findings Reported on

Sleep and FV Comments

Cross-sectional studies

Patel et al., 2006
[97] United States Nurse’s

Health study 68,183

Subjective report of
sleep duration. Sleep
duration categorized to
≤5 h, 6 h, 7 h, 8 h, and
≥9 h

FFQ No adjustment

FV consumption differed
between sleep duration
categories in baseline
characteristics

Exposure and outcome
not clearly stated. The
significant difference in
FV consumption between
sleep duration groups
could be due to the
numerous categories of
sleep duration

Adams and
Colner 2008

[101]
United States

College
students aged
18–25 years

40,209 Subjective report of
sleep duration

FV consumption
(servings/d) Not clear

Sleep duration was a
significant predictor for
FV intakes, increased FV
intake was positively
associated with
sleep duration

Sleep duration was
combined in a physical
health model based on
health issues identified by
the Centers for Disease
Control and Prevention

Stamatakis and
Brownson 2008

[102]
United States

Participants
aged 20–92 from
rural
communities in
Missouri,
Tennessee, and
Arkansas

1203

Subjective report of
sleep duration. Sleep
duration categorized to
<7 h, 7–9 h, and ≥ 9 h

Self-report of FV
consumption
(servings/d) over the
past month

Age, sex, ethnicity,
education, marital status,
and household income

Short sleep duration was
associated with low FV
consumption

Buxton et al.,
2009 [103] United States Motor freight

workers 542

Sleep adequacy
assessed by “How often
during the past 4 weeks
did you get enough
sleep to feel rested
upon waking up?”

6 items of FV
(servings/d)

Clustering of workers in
trucking terminals
through inclusion of
terminal as a
random effect

Adequate sleep was
associated with more
servings of FV

Several confounders were
not adjusted for in the
model

Baron et al.,
2011 [104] United states

Adults recruited
from the
community

52 adults aged
18–71 years

Sleep timing assessed
using logs and wrist
actigraphy for 7 d

Food log in which
participants recorded
all food and drinks
consumed for a
7 d period

Age and sleep duration

Sleep timing was
independently associated
with FV consumption.
Later sleep timing was
associated with fewer
servings of FV

Exclusion criteria did not
include shift workers, no
participants reported
shift work but this could
cause report bias.
Morning type diurnal
preference participants
were excluded providing
no comparison with
evening type participants
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Table 2. Cont.

Author, Year
(Ref) Country Population Sample n Exposure Outcome Adjusted Variables Findings Reported on

Sleep and FV Comments

Kim et al., 2011
[105] United States Women aged

35–74 years 27,983 Subjective report of
sleep duration

Eating pattern was
self-reported and
conventional eating
and snack dominance
scores were
calculated, HEI
calculated from FFQ

Age, race, income,
education, employment,
marital status, children,
BMI, menopause status,
smoking, alcohol,
physical activity, health
status, and stress

FV consumption
(servings/d) were
different among the four
quartiles of conventional
eating score. Short and
long sleepers showed
preponderance of snacks
over meals related to
lower intakes of FV

May have over adjusted
and did not adjust for
total energy intake

Haghighatdoost et al.,
2012 [106] Iran

Female
university
students aged
18–28 years

410

Subjective report of
sleep duration. Sleep
duration were
categorized based on
the tertiles of sleep
duration: <6 h, 6–8 h,
and >8 h

168 items of FFQ. Diet
diversity and HEI
were calculated

No adjusted variables
because the study was
comparing dietary intake
between tertiles of sleep
duration

Consumption of fruits
was significantly lower in
the lowest tertile (<6 h)
compared to the highest
tertile (>8 h). Diversity
scores of FV were
significantly lower
among participants in the
lowest tertile

Hoefelmann et al.,
2012 [122] Brazil

Workers part of
a national
survey

47,477 Self-report of FV
(servings/week)

Subjective report of
sleep quality

Socio-demographic
indicators negative
perception of health,
wellbeing, stress, and
self-reported morbidities

Inadequate FV
consumption was
associated with poor
sleep quality

Mosca and
Aggarwal, 2012

[107]
United States

Men older than
40 years and
women older
than 50 years

371

Subjective report of
sleep duration and
snoring (yes, no).Sleep
duration categorized to
(<6 h/d) and (≥6 h/d)

<5 or ≥5 servings/d of
FV

Age, sex, ethnicity, and
marital status

No difference was shown
between sleep duration
categories and FV
consumption. Snoring
was associated with
consuming less than 5
servings/day of FV

Assessment method of
FV was not mentioned,
may be self-report using
a standardized
questionnaire

Tu et al., 2012
[89] China

Chinese women
aged 40–70
years from the
Shanghai
Women’s Health
Study

68,832

Subjective report of
sleep duration. Sleep
duration categorized;
≤4 h, 5 h,6 h, 8 h, 9 h,
and ≥10 h

FFQ

Age, education level,
occupational status,
history of night-shift
work, annual income,
menopausal status,
marital status, and
number of live births

Fruit intake was inversely
associated with short
sleep duration. FV
consumption was not
associated with long
sleep

Exposure and outcome
not clearly stated

Beydoun et al.,
2014 [123] United States

Adults aged
20–85 from the
NHANES

2459
Two 24-h dietary recalls.
FV consumption (cup
equivalent/d)

Subjective report of
sleep No adjustment

Very short, short and long
sleepers consumed less
FV compared to normal
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Table 2. Cont.

Author, Year
(Ref) Country Population Sample n Exposure Outcome Adjusted Variables Findings Reported on

Sleep and FV Comments

Katagiri et al.,
2014 [124] Japan

Middle-aged
female workers
aged
34–65 years

3129
151-item
self-administered diet
history questionnaire

PSQI
Physical activity, CES-D
score, employment,
smoking, and BMI

High intake of vegetables
were associated with
good sleep quality

Analyses was not
adjusted for several
potential confounders
e.g., age, total energy
intake, SES, and ethnicity

Mota et al., 2014
[98] Brazil Resident

physicians 72

Sleepiness assessed
using the ESS. Sleep
quality assessed
using PSQI

Food diary for 3
non-consecutive days.
FV consumption
calculated using
AHEI

Age and BMI
FV consumption were not
correlated with ESS
and PSQI

Exposure/outcome not
clearly stated. Pearson
correlation was used,
does not provide
predictions [130].
Analyses were not
adjusted for several
potential confounders

Chang et al.,
2015 [108] United States

Overweight and
obese
pregnant women

213 Sleep was assessed
by PSQI

7 items of FV assessed
by the Rapid
Food Screener

Not stated may be due to
the use of Pearson
correlation and path
analyses (to investigate
the mediating roles)

Sleep duration and sleep
quality were not
associated with FV intake
in three trimesters. SOL
was related to FV in the
first and third trimester

Grandner et al.,
2015 [125] United States

Nationally
representative
adults

323,047 Daily servings of FV
from the BRFSS

Self-report of
perceived
insufficient sleep

Not clear

Consuming <1 or 1–3
servings of FV was not
associated with
insufficient sleep

Adjusted variables were
not clearly reported

Kurotani et al.,
2015 [126] Japan Workers aged

18–70 years 2025

52-item diet history
questionnaire. Healthy
DPs included
vegetables, mushrooms,
potatoes, seaweeds, soy
products, and eggs

Subjective report of
seep duration,
difficulty initiating
and maintaining
sleep, and
sleep quality

Age, sex, site, shift work,
employment, marital
status, BMI, smoking,
alcohol, physical activity,
diabetic treatment,
energy intake, skipping
meals, habitual snacking
at night

An inverse association
was found between the
healthy DPs and
difficulties falling asleep
at least once a week and
persisted after excluding
participants with severe
depressive symptoms

May have over adjusted

Mossavar-Rahmani
et al., 2015 [99] United states

Hispanic/Latino
participants
aged
18–74 years

11,888

Subjective report on
sleeping and waking
times. Sleep duration
categorized: short ≥3 h
and <6 h, intermediate
>6 h and ≤9 h, long >9
h and ≤ 14 h

Two 24-h dietary
recalls. AHEI-2010
scores for diet quality

Age, sex, Hispanic/Latino
background, income,
employment status,
education, depressive
symptomology, and years
lived in the US

Short sleepers had a
lower quality diet
compared to intermediate
sleepers with
significantly lower
intakes of vegetables.
Long sleepers had lower
intakes of FV compared
to intermediate sleepers

Exposure and outcome
not clearly stated
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Table 2. Cont.

