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Abstract: To better understand the variability of the type and level of serum proteins in human milk,
the milk serum proteome of Chinese mothers during lactation was investigated using proteomic
techniques and compared to the milk serum proteome of Dutch mothers. This showed that total
milk serum protein concentrations in Chinese human milk decreased over a 20-week lactation period,
although with variation between mothers in the rate of decrease. Variation was also found in the
composition of serum proteins in both colostrum and mature milk, although immune-active proteins,
enzymes, and transport proteins were the most abundant for all mothers. These three protein groups
account for many of the 15 most abundant proteins, with these 15 proteins covering more than 95%
of the total protein concentrations, in both the Chinese and Dutch milk serum proteome. The Dutch
and Chinese milk serum proteome were also compared based on 166 common milk serum proteins,
which showed that 22% of the 166 serum proteins differed in level. These differences were observed
mainly in colostrum and concern several highly abundant proteins. This study also showed that
protease inhibitors, which are highly correlated to immune-active proteins, are present in variable
amounts in human milk and could be relevant during digestion.
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1. Introduction

Human milk is the best source of nutrition for babies, enhances children’s immune system and
influences the microbiota [1–3]. Health benefits have been linked to the presence and concentration
of human milk components like oligosaccharides and proteins [4,5]. There are two distinct groups of
proteins in human milk; caseins and milk serum proteins [6]. Human milk in early lactation consists
of approximately 30% caseins and 70% serum proteins, with a 50:50 ratio typically found after a six
month lactation period [6].

Serum proteins in human milk have been categorized according to their main and highly diverse
biological functions [7,8]. It was found that immune-related proteins, transport proteins, and enzymes
were present in the largest quantities, and their concentrations generally decrease over lactation [7,8].
Immune-active proteins not only protect infants against pathogenic microorganisms, but also confer
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passive immunity to the neonate until its own immune system has been fully developed [9–11].
Serum proteins in human milk also include an array of blood coagulation proteins, membrane proteins,
signaling proteins, and protease inhibitors [9–11]. Protease inhibitors play a key role in the blood
coagulation cascade and complement pathway [12–14], and might protect proteins against degradation
by proteases in the mammary gland and even in the infant’s gastrointestinal tract [12–18].

There is a wide range of proteins (e.g., αS1-, β-, and κ-casein, lactoferrin, immunoglobulins,
serum albumin, and α-lactalbumin) in relatively high concentrations in human milk [19]. Most milk
proteins are synthesized in the mammary gland, except for immunoglobulins and serum albumin [19].
Serum albumin can enter milk via the paracellular pathway and immunoglobulins are transported
from blood through mammary epithelial cells by a receptor-mediated mechanism [19]. Caseins are
transport proteins that form micelles, and these micelles are capable of binding—and thereby
transporting—minerals. Caseins can easily be digested in the infant’s gastrointestinal tract [15–18],
being a valuable source of amino acids and minerals, which can easily be absorbed. Milk serum
proteins such as lactoferrin, immunoglobulins, serum albumin, and α-lactalbumin cover 90% of the
milk serum proteome in abundance [20]. The milk serum protein α-lactalbumin is required for the
synthesis of lactose, supplies infants with large amounts of tryptophan, and facilitates the absorption
of essential minerals [21]. Several other milk serum proteins, like lactoferrin and immunoglobulins,
protect infants against pathogens and decrease the risk of having acute or chronic diseases [21,22].
Lactoferrin, a globular glycoprotein of the transferrin family, ends up in the infant’s feces, and was
shown to influence the microbiota composition of neonates [22]. Human milk is also a rich source of
antibodies or immunoglobulins, which are able to recognize and bind to unique epitopes of pathogens,
preventing their colonization [23–25]. Serum albumin is a protein mainly involved in the transportation
of hormones, fatty acids, and other milk components [21].

Individual differences in milk serum proteins between mothers have been reported, where it was
found that there was a large overlap in identified proteins in human milk among mothers, whereas there
were also major quantitative changes, both between mothers and over time [7]. Given the various
potential benefits of milk serum proteins, it would be of interest to obtain insights in the variability of
serum proteins in human milk from mothers from other geographical and ethnic origin.

