Table S1. The influence of the extract from *Aronia melanocarpa* L. berries (AE) on the concentration of cadmium (Cd) in the blood (μ g/L), liver (μ g/g), and urine (μ g/g of creatinine) of female rats. ^{1, 2, 3, 4}

Duration (Months)	1 mg Cd/kg Diet			5 mg Cd/kg Diet					
	Cd Concentration in the Cd1 Group	Effect of Cd + AE	Effect of AE	Cd Concentration in the Cd ₅ Group	Effect of Cd + AE	Effect of AE			
	Blood								
3	$0.1884 \pm 0.0100^{\circ}$	↑ 2.7-fold	⇔	1.0236 ± 0.066***	↑ 12-fold	∠ 19%			
10	$0.1792 \pm 0.0198^{\circ}$	↑ 2.1-fold	\Leftrightarrow	$0.9394 \pm 0.0439^{***}$	↑ 9.2-fold	∠ 15%			
17	$0.2425 \pm 0.0167^{***}$	↑ 3.2-fold	\Leftrightarrow	$1.0339 \pm 0.0266^{***}$	↑ 12.5-fold	∠ 10%			
24	$0.2330 \pm 0.0143^{**}$	↑ 2.6-fold	\Leftrightarrow	$1.0467 \pm 0.0508^{***}$	↑ 10.2-fold	∠ 11%			
	Liver								
3	0.1447 ± 0.0093***	↑ 2.8-fold	∠ 33%	0.912 ± 0.053***	↑ 21-fold	✓ 18%			
10	$0.199 \pm 0.028^{***}$	↑ 7.8-fold	\Leftrightarrow	$1.617 \pm 0.112^{***}$	↑62-fold	∠ 11%			
17	$0.211 \pm 0.019^{***}$	↑ 14-fold	\Leftrightarrow	$2.449 \pm 0.178^{***}$	↑ 134-fold	∠ 24%			
24	$0.364 \pm 0.025^{***}$	↑ 17-fold	∠ 37%	$2.755 \pm 0.089^{***}$	↑ 182-fold	∠ 10%			
	Urine								
3	0.2184 ± 0.0081**	↑ 58%	⇔	0.5008 ± 0.0234***	↑ 4.4-fold	<i>7</i> 21%			
10	$0.1809 \pm 0.0194^{**}$	↑ 47%	\Leftrightarrow	$0.4002 \pm 0.0480^{***}$	↑ 3.8-fold	1 25%			
17	$0.2096 \pm 0.0215^*$	↑ 44 %	\Leftrightarrow	$0.4147 \pm 0.0390^{***}$	↑ 3.9%	₹ 33%			
24	$0.2053 \pm 0.0155^*$	↑ 56%	⇔	$0.4104 \pm 0.0198^{***}$	↑ 3.7-fold	1 22%			

¹ The rats were given 0.1% aqueous AE and Cd in diet at the concentration of 1 or 5 mg/kg for 3–24 months. ² Table presents Cd concentration and changes in its concentration (p < 0.05; ANOVA, Duncan's multiple range post hoc test) compared to the control group (*p < 0.05, **p < 0.01, ***p < 0.001): a percentage or factor of increase (↑) and the appropriate group treated with Cd alone: a percentage increase (Λ), decrease (Λ), or lack of statistically significant change (⇔; p > 0.05) are indicated. Cd concentration in control groups (mean ± SE) ranged from 0.0691 ± 0.0079 to 0.0860 ± 0.0091 μg/L in the blood, 0.0137 ± 0.0015 to 0.0348 ± 0.0026 μg/g in the liver, and from 0.1304 ± 0.0080 to 0.1491 ± 0.0103 μg/g of creatinine in the urine. ³ Detailed data on the impact of AE on the concentration of Cd in the blood, liver, and urine of rats exposed to this heavy metal have already been published [17]. ⁴The concentrations of Cd in the blood and urine (biomarkers of intoxication with this xenobiotic) of the rats exposed to the 1 mg Cd/kg diet (0.103–0.324 μg/L and 0.085–0.354 μg/g creatinine, respectively) and 5 mg Cd/kg diet (0.584–1.332 μg/L and 0.284–0.820 μg/g creatinine, respectively), alone or together with AE [17] were within the range of this metal concentrations noted in the blood and urine of the general population in industrialized and developing countries [5,9,10].