Author, Year
(Ref) Country Population Sample n Exposure Outcome Adjusted Variables Findings Reported on

Sleep and FV Comments

Patterson et al.,
2016 [109]

United
Kingdom

Adults aged
40–69 from the
UK Biobank

439,933

Subjective report of
sleep duration
categorized; very short
≤4 h, short 5–6 h,
adequate 7–8 h, and
long ≥9 h

Self-report of FV
consumption for the
previous year

Age, sex, ethnicity,
attended college, and
employment

Longer sleep duration
was negatively associated
with daily fruit intake,
but positively associated
with vegetable intake

FV consumption for the
previous year may cause
over/under reporting

Quick et al.,
2016 [127] United States

College
students aged
18–24 years

1252
FV consumption over
the past month
(cups/day)

PSQI. Sleep duration
categorized; <7
h/night, 7–8 h/night
and ≥8 h/night

Sex, ethnicity, work time
pressures, negative affect,
and sleep disturbances

No difference was found
in FV consumption
between sleep
duration groups

Silva et al., 2016
[110] Brazil Students aged

18–39 204

Perceived sleep debt
calculated (preferred
weekday sleep
duration-self reported
weekday
sleep duration)

FFQ Age, BMI, and sex
FV consumption were not
associated with perceived
sleep debt

Xiao et al., 2016
[111] United States

Women within 5
years of
childbirth aged
20–44 years

896

Subjective report of
sleep duration. Sleep
duration was
categorized to ≤6 h, 7–8
h, and long ≥9 h

Diet was assessed by
two 24-h dietary
recalls. Diet quality
was measured by
HEI-2010

Age, ethnicity, education,
marital status, poverty
income ratio, weight
status, years after recent
childbirth, smoking,
physical activity,
depressive symptoms,
history of breastfeeding,
and diagnoses of
chronic diseases

Short sleep duration was
not associated with FV
consumption. Long sleep
duration was associated
with lower consumption
of total fruit and
whole fruit

May have over adjusted

Doo and Kim
2017 [112] Korea

Pre and
post-menopausal
women

17,841

Subjective report of
sleep duration. Sleep
duration categorized to
short (≤6.9 h/d) and
adequate (≥7 h/d)

One 24-h recall

Age, education,
household income,
diseases, smoking,
alcohol, and
physical activity

No differences were
observed in FV
consumption by
sleep duration
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Table 2. Cont.

Author, Year
(Ref) Country Population Sample n Exposure Outcome Adjusted Variables Findings Reported on

Sleep and FV Comments

* Duke et al.,
2017 [80] United States Pregnant 2942

FV consumption, 4
questions from
the BRFSS

Subjective report of
sleep duration

Age, ethnicity,
education, exercise,
marital status, income,
employment

Orange and green
vegetables were
inversely associated with
sleep duration. Total FV
were not associated with
sleep duration. Odds of
meeting or exceeding
sleep recommendation
increased with each unit
increase in total FV (OR
= 1.05 95% CI 1.003, 1.092)

Recall of FV intakes was
for the past month
which is based on
memory and may cause
over or underreporting

Kleiser et al.,
2017 [113]

Bavaria,
Germany

Bavarian adults
aged ≥18 814 PSQI

Three 24-h dietary
recalls (2 weekdays, 1
weekend day)

Age, sex BMI, education,
smoking physical activity,
TV/PC use, and season

Sleep duration was not
associated with FV
consumption

Mossavar-Rahmani
et al., 2017 [114] United States

Hispanic/Latino
participants
aged 18–74
years from 4
US cities

2140

Sleep measured by
actigraphy for 7
consecutive days. Sleep
duration categorized;
short (<6 h),
intermediate (= 6 and
<8 h) and long (≥ 8 h).
Sleep fragmentation
index calculated

Two 24-h dietary
recalls. AHEI-2010
scores for diet quality

Age, sex, site, ethnic
background, employment
depression, and log daily
energy intake

Whole fruit intake
differed between sleep
duration groups with
lowest intakes in short
sleepers. Sleep efficiency
was positively associated
with whole fruit intake
and sleep fragmentation
index was negatively
associated with whole
fruit intake

Pérez-Rodrigo et al.,
2017 [128] Spain Adults aged

18–64 1617

24-h diet recall, a 3-day
food record aided by a
tablet device. Four DPs
identified; traditional
(high in FV),
Mediterranean (high in
FV), snack and dairy

Subjective report of
sleep duration. Three
lifestyle patterns
identified; “Mixed
diet-physically
active-low sedentary
lifestyle pattern”, a
“Not poor diet-low
physical activity-low
sedentary lifestyle
pattern”, and a “Poor
diet-low physical
activity-sedentary
lifestyle pattern”

Age

Sleep duration differed
between the 3 lifestyle
patterns in men and
women. In both men and
women, mean sleep
duration was the highest
in the “Not poor diet-low
physical activity-low
sedentary
lifestyle pattern”

Two DPs were identified
with high intakes of FV.
Analyses was not
adjusted for several
potential confounders
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Table 2. Cont.

Author, Year
(Ref) Country Population Sample n Exposure Outcome Adjusted Variables Findings Reported on

Sleep and FV Comments

Potter et al.,
2017 [90]

United
Kingdom

Adults aged
19–65 years
from the NDNS

1615 Subjective report of
sleep duration 4-day food diary Age, sex, smoking,

ethnicity, and SES

Sleep duration was not
associated with FV
consumption

Did not adjust for total
energy intake. Non-linear
associations not explored
between sleep and diet

Timmermans et al.,
2017 [115] Europe Adults 5900 Subjective report of

sleep duration FFQ Age, sex, education and
self-rated health

Longer sleep duration
was associated with
lower fruit consumption

Van Lee et al.,
2017 [100] Singapore Pregnant

women 497 PSQI

One 24-h recall at
26–28 weeks of
gestation. HEI-SGP to
measure diet quality.
DPs included FV and
white rice pattern

Alcohol, physical activity,
household income,
education, ethnicity,
energy intake, age,
and gravidity

Good sleep quality was
associated with better
diet quality and greater
adherence to the FV and
white rice pattern
compared to poor
sleep quality

Exposure and outcome
not clearly stated

Wang et al., 2017
[129] China

Older adults
aged 60–79
years

4115

Inadequate fruit intake
was defined as adults
who ate fruit less than
three times per week

Subjective report of
sleep duration. Sleep
duration was
categorized to <7 h/d,
7–8 h/d and >8 h/d

All independent variables
of socio-demographic
and lifestyle variables
were included in the
same model thus
adjusting for each other

Inadequate intake of
fruits was positively
associated with short and
long sleep durations

The definition of
inadequate fruit was not
based on a reference

Gebski et al.,
2018 [116] Polish adults Adults aged

21–65 years 1007 adults Subjective report of
sleep duration

Frequency of
consumption of
selected food groups
including FV. Five
DPs were derived
including FV pattern
and FV juices

Age, education and place
of residence

In weekdays, short sleep
duration was associated
with lower odds of FV
DP in men. In weekends,
short sleep duration was
associated with higher
odds of FV DP in women

Analyses was not
adjusted for several
potential confounders

* Lee et al., 2018
[81] China Older adults

aged ≥65 years 5911
Subjective report of
the frequency of FV
consumption

Subjective report of
sleep duration and
quality. Sleep
duration categorized;
short (<7 h),
recommended (7–8
h) and long (>8 h)

Age, sex, marital status,
education, alcohol,
smoking, exercise,
household income,
community,
and province

Frequent FV
consumption were
associated with better
sleep quality. Less
frequent FV
consumption was
associated with short
sleep and long sleep
compared to
the reference

Did not test for
non-linear associations.
Dietary recall may cause
over or under reporting
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Table 2. Cont.

Author, Year
(Ref) Country Population Sample n Exposure Outcome Adjusted Variables Findings Reported on

Sleep and FV Comments

* Noorwali
et al., 2018 [84]

United
Kingdom

Adults aged
19–65 years
from the
National Diet
and Nutrition
Survey

1612

Subjective report of
sleep duration
categorized to short
(<7 h/d), reference (7–8
h/d) long (>8 h/d)

4-day food diaries.
Foods containing FV
were disaggregated
into their
components to help
assess total FV.