Therefore, the main objective of this study was to investigate the milk serum proteome of seven
Chinese mothers and to investigate the variability in type and level of serum proteins in Chinese
human milk over a 20-week lactation period using liquid chromatography and mass spectrometry
(LC-MS/MS). Additionally, the type and level of serum proteins in Chinese human milk were compared
to those in colostrum and mature milk from Dutch mothers.

2. Materials and Methods

2.1. Study Setup and Sample Collection

Chinese participants were recruited in the Hohhot region, China, between August 2014 and
November 2015 by the Yili Innovation Center (Hohhot, China). Yili organized the collection of the
human milk, including sampling using a human milk pump. For every time point, a volume of 10 mL
was collected in a polypropylene bottles. Milk bottles were shaken gently, aliquoted directly into 2 mL
Eppendorf tubes, and stored at −20 ◦C. Milk samples from seven healthy mothers who delivered term
(38–42 weeks) infants were assessed in weeks 1, 2, 4, 8, 12, and 20 postpartum. Human milk collection
was approved by the Chinese Ethics Committee of Registering Clinical Trials (ChiECRCT-20150017).
Written informed consent was obtained from all mothers. Milk collection and analysis of the milk of
four Dutch mothers over a 24-week lactation period was described preciously and was a collaboration
with the Dutch Human Milk Bank (Amsterdam, The Netherlands) [7]. Healthy women who delivered
singleton term infants (38–42 weeks) were eligible for that study. The data from these analyses were
re-used and made compatible with the Chinese data within this research to facilitate direct comparison,
as explained further in Section 2.4 (Data Analysis).
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2.2. Milk Serum Preparation and Concentrations

Human milk samples (5 mL) were fractionated, as described previously [10]. Briefly, the milk fat
was removed by centrifugation (10 min, 1500 g, 4 ◦C) and the obtained skim milk was transferred to
ultracentrifuge tubes. After ultracentrifugation (90 min, 100,000 g, 4 ◦C), the top layer represented the
remaining milk fat still present, the middle layer was milk serum (with some free soluble caseins),
and the bottom layer consisted of micellar casein. The free soluble caseins are part of the milk serum
proteome. A comparative study previously showed that ultracentrifugation is the most effective
method to separate caseins from serum proteins [26], although it is not possible to rule out low
amounts of serum proteins in the casein pellet [6]. Milk serum concentrations were measured in
duplicate using the bicinchoninic acid (BCA) protein assay kit (Thermo Scientific Pierce, Massachusetts,
U.S.), to ensure that the same amount of protein (10 µg) was used for further sample preparation.
Bovine serum albumin was used as standard for making a BCA calibration curve.

2.3. Sample Preparation, Dimethyl Labeling, Protein Digestion, and Peptide Analysis

Milk serum samples were prepared for protein analysis using filter-aided sample preparation and
dimethyl labeling, as described previously [27]. Milk serum (20 µL) was mixed with a buffer containing
sodium dodecyl sulfate (SDS) for protein denaturation and dithiothreitol (DTT) to reduce the disulfide
bridges in proteins, after which the samples were loaded on a Pall 3 K omega filter (10–20 kDa cutoff,
OD003C34, Pall, Washington, U.S.) for protein digestion. The lysis buffer contained 0.1 M Tris/HCl pH
8.0 + 4% SDS + 0.1 M DTT to get a 1 µg/µL protein solution. Next, 180 µL of 0.05 M iodoacetamide/urea
(0.1 M Tris/HCl pH 8 + 8 M urea) was used for protein alkylation. Samples were washed three times
with 100 µL of 8 M urea, using centrifugation, followed by 110 µL of 50 mM ammonium bicarbonate
(ABC). Then 0.5 µg trypsin in 100 µL ABC was added, followed by overnight incubation at room
temperature while mildly shaking, and centrifuged to separate peptides from undigested material.
The trypsin digested samples were then labeled, using distinct combinations of isotopic isomers
of formaldehyde and cyanoborohydride, leading to a unique stable isotope composition of labeled
peptide doublets with different masses [27]. After dimethyl labeling, the prepared samples were
analyzed using LC-MS/MS, as described before [7]. For LC-MS/MS, a Prontosil 300-3-C18Hmagic
C18AQ 200 Å analytical column was used, and the full scan FTMS spectra were measured in positive
mode between m/z 380 and 1400 on a Thermo LTQ-Orbitrap XL. CID fragmented MS/MS scans
of the four most abundant doubly- and triply-charged peaks in the FTMS scan were recorded in
data-dependent mode in the linear trap (MS/MS threshold = 5.000).