Table S2. The influence of the extract from *Aronia melanocarpa* L. berries (AE) on total antioxidative status (TAS), total oxidative status (TOS), oxidative stress index (OSI), and the concentration of hydrogen peroxide (H_2O_2) in the liver of female rats exposed to cadmium (Cd). ^{1,2}

Duration (Months)	1:	mg Cd/kg Die	t	5 mg Cd/kg Diet					
	Effect of Cd Alone	Effect of Cd + AE	Effect of AE	Effect of Cd Alone	Effect of Cd + AE	Effect of AE			
	TAS								
3	\leftrightarrow	\leftrightarrow	⇔	\leftrightarrow	\leftrightarrow	\Leftrightarrow			
10	↓ 28%	↓ 30%	\Leftrightarrow	↓ 19%	\leftrightarrow	\Leftrightarrow			
17	$\downarrow 46\%$	↓ 31%	⇔	\leftrightarrow	\leftrightarrow	\Leftrightarrow			
24	\leftrightarrow	↑ 18%	1 36%	\leftrightarrow	↑ 4 3%	≯ 54%			
	TOS								
3	\leftrightarrow	\leftrightarrow	⇔	\leftrightarrow	\leftrightarrow	⇔			
10	\leftrightarrow	↓ 38%	∠ 40%	\leftrightarrow	\leftrightarrow	∠ 19%			
17	\leftrightarrow	↓ 29%	∠ 32%	\leftrightarrow	\leftrightarrow	∠ 20%			
24	\leftrightarrow	\leftrightarrow	⇔	↑ 51%	↑ 36%	✓ 14%			
			OS	SI					
3	\leftrightarrow	\leftrightarrow	⇔	↑ 17%	\leftrightarrow	✓ 14%			
10	↑ 4 3%	\leftrightarrow	∠ 38%	↑ 30%	\leftrightarrow	∠ 26%			
17	↑ 9 2 %	\leftrightarrow	√ 48%	↑ 21 %	\leftrightarrow	∠ 26%			
24	\leftrightarrow	↓ 23%	∠ 24%	↑ 61%	\leftrightarrow	∠ 41%			
	H ₂ O ₂								
3	\leftrightarrow	↓ 33%	∠ 38%	\leftrightarrow	\leftrightarrow	∠ 24%			
10	↑ 7 5%	\leftrightarrow	√ 47%	↑ 7 3%	\leftrightarrow	∠ 37%			
17	↑ 3.2-fold	\leftrightarrow	∡ 4.7-fold	↑ 3.4-fold	\leftrightarrow	✓ 4.8-fold			
24	↑ 2.8-fold	\leftrightarrow	∠ 2.8-fold	↑ 2.9-fold	\leftrightarrow	✓ 3.1-fold			

¹ The rats were given 0.1% aqueous AE and Cd in diet at the concentration of 1 or 5 mg/kg for 3–24 months. ² Table presents changes in Cd concentration (p < 0.05; ANOVA, Duncan's multiple range post hoc test) compared to the control group: a percentage or factor of increase (↑), decrease (↓), or lack of statistically significant change (\leftrightarrow ; p > 0.05) and appropriate group treated with Cd alone: a percentage increase (\nearrow), decrease (\checkmark) or lack of statistically significant change (\Leftrightarrow ; p > 0.05) are indicated.

Table S3. The influence of the extract from *Aronia melanocarpa* L. berries (AE) on the concentration of metallothionein (MT) (nmol/g) in the liver of female rats. ^{1, 2, 3}

	1 mg Cd/kg Diet			5 mg Cd/kg Diet		
Duration (Months)	MT Concentration in the Cd ₁ Group	Effect of Cd + AE	Effect of AE	MT Concentration in the Cd ₅ Group	Effect of Cd + AE	Effect of AE
3	51.96 ± 17.43***	\leftrightarrow	∠ 48%	59.83 ± 17.74***	\leftrightarrow	∠ 50%
10	55.75 ± 15.22***	\leftrightarrow	∠ 60%	62.07 ± 14.21***	\leftrightarrow	√ 44%
17	61.77 ± 14.09***	† 27%	∠ 41%	69.96 ± 8.855***	\leftrightarrow	∠ 61%
24	$63.40 \pm 24.62^{***}$	\leftrightarrow	∠ 43%	79.85 ± 15.93***	\leftrightarrow	∠ 65%

¹ The rats were given 0.1% aqueous AE and Cd in diet at the concentration of 1 or 5 mg/kg for 3–24 months. ² Table presents MT concentration and changes in its concentration (p < 0.05; ANOVA, Duncan's multiple range post hoc test) compared to the control group (*** p < 0.001): a percentage of increase (↑) or lack of statistically significant change (\leftrightarrow ; p > 0.05) and the appropriate group treated with Cd alone: a percentage of decrease (\checkmark) are indicated. MT concentration in the liver in the control group (mean ± SE) ranged from 23.90 ± 9.079 to 30.22 ± 11.81 nmol/g. ³ Detailed data on the impact of Cd and AE on the concentration of MT in the liver of rats exposed to this heavy metal have already been published [13].