Age, sex, SES, smoking,
ethnicity, and total
energy intake

Sleep duration was
non-linearly associated
with FV consumption
with short and long
sleepers having lower
intakes compared to the
reference group

Assessed non-linear
associations and used
FV biomarkers

Patterson et al.,
2018 [117]

United
Kingdom

Adults aged
40–69 enrolled
in the UK
Biobank

438,933

Subjective report of
sleep duration. Sleep
duration was
categorized to ≤6 h/d,
7–8 h/d and ≥9 h/d

FFQ. Variables
combined and a
binary variable
created to (<5
servings/d, ≥5
servings/d)

Age, sex, ethnicity,
employment, shift work,
education, urban vs.
rural residence

Long sleepers with had a
62% higher odds of
eating <5 servings/d of
FV compared with
adequate sleepers

Sleep duration and
chronotype were used
together as independent
variables suggesting
interactive effects

Peltzer et al.,
2018 [118] South Africa Participants

aged ≥ 40 years 4725

Subjective report of
sleep duration. Sleep
duration categorized to
<7 h/d, 7–8 h/d and
≥9 h/d

Self-report of FV
consumption.
Inadequate FV
consumption: having
<5 servings/day

Not stated

Consumption of <5
servings/day of FV were
associated with higher
odds of short
sleep duration

Authors state adjusted
multinomial logistic
regression but did not
state the confounders

Tan et al., 2018
[119]

Germany and
Netherlands

Participants
aged
20–85 years

790
Subjective report of
restful sleep and sleep
quality

Self-report of FV
consumption.
“During the last
weeks, did you eat
five portions of FV
per day?” The
answers were based
on a five-point
Likert scale

Age, sex, BMI, country of
origin, employment
status, marital status,
and education

Restful sleep was not
associated with FV
consumption however, in
combination, restful
sleep, physical activity,
and FV intake were
associated with increased
sleep quality

Vézina-Im et al.,
2018 [120] Canada

Women of child
bearing age
18–44 years

9749

Subjective report of
sleep duration and
quality. Sleep duration
was categorized to <7
h/night and ≥ 7 h/night

6-item questionnaire
to assess FV
consumption

No adjustment

FV intake was associated
with higher odds of
having adequate sleep
duration and
quality sleep

Vézina-Im et al.,
2018 [121] Canada

Women of child
bearing age
18–44 years

9749

Subjective report of
sleep duration and
quality. Sleep duration
was categorized to <7
h/night and ≥ 7 h/night

6-item questionnaire
to assess FV
consumption

Age, ethnicity, education,
household income,
marital status,
employment, parity,
region, season, mood
disorder, FV intake,
physical activity,
smoking, and alcohol

FV consumption was
included as an
adjustment between sleep
duration and quality with
BMI. FV consumption
was not associated in the
relationship between
sleep duration and
quality with BMI ≥25

This study assessed the
association between sleep
duration and quality with
BMI adjusting for several
covariates including
FV intakes
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Table 2. Cont.

Author, Year
(Ref) Country Population Sample n Exposure Outcome Adjusted Variables Findings Reported on

Sleep and FV Comments

Prospective studies

Imaki et al.,
2002 [78]

Japan (6 year
follow-up)

Male employees
aged
20–59 years

2000

Multiple choice
questionnaire: hours of
sleep, (1) ≤6 h, (2)
6.1–8.9 h, (3) ≥9 h

7 items of dietary
habits including
vegetable intakes in
the diet (1) ample
(2) none

No adjustment

The percentage of
participants who slept 6 h
or less consumed less
vegetables compared to
6.1–8.9 h during the
6-year period of study

This study did not use
any analyses for
prediction such as
regression analyses and
only compared the
intakes using percentages

Huang et al.,
2013 [79]

Taiwan (10 year
follow-up)

Elderly aged
≥65 years 1865

Subjective report of
sleep quality
categorized; poor, fair
or good

24-h dietary recall
and FFQ. Dietary
diversity score
derived from 6 items
including FV

Age, education, BMI,
physical activity, and use
of sleeping pills

Female poor sleepers
consumed fewer
vegetables compared to
fair or good sleepers.
Dietary diversity score
and sleep quality
interacted and
modulated mortality
with sex differences

* Noorwali
et al., 2018 [82]

United
Kingdom

Middle aged
women from
the UK
Women’s
Cohort Study

Cross-sectional
= 12,159

Prospective =
463

Subjective report of
sleep duration
categorized to short
(≤6 h/d) recommended
(7–9 h/d) long (≥9 h/d)

4-day food diaries
Age, SES, smoking,
ethnicity, and total
energy intake

Sleep duration was
non-linearly associated
with FV consumption in
cross-sectional and
prospective analyses
with those sleeping the
recommended 7–9 h
having the
highest intakes

First prospective study.
Assessed non-linear
associations and used
FV biomarkers

* Noorwali
et al., 2018 [83]

United
Kingdom

Middle aged
women from
the UK
Women’s
Cohort Study

13,958

FV items from FFQ
and their polyphenol
content matched from
Phenol Explorer
database

Subjective report of
sleep duration

Age, SES, smoking,
ethnicity and total
energy intake

FV consumption and
their polyphenol
content were inversely
associated with
sleep duration

First prospective study
to examine the
association between
polyphenols from FV
and sleep duration

Sleep restriction and extension studies

Spiegel et al.,
2004 [67] United States Healthy young

men 12

Men were assigned to
either 4 h of sleep for 2
consecutive nights or 10
h of sleep for 2
consecutive nights

Participants were
provided with
standard hospital
meals and completed
a visual analogue
scale for hunger and
appetite for various
food categories
including FV

No adjustment

Appetite rating for FV
increased following sleep
restriction by 17% (p =
0.07) for fruit and fruit
juices and 21% for
vegetables (p = 0.02)
compared to
sleep extension

Short intervention period
and small sample size
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Table 2. Cont.

Author, Year
(Ref) Country Population Sample n Exposure Outcome Adjusted Variables Findings Reported on

Sleep and FV Comments

Sleep restriction and extension studies

Heath et al.,
2012 [68] Australia Healthy males 24

Participants lived 12
consecutive days in a
sleep laboratory. 14
participants were sleep
restricted to 4 h
(severe), 10 participants
were restricted to 6 h of
sleep (moderate)

Participants were
served 3 meals and
5–6 snacks daily.
Snacks included 3
categories; sweet,
savoury and healthy
(1 piece of fresh fruit
and 1 packet of 40 g of
dried fruit and nuts)

No adjustment

No effects of sleep
restriction were found on
healthy snack
consumption

Short intervention period
and small sample size

Spaeth et al.,
2014 [69] United States

Healthy adults
aged 21–50
years

44

In laboratory sleep
restriction to 4 h
(04:00–08:00 a.m.) for 5
consecutive nights.
Participants wore
actigraph

Participants selected
their meals and
snacks by choosing
from various menu
options, selecting
additional food and
drink available in the
laboratory suite

Age

Calories consumed from
FV and salad did not
differ between baselines
and sleep restriction

Sleep extension studies

Tasali et al., 2014
[70] United States

Overweight
young adults
reporting sleep
<6.5 h/d

10

Habitual sleep was
followed for 1 week
and intervention was
extending sleep to 8.5 h
for 2 weeks by
behavioral counselling
on sleep hygiene

Desire for various
foods including FV
was assessed using
visual analog scales

No adjusted variables Extended sleep did not
change the desire for FV

No control group. Short
intervention period and
small sample size

Fruit intervention studies

* Garrido et al.,
2009 [71] Spain

Young,
middle-aged,
and elderly

18

Powdered freeze-dried
nutraceutical product
diluted in 125 mL
water equivalent to 141
g Jerte Valley cherries,
consumed twice a day
for 3 consecutive days

Sleep was assessed
by actigraphy.
Participants wore it 3
days before the trial,
during 3 days of trial,
and 1 day
afterwards.