2.4. Data Analysis

The MS/MS spectra obtained were processed by the software package Maxquant 1.3.0.5 with
the Andromeda search engine, as described previously [28]. Protein identification and quantification
was done according to the literature [7]. Maxquant created a decoy database consisting of reversed
sequences to calculate the false discovery rate (FDR). The FDR was set to 0.01 at the peptide and
protein levels. The minimum required peptide length was six amino acids, and proteins were identified
based on a minimum of two distinct peptides. The intensity–based absolute quantification (iBAQ)
values were selected, representing the total peak intensity as determined by Maxquant for each protein
and their values were corrected for the number of measurable peptides [7]. The iBAQ values have
been reported to have a good correlation with known absolute protein amounts over at least four
orders of magnitude [29]. For data normalization, iBAQ values for each protein were transformed
into BCA equivalent milk serum protein concentrations, by dividing the iBAQ values of each protein
in a sample by the summed iBAQ values of all protein within a sample, there were then multiplied
with the corresponding milk serum protein concentration based on the BCA assay. To facilitate direct
comparison between Chinese and Dutch data within this research, BCA equivalent values at time points
12 and 20 weeks postpartum were compared to weeks 16 and 24, respectively. Biological functions
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were assigned to all the serum proteins using the online UniprotKB database, as done previously [7].
To assign a specific function to multifunctional proteins, DAVID Bioinformatics Resource 6.7 was used
additionally for further protein biological function classification and clarification [30].

2.5. Statistical Analysis

Statistical analysis was performed based upon previously described methods [7],
with modifications. For the BCA equivalent values of each protein in Chinese and Dutch
human milk over lactation, a regression line was fitted using R (Lucent Technologies, New York, NY,
U.S.A.), summarizing the profile over time for each protein into an intercept and slope. The calculated
intercepts are the protein BCA equivalent values at week 1, while the calculated slopes indicate
the decrease or increase in BCA equivalent values per week. To determine the significant different
milk serum proteins over the course of lactation per country, a comparison was made based on the
calculated slope. Only BCA equivalent values of the common serum proteins found in both Chinese
and Dutch human milk were used for comparison. The common serum proteins in Chinese and Dutch
human milk were then evaluated based on the calculated intercept and slope using a two-tailed t-test,
with a significance level set at α = 0.05. Next, these common milk serum proteins were compared in
Chinese and Dutch human milk using a two-tailed t-test in Perseus [31], separately for each lactation
week, with correction for multiple testing based on permutation-based FDR. The BCA equivalent
values of serum proteins in Chinese and Dutch human milk were also summed per function and were
then compared using a two-tailed t-test. To quantify the relation between biological function groups,
Pearson correlation coefficients were calculated for summed BCA equivalent values and visualized
in correlation matrix plots. Pearson correlation coefficients of >0.5 were considered good. All the
serum proteins in Chinese and Dutch human milk were plotted in a graph in order to visualize the
differences in serum proteins over the course of lactation.

3. Results

The objective of this study was to investigate the variability in the type and level of serum proteins
in Chinese human milk over a 20-week lactation period. For this, the milk serum proteome of seven
mothers over the course of lactation was investigated using LC-MS/MS.

3.1. Level and Type of Milk Serum Proteins in Chinese Human Milk

The total milk serum protein concentrations in Chinese human milk of the seven mothers over
the course of lactation are presented in Figure 1. Concentrations ranging from 12 to 25 g/L decreased
significantly (α < 0.05) over a 20-week lactation period, although with large individual variations
(Figure 1).

Serum proteins in human milk were grouped based on their main biological functions
(Supplementary Supporting information, data file). Not only the total protein concentrations, but also
the protein composition differed among mothers and over lactation as measured after protein digestion
and subsequent LC-MS/MS analysis (Figure 2). The figure shows that immune-active proteins,
transport proteins, and enzymes were the most abundant for all mothers (Figure 2). The percentage of
total protein attributable to these main biological functions, however, varied widely among mothers
(Figure 2). Although the BCA equivalent values were always higher in colostrum than in mature milk,
the rate of decline for the three main groups varied among mothers (Figure 2).
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Figure 2. Serum protein composition in human milk of seven Chinese mothers over a 20-week lactation
period, based on BCA equivalent values (g/L). The number after the M indicates the mother, and the
numbers after the W (1 to 20) indicates the number of weeks postpartum.

To facilitate the comparison between Chinese and Dutch human milk, data were averaged among
mothers, as shown in Figure 3. The average total BCA equivalent values in Chinese human milk
for enzymes, immune-active proteins, and transport proteins ranged over 4.5–10.0 g/L, 2.9–7.8 g/L,
and 2.9–5.0 g/L, respectively (Figure 3).
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Figure 3. Averaged BCA equivalent values (g/L) of serum proteins for human milk from seven Chinese
mothers categorized per biological function over a 20-week lactation period.

3.2. Comparison of the Chinese and Dutch Milk Serum Proteomes

The type and level of serum proteins in Chinese human milk were also compared to those in
Dutch human milk. The raw data on Dutch human milk were reprocessed to be compatible with the
Chinese data. The total BCA milk serum protein concentrations in Dutch human milk per mother
and over the course of lactation are available as supplementary information (Figure S1). The total
BCA equivalent values in Dutch human milk decreased over a 24-week lactation period from 21.6 to
13.6 g/L (Figure S2). Enzymes, immune-active proteins, and transport proteins were also the most
abundant in Dutch human milk over the course of lactation (Figure S2). The BCA equivalent values
for the groups enzymes, immune-active proteins, and transport proteins in Dutch human milk ranged
over 4.5–9.0 g/L, 3.8–5.6 g/L, and 4.8–6.8 g/L, respectively. Although different patterns in Chinese
and Dutch human milk can be observed, the difference was not significant between the same group
of biological functions (data not shown), except for cell and signaling, where levels were higher in
Chinese human milk.

The relations between the levels of different biological function groups of serum proteins within
the Chinese and within the Dutch human milk populations were visualized in a correlation matrix
plot (Figure 4).

3.3. Individual Milk Serum Proteins

Totals of 469 and 200 serum proteins were measured in Chinese and Dutch human milk,
respectively. The milk serum proteomes of different Chinese and Dutch mothers were compared
based on 166 common milk serum proteins. The overall 15 most abundant milk serum proteins can be
found in Table 1.
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Figure 4. Calculated Pearson correlation coefficients between the different functional groups of serum
proteins in Chinese and Dutch human milk, using the summed BCA equivalent values (g/L) over
lactation. (A) Chinese human milk and (B) Dutch human milk.

Table 1. The 15 most abundant serum proteins categorized per function in both Chinese and Dutch
human milk during lactation, with their corresponding BCA equivalent values (g/L) values at week 1.

Function Protein Name
BCA Equivalent Values (g/L)

Chinese Dutch

Enzyme α-lactalbumin 6.98 8.73
Bile salt-activated lipase 0.29 0.19

Immunity Lactoferrin 3.74 2.10
Ig α1-chain c-region 0.91 0.71
Ig λ2-chain c-region 0.47 0.54
Ig κ-chain c-region 0.39 0.90

Polymeric immunoglobulin receptor 0.41 0.39
Clusterin 0.23 0.17

Osteopontin 0.17 0.19
β2-microglobulin 0.16 0.16

Protease inhibitors α1-antichymotrypsin 0.11 0.08

Transport β-casein † 1.17 3.91
αS1-casein † 1.33 1.34

Serum albumin 0.93 1.06
κ-casein † 0.23 0.29

Fatty acid-binding protein 0.07 0.13
† Micellar caseins were completely removed, while this was not the case for the free soluble part of the caseins.