No adjusted variables

After intervention, sleep
duration increased
compared to baseline.
Immobility increased
and nocturnal activity
decreased in young and
elderly compared
to baseline

No control group. Short
intervention period and
small sample size
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Author, Year
(Ref) Country Population Sample n Exposure Outcome Adjusted Variables Findings Reported on

Sleep and FV Comments

* Garrido et al.,
2010 [72] Spain

Middle-aged
and elderly
Caucasian

12

200 g of 7 different
cultivars of cherries
twice a day for
three days

Wrist actigraphy
wore 3 days before
the trial and during 3
days of the trial

No adjusted variables

Sleep duration and
immobility increased
after intervention, the
number of awakenings,
sleep latency, and
nocturnal activity
decreased

No control group. Short
intervention period and
small sample size

* Pigeon et al.,
2010 [73] United States

Healthy older
adults aged ≥65
years with
insomnia

15

Tart cherry juice blend
or placebo consumed
for 2 weeks twice a
day in the morning
between 8:00–10:00
a.m. and in the
evening 1–2 h
before bedtime

Sleep was assessed
by an ISI and
sleep diaries

No adjusted variables

Within groups, tart
cherry juice improved
ISI, SOL, sleep duration,
sleep efficiency and
wake after sleep onset.
Between groups, tart
cherry juice reduced the
ISI score and wake after
sleep onset with no
difference in SOL, sleep
duration, and
sleep efficiency

Short intervention
period and small
sample size

* Lin et al., 2011
[74] Taiwan

Participants
self-reporting
sleep
disturbance
aged
20–55 years

24
Two kiwifruits
consumed 1 h before
bedtime for 4 weeks

CPSQI, sleep diary,
and actigraph No adjusted variables

After intervention,
Actigraph and sleep
diary showed that sleep
duration and efficiency
increased compared to
baseline. Sleep diary
showed a decrease in
CPSQI score, waking
time after sleep onset,
and SOL

No control group.
Participants included
only 2 males and 22
females. Kiwifruit
consumption on sleep
may differ by sex

*
Howatson et al.,

2012 [75]

United
Kingdom Healthy adults 20

Participants consumed
a tart cherry juice
concentrate or placebo
for 7 d

Sleep quality
recorded by
actigraphy and
online subjective
sleep diaries
were collected

No adjusted variables

Sleep diary showed that
cherry juice intake
decreased napping time.
Actigraphy showed that
cherry juice increased
time in bed, sleep
duration, and
sleep efficiency

Short intervention
period and small
sample size
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Author, Year
(Ref) Country Population Sample n Exposure Outcome Adjusted Variables Findings Reported on

Sleep and FV Comments

* Garrido et al.,
2013 [76] Spain

Young
middle-aged
and elderly

30

Jerte Valley cherry
based product (JVCP)
consumed twice a day
as lunch and dinner
desserts for 5 d or
a placebo

Sleep was assessed
by actigraphy.
Participants wore it 5
d before the trial,
during 5 d of trial
and 5 d afterwards.

No adjusted variables

JVCP increased sleep
duration and
immobility in young,
middle-aged and elderly
compared to baseline
and placebo. JVCP
increased sleep
efficiency in elderly
compared to baseline.
SOL decreased in
middle-aged and elderly

Short intervention
period and small
sample size

Legend: AHEI (Adapted Healthy Eating Index); AHEI-2010 (Alternative Healthy Eating Index); ANOVA (analyses of variance); BMI (body mass index); BRFSS (Behavioral Risk Factor
surveillance System); CES-D (Centre for Epidemiological Studies Depression scale); CPSQI (Chinese version of the Pittsburgh Sleep Quality Index); CVD (cardio vascular disease); d
(day); DPs (dietary patterns); ESS (Epworth Sleepiness Scale); FFQ (food frequency questionnaire); FV (fruit and vegetable);g (gram); h (hour); HEI (Healthy Eating Index); HEI-SGP
(Healthy Eating Index for Pregnant women in Singapore); ISI (Insomnia Severity Index); JVCP (Jerte Valley cherry based product); n (number); NDNS (National Diet and Nutrition Survey);
NHANES (National Health and Nutrition Examination Surveys); OR (odds ratio); PSQI (Pittsburgh Sleep Quality Inventory); Ref (reference); SES (socio-economic status); SOL (sleep onset
latency). * BOLD row, Key paper with main objective assessing the association between sleep measures and fruit and vegetable consumption.
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3. Chronotype and Fruit and Vegetable Consumption

Chronotype has been defined as “An individual’s phase angle of entrainment (for example, the
timing of core body temperature nadir relative to dawn)” [7] which is the preference in timing of activity
and sleep referred to as morning or evening type [131]. Chronotype has been assessed by various
methods such as the Horne and Östberg’s Morningness–Eveningness Questionnaire (MEQ) [132].
However, the main limitation of MEQ is the unavailability of sleep timing estimates. This has been
developed to the Munich Chronotype Questionnaire (MCTQ) [131] that uses mid-sleep time on
non-work days as an estimate of chronotype after correcting for sleep debt on work days.

Chronotype determinants include genetic (non-modifiable) and environmental factors
(modifiable) [133]. Non-modifiable determinants include rare cases of chronotype disorders such as
advanced sleep-phase syndrome [134,135]. Other non-modifiable determinants include race [136],
sex [137], and age [138]. Environmental factors that influence chronotype include light exposure,
social interactions, urban/rural areas, and variations in the LD cycle across different latitudes and time
zones [133].

Later chronotype (evening type) has been associated with less healthy behaviors such as
smoking [109], physical inactivity with sedentary behavior [117], and consuming more alcohol and
caffeine (from coffee and cola) compared to early chronotypes [139]. Later chronotype was associated
with higher risks of some diseases such as CVD [140] type 2 diabetes [141], metabolic disorders [142],
bipolar disorder [143], and obesity [117]. In a recent study conducted using the UK Biobank, a large
prospective population based cohort study including 433,268 adults, later chronotype was associated
with higher odds of psychological disorders, diabetes, neurological disorders, gastrointestinal disorders,
and respiratory disorders. Additionally, later chronotype was associated with an increased risk of
all-cause mortality compared to earlier chronotype [144]. These findings are of concern to public health
and thus studies assessing the associations between chronotype and other lifestyle behaviors such as
FV consumption are necessary.

Inadequate intakes of FV were associated with later chronotype in a cross-sectional study in UK
adolescents [59] and US adolescents [145]. In other cross-sectional studies, later chronotype assessed
by MEQ and MCTQ was associated with lower intakes of vegetables in Japanese women [146,147].
Similarly, later chronotype was associated with lower intakes of green, yellow, white vegetables, and
fruits in Japanese nurses [148]. A representative sample of Finnish adults showed that later chronotypes
assessed by a shortened version of MEQ consumed less fruit [149].

Patterson et al. found that early chronotypes consumed more servings of FV compared to later
chronotypes in UK adults from the UK Biobank project [109]. Chronotype was self-reported by asking
participants “Do you consider yourself to be (1) definitely a morning person, (2) more a morning than
an evening person, (3) more an evening than a morning person, (4) definitely an evening person”.
This was consistent with another recent study conducted by Patterson et al. using the UK Biobank
data with a difference of including sleep duration and chronotype as independent variables suggesting
an interactive effects between sleep homeostatic and circadian influence. Later chronotype and longer
sleep was associated with higher odds of consuming <5 servings/days of FV compared with adequate
sleep and earlier chronotype. However, earlier chronotypes and adequate sleep was associated with
lower odds for all cardiovascular risk behaviors including tobacco use, physical inactivity, highly
sedentary behavior, and overweight/obesity except FV consumption <5 servings/day [117].

In contrast, no association was found between chronotype and vegetables and salad in German
adolescents [150]. Earlier chronotype assessed by MEQ was associated with lower intakes of vegetables
and no association with fruit intake [151]. No association was found between chronotype and FV
consumption among Brazilian undergraduate students [110].

The previous studies show that later chronotypes tend to consume unhealthy diets with low
intakes of FV. However, the results are contradictory and a main limitation of the previous studies
is the lack of usage of objective methods to measure chronotype such as actimetry and validated
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dietary assessment methods. There is a necessity to assess the associations between chronotype and
FV consumption using validated objective methods.

4. Mechanisms for the Relationship between Sleep and Fruit and Vegetable Consumption

The potential mechanisms underlying the reciprocal relationship between sleep and FV
consumption are shown in Figure 1. Several mechanisms have been proposed of the reciprocal
relationship between sleep disruption and dietary intake that may subsequently lead to obesity and
metabolic diseases [35,152–157].

On the other hand, FV consumption may influence sleep through their polyphenol content
through several potential pathways. With further research, other potential mechanisms may be
identified. Legend: SCN (suprachiasmatic nuclei); CLOCK (circadian locomotor output cycles kaput);
BMAL1 (brain and muscle aryl hydrocarbon receptor nuclear translocator-like 1); PER (period); CRY
(cryptochrome).

4.1. Homeostatic Mechanisms

Sleep disruption may influence dietary intake through non-homeostatic and homeostatic
mechanisms (Figure 1). Homeostatic mechanisms include energy homeostasis mediated by satiety
hormonal changes ghrelin and leptin. Leptin sends satiety signals to the appetite control centers in the
brain and ghrelin sends signals from the stomach to the brain stimulating an increase in appetite [158].