In Dutch human milk, α1-antichymotrypsin belongs to the top 15 serum proteins instead of the
transport protein fatty acid-binding protein (Table 1). Within the group enzymes, the highly abundant
α-lactalbumin and bile salt-activated lipase are mainly responsible for the changes in this group in
human milk over the course of lactation (Table 1). Many immune-active proteins, like lactoferrin,
osteopontin, different types of immunoglobulins, polymeric immunoglobulin receptor, and clusterin,
belong to the most abundant serum proteins in human milk (Table 1). The changes within the group
of transport proteins over the course of lactation can mainly be explained by the caseins (Table 1).
The caseins in Table 1 probably refer to the free, non-micellar casein, as the micellar casein should have
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been removed during the sample preparation (Table 1). With the majority of the caseins in milk being
part of the micellar fraction, the caseins in Table 1 therefore do not reflect the levels of total casein.

The differences in protein patterns between Chinese and Dutch human milk were examined by
comparison of both the intercept (representing colostrum) and slope (representing the decline over
lactation) of curves, fitted for the 166 common milk serum proteins. The p-values for these differences
after using a two-tailed t-test are shown in Figure 5.
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Figure 5. Comparison of the common serum proteins in Chinese and Dutch human milk during
lactation. Green squares indicate the proteins displayed in Table 1. For each serum protein in Chinese
and Dutch human milk over the course of lactation, a regression line was fitted, summarizing the profile
for each protein into an intercept (representing week 1) and slope (representing rate of change over
lactation). These profiles were used for comparison between Chinese and Dutch human milk, and the
p-values for differences between them were plotted. (A) Significantly different proteins in Chinese
and Dutch human milk over the course of lactation, based on difference in slope; (B) significantly
different proteins in Chinese and Dutch human milk at week 1, based on intercept; and (C) no
significant difference.

The levels of two serum proteins (elongation factor 2 and myristoylated alanine-rich c-kinase
substrate) varied in the Chinese and Dutch human milk over the course of lactation, as shown by the
significantly different slope (Figure 5, area A). Next to that, the levels of 35 serum proteins varied in
intercept (Figure 5, area B), including several proteins from the top 15 (Table 1), as shown in green.
The complete list of significantly different serum proteins in Chinese and Dutch human milk is shown
in Table 2, grouped according to their biological function.
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Table 2. Significantly different serum proteins in Chinese and Dutch human milk, with p-values for
week 1 (intercept) and over the course of lactation (slope).

Function * Protein Name p-Values of Serum Proteins
(Chinese Versus Dutch)

Intercept Slope

Cell Actin 0.002 * 0.540
Calreticulin 0.000 * 0.620

Follistatin-related protein 1 0.003 * 0.140
MARCKS-like protein 1 0.004 * 0.959
Protein deglycase DJ-1 0.000 * 0.051

Peroxiredoxin 2 0.002 * 0.233

Enzyme 4-trimethylaminobutyraldehyde dehydrogenase 0.000 * 0.590
α-lactalbumin 0.010 * 0.922

Fructose-bisphosphate aldolase A 0.000 * 0.710
Isocitrate dehydrogenase 1 0.000 * 0.310
L-lactate dehydrogenase A 0.000 * 0.772

Nucleoside diphosphate kinase A 0.000 * 0.082
Protein disulfide-isomerase 0.000 * 0.685

Transketolase 0.023 * 0.707
Triosephosphate isomerase 0.000 * 0.912

Tryptophan-tRNA ligase 0.000 * 0.131
UTP-glucose 1-phosphate uridylyltransferase 0.000 * 0.630

Immunity Complement C4B 0.000 * 0.200
Ig α1-chain c-region 0.000 * 0.210
Ig γ3 chain c-region 0.000 * 0.190
Ig κ-chain c-region 0.001 * 0.490
Ig λ2-chain c-region 0.045 * 0.640