A number of studies have observed associations between sleep disruption on leptin and ghrelin
levels. In a laboratory study on 10 healthy men, Mullington et al. observed a reduction in diurnal
amplitude of leptin during the days of sleep deprivation [159]. Interestingly, amplitudes of leptin
returned to normal in the period of sleep recovery. Similarly, leptin levels decreased when sleep was
restricted to 4 h in 11 adults [160]. Furthermore, sleep restriction reduced leptin by 18% and increased
ghrelin by 28% in 12 healthy men [67]. Other laboratory studies indicated an increase of ghrelin
after sleep restriction [161–164]. However, the effects of sleep restriction on ghrelin and leptin are
contradictory [164–169] with a suggestion of sex differences [170]. The variability in ghrelin and leptin
responses to sleep restriction may be due to the small sample sizes, differences in timing of blood
chemistry and analyses and variability in sleep restriction hours.

With respect to sleep and FV consumption mechanisms, laboratory studies showed that disrupted
sleep changes appetite-related hormones ghrelin and leptin, which may increase the preference for
energy-dense foods [33] probably leading to lower consumption of FV.
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Figure 1. Potential reciprocal mechanisms between sleep duration and fruit and vegetable consumption. Sleep disruption may influence dietary intake through
non-homeostatic and homeostatic mechanisms.
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4.2. Non-Homeostatic Mechanisms

Non-homeostatic mechanisms have been supported with observational and experimental
studies [171]. In a meta-analysis, sleep deprivation was one of the most prominent lifestyle determinants
of increased food intake [172]. People eat more after sleep loss to compensate for the additional
energetic cost of wakefulness [173]. Consistently, sleep deprivation increased food purchasing in
men with preference to energy-dense, rewarding foods [174]. This preference for energy-dense foods
may potentially lead to lower intakes of FV. Recent evidence suggests that similar to sleep restriction,
long sleep duration may impair energy homeostasis through unhealthy dietary choices, leading to
potentially lower intakes of FV [175].

Non-homeostatic mechanisms linking sleep disruption with FV consumption include hedonic
feeding (Figure 1), which is the consumption of food to obtain pleasure in the absence of energy
deficit [176]. To study the effects of sleep disruption on non-homeostatic reward-driven behavior,
brain imaging studies were conducted supporting the non-homeostatic hypothesis [177]. After one
night of sleep deprivation, brain activity changed in response to food stimuli and was associated with
an increase in appetite [178]. Furthermore, sleep restriction to 4 h for 6 days increased the neuronal
response to food stimuli and activated brain regions associated with reward [179].

Daytime sleepiness reduced the activation of ventromedial prefrontal cortex, a brain region
involved in the ability to inhibit and control emotions and behavior, when participants were shown
“high calorie food” compared to “low calorie food” images (included fresh salad and FV). Additionally,
this reduction in prefrontal activation predicted over-eating in women [180]. Sleep restriction increased
the neuronal response to “unhealthy” food images compared with “healthy” food images (that
included FV) [181]. Consistently, following sleep restriction, appetite sensations and food reward
increased compared to controls [182]. The previous brain imaging and experimental studies of
sleep restriction provide some non-homeostatic mechanisms for sleep disruption, enhancing hedonic
stimulus processing in the brain and altering brain connectivity leading to food reward, food craving,
and affecting food decisions. The enhanced reward mechanism may promote energy-dense food
consumption, leading to lower intakes of FV.

It has been shown that high disinhibited eating (tendency toward overeating in response to
different stimuli; for example the presence of palatable food or emotional stress [183]) mediated the
relationship between disrupted sleep and weight gain [184–186]. The mediating effect of disinhibition
between disrupted sleep (short/long sleep durations, poor sleep quality) and weight status may be due
to over-eating and less healthful food choices [187]. In a cross-sectional study of 187 women and their
children, disinhibition scores (higher scores indicate higher disinhibition) _were negatively associated
with FV consumption in both mothers and their children [188]. Consistently, in a prospective study of
2 year follow-up of men, disinhibition scores were negatively associated with fruit intake [189]. These
studies provide evidence that sleep disruption may lower the intakes of FV through the mediating
effects of disinhibited eating.

Furthermore, emotional eating and stress were shown to influence the association between sleep
duration and dietary intake [190]. Disrupted sleep increases emotional reactivity [191] leading to an
increase in dietary intake specifically energy-dense foods to improve the mood and stress of individuals
with their pleasing effects through the opioidergic, dopaminergic, and serotonergic systems [192]
resulting in potentially lower intakes of FV. Sleep disruption deficits impulse control [193] that plays a
major role in inhibiting appetitive thoughts and behaviors [156], when impulse control is altered this
results in impaired decision making leading to excess dietary intake, energy-dense foods for reward and
potentially lower intakes of FV. Sleep disruption accompanied with an obesogenic environment—“ the
sum of influences that the surroundings, opportunities, or conditions of life have on promoting obesity
in individuals or populations” [194]—may enhance behaviors including irregular eating with fewer
main meals, more frequent energy-dense snacking, and altered time of intake leading to potentially
lower intakes of FV [29].
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4.3. Mechanisms for Effects of Polyphenols on Sleep

4.3.1. Animal Studies

With the reciprocal relationship between sleep and dietary intake in mind, FV consumption
may influence sleep measures through their polyphenol content through several potential pathways.
Polyphenols are phytochemicals that are abundant in our diets and have a probable preventive role
from CVD [195], ischemic heart disease [196], stroke [197], and cancer [198]. Polyphenol profiles are
complex in foods and mostly contain multiple classes of polyphenols in a single plant. The main sources
of polyphenols are FV, tea, coffee, red wine, cereals, grains, and soy beans however, bioavailability
differ extremely between the various polyphenols. Polyphenols are classified and sub-classified based
on the number of phenol rings that they contain and of the structural elements that bind these rings to
one another. The main classes of polyphenols are flavonoids, phenolic acids, stilbenes, lignans, and
other polyphenols [199].

The direct and indirect effects of flavonoids in the brain including cerebrovascular blood flow and
synaptic plasticity that improve learning and memory have been previously reviewed [200] and the
role of sleep on memory has been highlighted [201]; however, there is a lack of studies linking sleep
with polyphenols. Some animal studies (Table 3) have investigated the effects of different types of
polyphenols on clock genes, circadian rhythms, and sleep/wake cycle with few studies conducted in
humans (see Section 4.3.2).

The first potential mechanism of how polyphenols from FV consumption may affect sleep measures
is through the gut–brain axis (Figure 1) via serotonin and γ-aminobutyric acid (GABA) receptors,
consequently affecting nocturnal secretion of melatonin. Spinosin, a C-glycoside flavonoid of semen
Ziziphi spinosae, a herb that has been used to treat insomnia and other diseases, reduced SOL and
increased non-rapid eye movement sleep and sleep duration and increased rapid-eye movement sleep
time via serotonin 1A receptor (5-hydroxytryptamine, 5-HT1A) in Male Sprague–Dawley rats [202].
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Table 3. Summary of animal and in vitro studies [references] assessing the effects of polyphenols on sleep and their potential mechanisms.

Potential Mechanism Assessed Sleep Assessed

Serotonin 1A Receptor GABA Receptors Circadian Rhythms Clock Gene Expression Sleep/Wake Cycles Sleep Duration

In vivo [202] [203–207] [208–210] [211–215] [202,204–207,216–219] [202,203,205–207,216–218,220]
In vitro [221] [222]

Polyphenol
Flavonoids [202] [205] [221] [202,205] [202,205,220]
Resveratrol [209,210] [212,213] [219]

Phenolic acids [220]
GSPEs [211,214,215]

Phlorotannins * [203,204] [204] [203]
Triphlorethol A* [216] [216]

Red cabbage extracts [217] [217]
Kiwifruit extracts [206] [206] [206]
Romaine lettuce [218] [218]
Tea polyphenols [207] [222] [207] [207]

Cherry [208]

Legend: GSPEs (Grape seed proanthocyanidins extracts), GABA (γ-aminobutyric acid), * Sea weed polyphenols.
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Other studies found that different polyphenols modulated sleep via GABA receptors. Polyphenols
such as phlorotannins [203,204] and triphlorethol A (seaweed polyphenols) [216], red cabbage
extracts [217], and kiwifruit extracts [206] decreased SOL and increased sleep duration via GABA
receptors in mice. Other polyphenols such as bioflavonoids extracts from Rhus parviflora referred as
Tintidikah, a medicinal plant used in south Asia, were the most potent components in decreasing
SOL and increasing sleep duration via GABA receptors [205]. Seeds of Ziziphus mauritiana, a hypnotic
widely used in Asian countries, contained flavonoids and phenolic acids that increased sleep duration
in mice administered with sodium pentobarbital [220]. Furthermore, the seed and leaf extracts derived
from romaine lettuce potentiated the pentobarbital-induced sleeping behavior in mice [218]. In contrast,
GABA in black tea did not decrease SOL induced by sodium barbital—a hypnotic—in mice, but
SOL was decreased and sleep duration was increased with sodium pentobarbital, a hypnotic [207].
Collectively, the previous animal studies found that different polyphenols via serotonin and GABA
receptors decreased SOL and increased sleep duration however, further human studies are required to
confirm this.