Granulins 0.018 * 0.800
Lysozyme C 0.000 * 0.937

Monocyte differentiation antigen CD14 0.015 * 0.770

Protease
inhibitors Inter-α-trypsin inhibitor heavy chain H2 0.000 * 0.522

Protein
synthesis Elongation factor 2 0.547 0.050*

Signaling 14-3-3 protein β/α 0.000 * 0.372

Transport Apolipoprotein E 0.036 * 0.500
β-casein † 0.000 * 0.590

Fatty acid-binding protein 0.000 * 0.790
Heat shock protein HSP 90-beta 0.040 * 0.810

κ-casein † 0.038 * 0.950
Selenium-binding protein 1 0.006 * 0.536

Serum albumin 0.031 * 0.760
Transcobalamin 1 0.000 * 0.509

Other Myristoylated alanine-rich c-kinase substrate 0.001 0.028 *

Bold type indicates the proteins also displayed in Table 1. † Micellar caseins were completely removed, while this
was not the case for the free soluble part of the caseins. * Corresponding p-values (two-tailed t-test, α < 0.05)

The levels of the 166 common milk serum proteins in the Chinese and Dutch populations that
increased or decreased over the course of lactation, can be found as supporting information (Table S1).
The levels of 17 (10%) and 21 (12%) of the 166 common milk serum proteins changed over the course
of lactation in Chinese and Dutch human milk, respectively. In addition, the 166 common serum
proteins were compared between Chinese and Dutch human milk for each week separately (Table S2).
This showed that 16 of 17 proteins that significantly differed in week 1 were also significantly differing
in one or more of the other weeks.
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4. Discussion

4.1. The Level and Type of Serum Proteins in Chinese Human Milk

The total protein concentrations decrease significantly over a 20-week lactation period in each
mother, although with individual variations (Figure 1). These milk serum protein concentrations match
with those observed in earlier studies, ranging from 12 to 25 g/L [7,32–34], although other studies
report lower values from 7 to 16 g/L over the course of lactation [3,24,35,36]. These differences may
be explained by the BCA method [37,38], which generally overestimates the total protein in human
milk by about 25–40% [37,38]. The serum protein levels in this study should thus be regarded as
semi-quantitative, although this did not influence the comparisons reported here, as they are all based
on the BCA method. Although the protein content seems high for milk serum, it should be taken
into account that the samples with the highest protein content are actually those in early lactation.
These samples are known to have higher protein and relatively lower casein contents [6], leading to
higher milk serum protein contents. In addition, part of the casein remained in the sample after sample
preparation and therefore also counted towards the BCA protein content.

As described previously [5], human milk becomes fully mature between 4 and 6 weeks
postpartum, with the amounts of bioactive components decreasing relative to the nutrients. In early
life, infants have an immature intestinal immune system, making them more vulnerable to infection
by opportunistic pathogens [5]. The high levels of immune-related milk serum proteins in colostrum
(Figure 3) may provide protection to the infant in this sensitive stage of development.

It was also observed that a large variability exists in the milk serum protein composition in
colostrum among Chinese mothers (Figure 2). The results in this study comprising milk from seven
mothers shows that immune-active proteins, enzymes, and transport proteins are highly abundant
in Chinese human milk (Figure 3), which can also be observed from the individual data of mothers
(Figure 2). Earlier studies had already shown that immune-active proteins, enzymes, and transport
proteins were present in the largest quantities over the course of lactation [7,9,11].