Since the circadian system and their clock genes are intertwined with the sleep/wake cycle [7], the
second potential mechanism of how polyphenols derived from FV consumption may influence sleep is
through their effects on circadian rhythms, clock gene expression, and peripheral clocks (Figure 1).
An animal study investigated the effects of resveratrol, a dietary polyphenol present in a variety of
foods including FV, on circadian period and body temperature [209]. Compared to controls, resveratrol
supplementation for 2 weeks in constant dark condition in primate grey mouse lemur shortened
free-running period, reduced mean body temperature and locomotor activity indicating that resveratrol
supplementation influences the circadian clock of those animals. Limitations of the study including the
short intervention period and small number of mice (n = 13) requires further exploration. However,
Pifferi et al. extended the resveratrol supplementation for 4 weeks in another study [210] and observed
a reduction of locomotor activity onset in dark conditions, suggesting a better synchronization.

The effects of resveratrol supplementation on clock genes was investigated in several animal
studies. The expression of clock genes Period (PER) 1, PER 2, and brain and muscle aryl hydrocarbon
receptor nuclear translocator-like 1 (BMAL1) were increased in cultured Rat-1 cells with resveratrol for
8 h [212]. Resveratrol reversed the change induced by high-fat feeding in the expression of reverse
erythroblastosis (REV-Erbα), a nuclear receptor, in adipose tissue indicating that resveratrol polyphenol
targets the clock genes and thus influences sleep [213].

Pifferi et al. observed an increased proportion of active-wake time during the resting phase (light)
of the sleep/wake cycle after 3 weeks of resveratrol supplementation in mice. Negligible changes in
active-wake time during the active phase (dark) of the sleep wake cycle suggested that resveratrol
activity depends largely on the time of administration [219]. This was consistent with another study
that noted that resveratrol administration on male rats behaved as an antioxidant during the night and
as a pro-oxidant during day-time [223].

Furthermore, grape seed proanthocyanidin extract (GSPE) treatment maintained nocturnal
melatonin levels and modulated the circadian rhythms when it was administered at the start of the
day, rather than at night [211]. GSPE administration for 21 days in healthy rats and in rats with
diet-induced obesity, clock genes were overexpressed positively with a dose-dependent manner. In
addition, BMAL1 protein increased and PER 2 was overexpressed whereas Rev-Erbα was repressed in
the liver, gut, and white adipose tissue in healthy rats. This was also observed in the liver and gut of
diet-induced obesity rats [214]. GSPE administration modulated clock genes in rat liver by increasing
BMAL1 only when administered when the light were turned off suggesting also time-dependency
effects [215]. The effectiveness of polyphenols during periods of the day could be due to the discrepant
functionality of the suprachiasmatic nuclei (SCN). It has been shown that SCN cells are extensively
coupled during the day, when the cells exhibit synchronous neural activity, but minimally coupled
during the night, when the cells are electrically silent [224].
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Tea polyphenols were capable of manipulating circadian clock genes by enhancing BMAL1
and ameliorated neural redox imbalance and mitochondrial dysfunction [222]. The intake of cherry
nutraceutical product decreased diurnal activity and increased nocturnal activity in young and old
rats (representative of nocturnal animals). In contrast, the opposite effects were observed for ringdoves
(representative of diurnal animals), indicating that effects are modulated depending on the nature of the
animals’ circadian rhythms [208]. The previous animal studies showed that polyphenol administration
modulated the circadian system through circadian rhythms, clocks, and the sleep/wake cycle with dose
and time dependency and possible sex differences providing insight that polyphenols may influence
sleep measures.

Since the metabolic state of a cell is coupled to the molecular clock, diet may modify rhythmic
cellular activities [6]. In light of this, the third potential mechanism of how polyphenols from FV may
affect sleep is by activation of pathways that promote silent mating type information regulation 2
homolog 1 (SIRT1) protein expression [225]. SIRT1 modulates the ventromedial hypothalamic clock,
a brain region that contains neuronal food-synchronized clocks that contribute to regulation of the
circadian rhythm in feeding behavior [226]. SIRT1 has a central role for reactive oxygen species
mainly produced as a consequence of mitochondrial functions [227]. It has been identified that
several polyphenols, such as resveratrol, act as dietary activators of SIRT1 [225]. In turn, SIRT1 binds
CLOCK-BMAL1 and promote the degradation of PER 2 [228] thus influencing sleep. Alternatively, it
has been suggested that resveratrol through its action on SIRT1 improves mitochondrial function and
energy metabolism by decreasing fat mass, leading to changes in sleep [219].

The previous animal studies showed that polyphenols modulated sleep through several potential
mechanisms however, there is a need for human studies to confirm these mechanisms.

4.3.2. Human Experimental and Observational Studies

The effects of FV consumption on sleep may be due to their high content of melatonin and
serotonin [229]. Tart cherry juice has been shown to increase urinary melatonin concentrations in
humans [73]; however, this is yet to be confirmed. Alternatively, the effects of polyphenols on
sleep measures may be through their antioxidant content reducing oxidative stress and improving
sleep quality [2]. St-Onge suggested that plant based diets improve mitochondrial function, energy
metabolism, body composition, lower body fat and abdominal adiposity, consequently this may
potentially improve sleep quality [230]. However, this was not specifically for FV consumption but
diets high in plants.

The effects of different polyphenols on sleep architecture and sleep measures were conducted
in few human studies (Table 4). Human experimental studies provide conflicting results with some
showing an improvement in sleep measures after polyphenol administration and others not showing
any effects. These mixed results may be due to the diverse intervention periods, different types of
polyphenols, and doses. The longest intervention period was 90 days [231] and longer intervention
studies are required. Furthermore, polyphenol effects from supplements differ from their effects from
foods relatively due to their bioavailability and concentration [232]. Another probable reason for
the distinctive results is the small number of participants, different study designs, and participants.
More effects were shown in participants reporting sleep disturbances, pre-hypertensives, and memory
impairment than healthy adults. Experimental trials on participants with sleep problems differ from
healthy free-living individuals; therefore, it is necessary to consider the potential for non-representative
samples taking part in experimental studies.
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Table 4. Adult human interventional studies exploring the effects of polyphenols on sleep.

Author, Year
(REF) Study Type Population Sample n Polyphenol Intervention Intervention Period Findings Reported on Polyphenol Effect on Sleep

Kuratsune et al.,
2010 [233]

Double-blind,
placebo-controlled,

cross-over

Healthy men with
mild sleep complaint 21 Crocetin, active carotenoid

Two intervention periods of 2
weeks each separated by a

2-week washout

Actigraphic data showed a reduction in the number of
wakening episodes compared to placebo. Subjective data
showed improvement in sleep quality

Wightman et al.,
2015 [234]

Randomized, double-blind,
placebo-controlled, parallel

Adults aged
18–30 years 60 Resveratrol 28 days No effect on PSQI score or its seven factors

Park et al., 2017
[235]

Double-blind,
placebo-controlled,

cross-over
Healthy adults 9 Chlorogenic acids, most

abundant polyphenol in coffee 5 days Shortened SOL compared with the control with no effect on
sleep architecture

Herrlinger et al.,
2018 [231]

Double-blind,
placebo-controlled, parallel

Older adults with age
associated memory

impairment
90 Spearmint extract containing

24% total polyphenols 90 days Improved the ability to fall asleep, alertness, and behavior
following wakefulness compared to controls

Um et al., 2018
[236]

Randomized, double-blind,
placebo-controlled, parallel

Adults with
subjective sleep

disturbances
24 Phlorotannin One week Sleep duration increased compared to placebo, however no

effects were shown on the total PSQI score

Romain et al.,
2017 [237]

Randomized, double-blind,
placebo-controlled, parallel

Overweight and
obese adults 33

Holisfiit®, a polyphenol-rich
extract-based food supplement

developed from FV
16 weeks

Awakening during the night improved by 38%, total sleep
duration by 50%, and sleep quality by 43% compared to
baseline and subjective sleep complaints improved
significantly compared to controls

Uddin et al.,
2018 [238]

Randomized, double-blind,
placebo-controlled,

cross-over

Pre-hypertensive
adults 12 Fruitflow® supplements,

tomato extract
24-h period

Both systolic and diastolic blood pressure were lower after
FruitFlow® consumption compared to placebo in the wake
period whereas during the sleep period, the effect was only
shown for systolic blood pressure only