4.2. The 15 Most Abundant Milk Serum Proteins

The large quantities of immune-active proteins are especially driven by the abundance of
lactoferrin, immunoglobulins, polymeric immunoglobulin receptor, clusterin, osteopontin and
β2-microglobulin (Table 1), which may protect infants against pathogenic microorganisms, and confer
passive immunity to the neonate until its own immune system has been developed [9–11]. As shown
in Table 1, transport proteins, like free soluble caseins, serum albumin, and fatty acid binding protein
were present in large quantities during lactation. Free soluble caseins could not be removed from the
milk, unlike the micellar casein that can be pelleted by ultracentrifugation–a phenomenon that has
also been reported by others [7,19,24]. Free soluble and micellar caseins belong to the most abundant
proteins in human milk, and these proteins mainly supply infants with amino acids and minerals
needed for their growth [23–25]. It can also be observed from Table 1 that enzymes are the largest
group of proteins across lactation. The large quantities of enzymes in human milk can be explained by
the presence of α-lactalbumin, which is known to be the most abundant milk serum protein (Table 1).
This enzyme is required for the synthesis of lactose, the main macronutrient in milk [5,21]. It should
be noticed that α-lactalbumin does not have enzymatic activity on its own. Besides α-lactalbumin,
bile salt-activated lipase belongs to the 15 most important enzymes in Chinese and Dutch human milk
during lactation (Table 1). Bile salt-activated lipase supports the digestion of fats in the immature
infant digestive tract, and facilitates the absorption of cholesterol, vitamin A, and triacylglycerols [7].
The protease inhibitor α1-antichymotrypsin is also among the 15 most abundant human milk serum
proteins, and, like other protease inhibitors and proteases, might play a key role in the digestion of
human milk [12–14]. Overall, the 15 most abundant proteins identified in this study were in levels
dominating the entire milk composition, covering more than 95% of both the Chinese and Dutch milk
serum proteomes.
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4.3. Proteases and Protease Inhibitors

Proteases may play a key role in the digestion of human milk. Although trypsin was
the most abundant protease in Chinese and Dutch human milk, many other proteases
(e.g., cytosol aminopeptidase, elastase, kallikrein, plasmin, cathepsins) were found, albeit to a
lesser extent (Supplementary Information, data file). As described by others, proteases might be
present in human milk to hydrolyze proteins in the mammary gland to regulate casein micelle
size [14,15]. Protein digestion in human milk by proteases target specific proteins (e.g., caseins,
polymeric immunoglobulin receptor, osteopontin) that do not have an extensive tertiary structure
and are thus more accessible to proteolytic cleavage [16,18]. These proteins were, in this study,
part of the overall 15 most abundant proteins in Chinese and Dutch human milk during lactation
(Table 1). In particular, the caseins are well digested [16–18], which indicates that proteases and bile
salt-activated lipase in human milk aids overall in the digestion of two of its main macronutrients,
fats and proteins [19].

Besides proteases, human milk also contains protease inhibitors. The ratio between protease
inhibitors and proteases in colostrum is circa 10:1. The most abundant protease inhibitors were
α1-antichymotrypsin, α1-antitrypsin, cystatin C, and phosphatidyletanolamine-binding protein
(Supplementary Information, data file). As described by others, α1-antichymotrypsin binds to
chymotrypsin and other chymotrypsin-like serine proteases in human milk, while α1-antitrypsin
inhibits proteases, such as trypsin, elastase, plasmin, and thrombin, and irreversibly deactivates
trypsin in vitro [12–15]. A correlation was found between protease inhibitors and immune-active
proteins in Chinese and Dutch human milk (Figure 4). Previous literature focused specifically on the
relation between serine protease inhibitors and immunoglobulins [7], which also in our data showed
stronger correlations than for all protease inhibitors and all immune proteins (Figure S3). A correlation
higher than 0.7 was also found in both Chinese and Dutch milk between proteases and protease
inhibitors specifically (data not shown). A previous study presented an overview of the proteolytic
system network in human milk [15], which consists of several proteases, protease inhibitors, and blood
coagulation proteins, indicating that these protein groups share a common biochemical pathway;
this may explain their correlations.

Where some of the major proteins are partially digested by milk proteases in human milk,
most immune-active proteins are less sensitive to digestion by these proteases, due to their
compact folded globular structure, that cannot be as easily digested [16]. For these immune-active
proteins to have an immune-activating role in the small intestine, they must be protected against
intestinal digestion, because they are sensitive to chymotrypsin and trypsin [17,18]. That might
be the reason why protease inhibitors present in human milk seem to target intestinal enzymes,
specifically blocking trypsin, chymotrypsin, and other proteases [17,18], especially through the relative
abundant α1-antichymotrypsin and α1-antitrypsin. Overall, protease inhibitors may thus ensure that
specific proteins stay intact in the infant’s digestive tract. This may also explain previous findings that
several immune-active proteins (e.g., lactoferrin, lysozyme, immunoglobulins) and protease inhibitors
(e.g., α1-antichymotrypsin, α1-antitrypsin) can be found intact in the stool of breastfed infants [17,18].
The intact proteins in the infant’s stool may also be related to the simultaneous decrease in the content
of immune-active proteins and protease inhibitors over lactation. Protection is less necessary later
in lactation due to the development of the infant’s immune system and digestive tract over time,
while digestion becomes important for the release of nutrients later in lactation.

4.4. Comparison of High- and Low- Abundance Serum Proteins in Chinese and Dutch Human Milk

It appears that the milk serum proteomes of Chinese and Dutch mothers are similar (Figure 3
and Figure S2). The main purpose of this study was to evaluate the common serum proteins in
Chinese and Dutch human milk over the course of lactation. Totals of 469 and 200 serum proteins were
found in Chinese and Dutch human milk, respectively. Although a lower number of serum proteins
was identified in Dutch human milk, there was still an overlap of 166 serum proteins with Chinese
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human milk, which represents more than 95% of the milk serum proteome in term of concentrations.
The reason for the higher number of serum proteins found in Chinese human milk might be due to
the larger sample size (48 versus 24 human milk samples), which generally leads to more identified
proteins [28].

In total, 22% (37 out of 166) of the common serum proteins in human milk differed between
Chinese and Dutch mothers either at week 1 or over the course of lactation. The levels of 35 of
the 166 (circa 21%) common serum proteins varied between Chinese and Dutch mothers in week 1
(Figure 5, area B). This, together with the results presented in Table 2 and Table S2, indicates that
the differences between Chinese and Dutch human milk serum proteins were mainly in their level
throughout lactation, and not in their changes over lactation, as the levels of only 2 of the 166 (circa 1%)
common serum proteins identified in this study (myristoylated alanine-rich c-kinase substrate and
elongation factor 2) differed over the course of lactation (Figure 5, area A, showing difference in slope).
Overall, the main differences in the milk serum proteomes between Chinese and Dutch human milk
were observed in the level of individual proteins, and not in rate of changes over lactation.

5. Conclusions

The milk serum proteome of Chinese and Dutch mothers were similar in term of relative the
abundance of different functional groups as well as the most abundant proteins. Some quantitative
differences were found, especially in absolute levels and not in rates of change over lactation.
Human milk contains enzymes that can assist the digestion of milk proteins and lipids in the immature
infant’s digestive tract. Protease inhibitors, which are highly correlated to the immune-active proteins,
are present in variable amounts in human milk; they could be relevant during digestion and might be
involved in controlling protein breakdown in the infant’s intestinal tract.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6643/11/3/499/s1,
Figure S1: Total BCA serum protein concentrations (g/L) in Dutch human milk per mother over a 24-week lactation
period. Raw data from Dutch human milk were re-used [7]; Figure S2: BCA equivalent values (g/L) of serum
proteins in human milk of 4 Dutch mothers categorized per biological function over a 24-week lactation period.
Raw data from Dutch human milk were re-used [7]; Figure S3: Correlations between the functional groups
consisting of protease inhibitors (including serine and non-serine protease inhibitors) and immune-active proteins
(including immunoglobulins and non-immunoglobulins) in Chinese human milk, using BCA equivalent values
(g/L) over a 20-week lactation period; Table S1: Significantly different serum proteins in Chinese and Dutch
human milk over the course of lactation, based on the BCA equivalent values (g/L) over lactation (slope); Table S2:
Serum proteins that were significantly different in at least one of the lactation weeks. Numbers are the p-value
for the difference between the Chinese human milk serum proteins and Dutch human milk serum proteins.
To facilitate direct comparison between Chinese and Dutch data within this research, the time points 12 and 20
weeks postpartum were compared to week 16 and 24, respectively; Supporting Information, data file: Serum
proteins in human milk of Chinese mothers over a 20-week lactation period. The columns described in the next
tab are the individual proteins, their functions and their iBAQ values averaged for all mothers at weeks 1, 2, 4, 8,
12, and 20 postpartum.
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