Grassi et al.,
2016 [239]

Randomized, double-blind,
cross-over Healthy adults 32 Flavanol-rich chocolate

Consumption of (high or
poor flavanol chocolate bars)
after one night of total sleep

deprivation

High-flavanol chocolate bar reduced high systolic and
diastolic blood pressure caused by sleep deprivation
compared to low-flavanol chocolate bar consumption

Bigelman et al.,
2011 [240]

Randomized, double-blind,
placebo-controlled,

cross-over

Healthy adults
conducting military

physical training
58 Quercetin 6 weeks No effects on sleep quality

Legend: PSQI (Pittsburgh Sleep Quality Inventory), SOL (sleep onset latency), REF (reference), n (number).
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Few observational studies have assessed the associations between isoflavones, a polyphenol
mainly found in soybeans and legumes, with sleep measures [241,242]. Cui et al. assessed the
cross-sectional association between isoflavone intake and self-reported sleep duration and quality in
1076 Japanese adults [241]. High intakes of isoflavones were associated with adequate sleep duration
(7–8 h) and better sleep quality. In contrast, a longitudinal study showed that the highest quartile of soy
isoflavone intake was associated with lower odds of long sleep duration (≥9 h/night) and lower odds
of falling asleep during daytime in women only. There was a persistent inverse association between
isoflavone intake and sleep duration suggesting these effects are due to the estrogenic contents of
isoflavones [242]. These inverse associations were consistent with our study exploring the prospective
associations between polyphenols derived from FV and sleep duration in UK women [83]. To our
knowledge, our study is the first prospective study to explore associations between FV items and their
polyphenol content with sleep duration.

Whilst FV consumption may have an immediate effect on sleep, it may also have a longer term
impact. Greenwood et al. assessed the stability of dietary patterns in women from the UKWCS using
cluster analysis at baseline and after 5 years. Results showed that there was moderate stability in
dietary patterns in the UKWCS [243] and in other studies [244–247]. Thus, exploring the longitudinal
associations between FV consumption and sleep duration using the UKWCS was appropriate.

5. Public Health Implications

With the reciprocal relationship between sleep and FV in mind, this review has two main
implications that may contribute to public health. Healthy lifestyle patterns have focused mainly on
dietary intake and physical activity however, recently, awareness of sleep as a healthy behavior has
been raised [248,249]. A first implication, dietary guidelines could include information on sleep and
chronotype. A natural starting point is improving sleep hygiene by recommending behavioral and
environmental practices to promote better sleep. These practices include optimising temperature,
bedding, mattresses, and sound. Sleep hygiene education have shown effective enhancement of sleep
quality and decreased daytime sleepiness in adults [250,251] and children [252,253]. Dietary guidelines
and nutrition professionals could promote better sleep by eliminating or reducing caffeinated foods
and beverages before bedtime, smoking cessation, massage therapy, dim or reduce bright lights during
dark hours, engage in physical activity throughout the day and have consistent sleeping and waking
times [254].

If future studies continue to support previous findings that later chronotype initiates lower
consumption of FV and less healthy behaviors, governments should revise their guidelines accordingly.
Dietary recommendations tailored to late chronotypes would ultimately be another worthwhile
development. Such recommendations may include pre-planning and preparation of meals to prioritize
and increase the consumption of FV. Furthermore, if future studies support that the timing of FV
consumption may impact sleep measures, recommendations on the optimal time of FV consumption
alongside the 5-a-day guidelines [255] will be informative. However, as few human studies have
addressed this question, a greater body of evidence would be required before such recommendations
could be proposed.

Promoting FV consumption is a key objective of food and nutrition policy interventions conducted
by governments and non-governments. The success of campaigns and interventions conducted around
the world in terms of increasing the daily consumption of FV remain modest [256]. The second
implication is the incorporation of sleep screening in GP practices, hospitals, weight-loss programs,
and campaigns targeting higher consumption of FV. Sleep screening questions on timing, duration,
difficulty falling asleep, waking up at night, refreshed feeling upon waking and sleepiness during the
day should be included [254]. If desired answers are not received, further assessment can be conducted
by using the Pittsburgh Sleep Quality Inventory (PSQI) [257]. Participants with an indication of poor
sleep or sleep disorders should be referred to sleep clinicians.
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6. Directions for Future Work

Exploring the links between sleep and FV consumption are scarce and future studies are required
to take into account several factors (Table 5).

Table 5. Recommendations for future studies investigating the relationship between sleep and
FV consumption.

Recommendations

1. Consider individual differences of sleep by exploring optimal sleep duration in a laboratory.
2. Explore the effects of sleep disruption on FV consumption based on genetic disparities.
3. Explore the effects of different FV items (individually and combined) on sleep measures.
4. Compare the effects of FV consumption at specific time points on sleep measures.
5. Explore the effects of other FV components (e.g., micronutrients, moisture, fiber, polyphenols, antioxidants and
offsetting energy intake) on sleep measures and architecture.
6. Identify a biomarker of polyphenol consumption to be used in studies exploring the relations between sleep and FV.
7. Consider food matrix by comparing the effects of polyphenol administration between participants fasting,
consuming a complex meal and consuming FV items.
8. Controlling for other sources of polyphenols such as coffee, tea, red wine, soy, and chocolate.
9. Group FV items based on similarity of total antioxidant and explore their effects on sleep and compare their effects
with antioxidants from supplements.
10. Identify objective markers of antioxidant intake and compare their levels across different sleep durations, quality,
and chronotypes.
11. In RCT exploring the effects of FV on sleep, selection of FV items that undertaken similar food processing and
handling methods to account for antioxidant preservation is necessary.
12. Investigate the effects of sleep timing, taking chronotype into account, on FV consumption.
13. Non-linear relationships between FV and sleep need to be considered in observational and sleep
restriction/extension studies.
14. Explore the relations between sleep and FV consumption in other populations such as; different ethnicities, elderly,
clinical populations, shift workers, and less-developed countries.
15. Study whether FV consumption is substituted with convenient desserts and sweets in response to sleep disruption.
16. Identify how to optimize exercise protocols to increase FV consumption and improve sleep.
17. Compare the effects of sleep hygiene education and digital cognitive behavioral therapy on FV consumption in
sleep extension studies.
18. Identify the role of stress and self-control in the relationship between sleep and FV consumption.

Legend: FV (fruit and vegetable), RCT (randomized controlled trials).

It would be productive to reach agreement on the best ways to assess sleep duration and
chronotype. Although the recommendations for sleep duration have been provided [8], individual
differences need to be considered by exploring optimal sleep duration in a laboratory. Next, the
difference between optimal sleep duration and habitual sleep duration can be obtained, this difference
represents potential sleep loss which is not clearly recognized by individuals. Previous findings
confirmed that evaluating optimal sleep duration may be a useful clinical marker of sleep loss and
individual differences [258]. However, laboratory experiments of sleep deprivation have shown that
individuals have differential neurobehavioral vulnerability to sleep loss suggesting a polygenetic
phenotype [259,260]. Omics (transcriptomics, epigenomics, and metabolomics) approaches were
suggested as biomarkers for identifying differential vulnerability to sleep loss [261]. Identification
of such markers will provide a viable means to determine those individuals who may need more
habitual sleep or who may need to prevent or mitigate sleep deprivation through lifestyle choices and
effective interventions and countermeasures (e.g., caffeine, naps, etc.). Variation in sleep measures and
chronotype are related to circadian clock genes and non-circadian genes [262]. Sleep and diet research
may need to explore the effects of sleep disruption on FV consumption based on genetic disparities.

One of our studies focused on FV items and their polyphenol content with sleep duration [83].
It would be informative to explore the effects on other sleep measures (sleep timing and quality).
Furthermore, future intervention studies comparing the effects of different FV items (individually and
combined) on sleep measures will be instructive and may be beneficial in identifying the underlying
mechanisms. Previous studies found that activities done during the day have an effect on sleep [263–267].
Related to this, future studies may compare the effects of FV consumption at specified time points on
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sleep measures. Nevertheless, little is currently known about associations between many FV items and
sleep measures.

Adherence to a Mediterranean diet (the highest tertile) was associated with better sleep quality
compared to those in the lowest tertile [268]. It could be that different FV items may have different effects
on sleep measures due to their moisture, water content [269], fiber, polyphenols, and antioxidants [270].
Lower consumption of dietary fiber was associated with less slow-wave sleep (deep sleep) [271,272]
however, few studies explored the effects of different polyphenols on sleep architecture (see Section 4.3.2)
and more studies will be instructive. People who eat several servings of FV per day, their total
polyphenol intake reaches ~1 g/d [199]. The assessment of polyphenol intake is difficult to evaluate by
using similar methods to dietary assessment due to their bioavailability and bio-efficacy variances [232].
Therefore, biomarkers for polyphenol exposure would be very useful. Limited studies found that
food matrix affects the bioavailability of polyphenols and thus influence their absorption [273,274].
Future studies may compare the effects of different polyphenols on sleep measures between fasting
participants and participants consuming a complex meal or FV items. Consideration of the dietary
fiber content of FV items in these studies are necessary because dietary fiber stimulates intestinal
fermentation that may influence the production of microbial metabolites that may have consequences
on the absorption of polyphenols [199]. Another factor to consider in studies exploring the effects of
polyphenols from FV on sleep, is controlling for other sources of high polyphenol content from foods
such as coffee, tea, red wine, soy, and chocolate.

The antioxidant properties of polyphenols have been widely studied [275]. However, it is uncertain
whether increased antioxidant nutrient intake or supplementation would modify sleep. Nonetheless,
studies reported reduced antioxidant capacity in serum of patients with obstructive sleep apnea
(OSA) [276], reduced dietary intake of antioxidants in veterans with OSA [277]. Related to OSA,
participants with the metabolic syndrome had reduced serum concentrations of antioxidants [278].
Furthermore, antioxidant nutrient intake from high consumption of FV or supplement intake were
proposed as potential moderators of cognitive decline and CVD from OSA [279]. In a recent
cross-sectional study conducted among 3941 Korean men, short sleepers (<6 h) with low consumption
of dietary antioxidant had a higher risk of obesity than those with a high consumption of dietary
antioxidants [280]. These results suggest that the increased risk of obesity associated with short
sleep duration may be modified by the consumption of dietary antioxidants. In light of this, as a
starting point, epidemiological studies could subgroup FV based on similarity of total antioxidant
capacity to explore their relationship with sleep. Ten subgroups of FV were proposed based on
food component and classification variables (botanic family, plant part, color, and total antioxidant
capacity) [281]. Furthermore, long-term prospective randomized controlled clinical trials can study the
effects of antioxidants from FV combined based on the 10 groups, or antioxidants from supplements in
individuals with short, recommended, and long sleep duration. In addition, other sleep measures
(sleep architecture, quality, and timing) could be explored in relation to antioxidant intake. Objective
markers of antioxidant intake and oxidative stress should be initiated and compared across persons
with short, recommended, and long sleep durations, and also compared across persons with poor/good
sleep quality and those with different chronotypes. In those randomized controlled trials, it is necessary
to select FV that undertaken similar food processing and handling methods to overcome their effects
on preservation of antioxidants [282].

Sleep restriction studies (Table 2) provide conflicting results on their effects on FV consumption
and there are a lack of studies assessing the timing of sleep in relation to FV consumption, more
studies investigating the timing of sleep and taking into account chronotype are required to clarify
this relationship. Studies exploring the effects of sleep extension on FV consumption (Table 1) are
few, more studies are needed to help clarify the underlying mechanisms between sleep disruption
and FV consumption. Non-linear relationships between FV and sleep need to be considered in sleep
restriction/extension studies. A recent study showed the feasibility of extending sleep by sleep hygiene
intervention and their effects on dietary intake and energy balance [283]. The results showed that
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sleep extension led to reduced intakes of free sugars compared to controls. It would be interesting
to conduct a similar study and explore the effects of sleep extension in habitual short sleepers on
FV consumption. One factor that may influence the effects of sleep extension interventions on diet
is chronotype. Therefore, comparing the effects of sleep restriction/extension on FV consumption
between different chronotypes is essential.

Additional studies of effects of sleep restriction/extension on FV consumption in different
populations would also be useful. Differences in sleep between different races and ethnicities have been
reported. Black individuals tend to have shorter sleep durations and poorer sleep quality than white
individuals [284–287]. It has been proposed that the underlying mechanisms of ethnic/racial disparities
in sleep include several potential biological, psycho-behavioral, sociocultural, and environmental
factors [286,287]. These potential mediators are important to explore in future research conducted in
different race/ethnic individuals assessing associations between sleep measures and FV consumption.
Other populations to consider could include elderly people, clinical populations, shift workers, and
less-developed countries. Little is known about sleep and FV consumption in these people, to
my knowledge.

A study explored the effects of short and long sleep durations on taste preference in healthy adults.
Habitual long-sleepers preferred sweeter stimuli following sleep restriction while sleep extension did
not change taste preference in habitual short-sleepers [288]. However, in adolescents, sweet foods
were more appealing after sleep restriction [289]. This may be an explanation for the low intakes of FV
in short and long sleepers in our studies [82,84]. Because FV require some preparation, convenience
and time are important factors today as the pace of life has increased, therefore, people tend to buy
products that require minimum preparation [256]. In light of this, the question of whether short and
long sleepers substitute FV with off the shelf and convenient desserts and sweets is not well understood
and will be a valuable point of inquiry to address in future studies that assess the association between
sleep measures and FV consumption.

Reciprocity between sleep and exercise exists; sleep disruption could impair an individual’s
capacity for exercise and increase the risk of exercise-induced injuries, conversely, acute and regular
exercise effect sleep architecture and measures depending on numerous factors; sex, age, fitness
level, BMI, intensity and duration of exercise, time of day and environment (indoor or outdoor) [290].
The results are conflicting and effects of exercise on sleep were mostly shown in people with sleep
disorders and trivial improvement in sleep in individuals with good sleep [254,290]. There is not
enough evidence that exercise may effect FV consumption and there is a paucity of human studies on
this subject, it is important to study how to optimize exercise protocols to increase FV consumption
and improve sleep.

Studying the complex relationship between sleep and diet needs to take into consideration
numerous components. Current usage of digital devices is unprecedented and keeping pace with
the digital revolution we are experiencing is fundamental. Future sleep extension studies need to
compare between the effects of digital cognitive behavioral therapy [291] and sleep hygiene education
on sleep, quality of life, and psychological well-being. Another factor to consider in future studies
is stress. Mental stress and depression have increased dramatically over the last 50 years. Stress
has been found to be associated with disrupted sleep and increase desire for palatable food, thus
causing obesity. On the other hand, improving sleep patterns and nutritional status may reduce the
severity of stress and mental disorders [292]. This highlights the importance of the need to further
examine the complex relationship between sleep, diet, and stress. Related to this, sleep and self-control
are intertwined, sleep disrupted individuals are at an increased risk of impaired decision making,
including dietary selections [293]. Self-control has two effects on healthy behavior (such as physical
activity, eating healthily (high intakes of FV for example), reducing alcohol intake and not smoking);
an indirect effect mediated by intentions and a moderated effect on the intention–health behavior
relationship. Hagger et al. proposed several pathways of how sleep may affect health behavior in the
context of the health self-control model [294]. People with better sleep quality and sufficient duration
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will be more likely to be able to form intentions to engage in healthy behaviors. The underlying
mechanism for this effect is because better sleep (quality and quantity) provide individuals with
sufficient cognitive resources for more effective planning. In light of this, does self-control have a role
in the association between sleep duration and FV consumption? Future studies addressing this will be
extremely valuable in clarifying the underlying mechanisms.

7. Conclusions

Based on health psychology research from five decades, a nutritious diet and sleep moderation and
optimism are two of the main keys to a long, happy, healthy, and productive life [96]. The substantial
attribution of both sleep disruption and low intakes of FV on the global burden of diseases are well
documented and understanding the reciprocal relationship between them is necessary. In this review,
we have provided epidemiological evidence (cross-sectional and prospective) in adults that sleep
duration is non-linearly associated with FV consumption with short and long sleepers consuming less
FV and sleeping the recommended ~7–9 h/day is associated with higher intakes of FV in a sub-group
of UK adults. Experimental studies are limited and there is a need for robust intervention studies
of sleep (restriction/extension) on FV consumption and also intervention studies of the effects of FV
consumption on sleep.

This review provided potential reciprocal mechanisms linking sleep disruption with FV
consumption. Disrupted sleep may influence FV consumption through homeostatic and non-homeostatic
mechanisms. On the other hand, FV consumption and their polyphenol content may alter sleep measures
through the gut–brain axis, their influence on circadian rhythms; clock gene expression and peripheral
clocks, and by the improvement of mitochondrial function and energy metabolism by decreasing fat
mass leading to changes in sleep, unidentified mechanisms may exist. With further research, interactions
between sleep measures and FV consumption may be clarified and potentially reduce the burden of
chronic diseases and premature deaths.
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