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Abstract: Severe iodine deficiency in mothers is known to impair foetal development. Pregnant
women in the UK may be iodine insufficient, but recent assessments of iodine status are limited.
This study assessed maternal urinary iodine concentrations (UIC) and birth outcomes in three UK
cities. Spot urines were collected from 541 women in London, Manchester and Leeds from 2004–2008
as part of the Screening for Pregnancy End points (SCOPE) study. UIC at 15 and 20 weeks’ gestation
was estimated using inductively coupled plasma-mass spectrometry (ICP-MS). Associations were
estimated between iodine status (UIC and iodine-to-creatinine ratio) and birth weight, birth weight
centile (primary outcome), small for gestational age (SGA) and spontaneous preterm birth. Median
UIC was highest in Manchester (139 µg/L, 95% confidence intervals (CI): 126, 158) and London
(130 µg/L, 95% CI: 114, 177) and lowest in Leeds (116 µg/L, 95% CI: 99, 135), but the proportion with
UIC <50 µg/L was <20% in all three cities. No evidence of an association was observed between
UIC and birth weight centile (−0.2% per 50 µg/L increase in UIC, 95% CI: −1.3, 0.8), nor with odds
of spontaneous preterm birth (odds ratio = 1.00, 95% CI: 0.84, 1.20). Given the finding of iodine
concentrations being insufficient according to World Health Organization (WHO) guidelines amongst
pregnant women across all three cities, further studies may be needed to explore implications for
maternal thyroid function and longer-term child health outcomes.
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1. Introduction

Iodine is essential for the synthesis of the thyroid hormones triiodothyronine (T3) and thyroxine
(T4) which regulate growth and metabolism [1]. Maternal iodine requirements are increased
throughout pregnancy to support the thyroid hormone demands of the developing foetus [2].
The foetus is initially reliant on maternal thyroid hormones, but as the foetal thyroid begins
functioning from 15–17 weeks gestation, it depends on the maternal iodine supply to maintain
thyroid hormone production throughout the remainder of pregnancy [2]. Iodine requirements increase
throughout gestation, and iodine deficiency during pregnancy is associated with a number of adverse
outcomes for the child, including increased mortality, decreased cognitive performance and delayed
physical development [1,3]. Severe deficiency during pregnancy can result in cretinism, a condition
characterised by severe mental impairment, motor spasticity and deaf-mutism [1,3].

The introduction of iodine into livestock feed and the widespread adoption of iodophors in
the dairy industry after the 1930s resulted in the reduction of overt signs of iodine deficiency in the
United Kingdom (UK) population by the 1960s [4–6]. To date, the UK has not implemented an iodine
fortification programme for commercial bread or salt production unlike countries such as Denmark
and Australia [7,8]. Some authors have suggested that the use of iodophors in the dairy and bread
industries in the UK has declined and been superseded by non-iodine alternatives, potentially reducing
these sources of dietary iodine [1,9]. In addition, wider changes in dietary practice such as reduced
milk and fish intake, the increased availability of dairy substitutes and an increase in vegetarianism
may also be affecting iodine status in the UK population [9].

Although the UK adult population is considered iodine sufficient [10], recent studies have
suggested that women may become deficient during pregnancy [11–16]. Few studies have provided
an up-to-date measure of iodine status during pregnancy, nor have they attempted to link insufficiency
with birth outcomes [12–15]. Additionally, these studies have been geographically limited, with many
being set in single cities or regions in southern England [12–16]. Recent nationally-representative data
have suggested that women of child-bearing age in the UK may be iodine insufficient, though this
study specifically excluded pregnant and lactating women and did not assess birth outcomes [10].

We therefore aimed to assess iodine status in the three UK sites of the Screening for Pregnancy
Endpoints (SCOPE) international birth cohort, and assess associations between maternal iodine
status and birth outcomes, including birth weight, birth centile, small for gestational age (SGA)
and spontaneous preterm birth.

2. Materials and Methods

2.1. Study Design and Participants

We analysed samples from three English centres from the Screening for Pregnancy Endpoints
(SCOPE) birth cohort. The SCOPE study was previously reported in detail elsewhere [17]. In brief,
the SCOPE study recruited 5690 nulliparous women with singleton pregnancies before 15 weeks’
gestation, between November 2004 and January 2011 in New Zealand, Australia, UK and Ireland.
The UK women were recruited in the cities of Leeds, Manchester and London between November
2004 and August 2008. Women were excluded if they presented a high risk of SGA, pre-eclampsia or
spontaneous preterm birth [17]. The original SCOPE study protocol has been registered at clinicaltrials.
gov NCT02357667.

Participants were interviewed during antenatal clinic visits at 15 (± 1) and 20 (± 1) weeks’
gestation. Participant characteristics were recorded including age, ethnicity, diet, body mass index
(BMI), smoking, marital status, employment and socioeconomic status. Participant socioeconomic
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index was scored using the New Zealand Socio-economic Index 1996. Spot urines were collected for
643 women at the three UK cities; 619 samples were collected at 15 weeks and 585 at 20 weeks, with 547
providing samples at both time points.

2.2. Urinary Iodine Measurement

Urinary iodine concentration (UIC) was measured in all samples taken at 15 and 20 weeks of
gestation. Assessment of individual iodine status typically requires a series of 24 hour urine collections,
however spot urines are considered an acceptable tool for assessing iodine status on a population
basis [3]. It is additionally possible to eliminate some inter-individual variation from spot-urine
samples by correcting UIC by urinary creatinine concentration (g/L) [18]. We report iodine status
results both as the raw iodine concentration (µg/L) and the iodine-creatinine ratio (I:Cr) (µg/g).

Urinary 127iodine concentration was measured at the University of Leeds using inductively
coupled plasma-mass spectrometry (ICP-MS) (Thermo iCAP Q, Hemel Hempstead, UK), accredited
by the Centers for Disease Control and Prevention (CDC) Ensuring the Quality of Urinary Iodine
Procedures (EQUIP) standardisation programme. Test samples, calibration standards, and quality
control samples were diluted 1:10 prior to analysis. Individual samples consisted of 500 µL of
participant urine, 4000 µL of diluent (1% tetramethylammonium hydroxide (Sigma Aldrich), 0.01%
Triton X-100 (Sigma Aldrich)) and 500 µL high purity H2O (>18.2 MΩ.cm). Tellurium (10 µg/L)
(Sigma Aldrich) was included as an internal standard for the ICP-MS analysis. Sample concentration
was determined against a urine matrix matched calibration curve spiked with 0, 5, 10, 40, 70, 100,
400 and 800 µg/L iodide (Sigma Aldrich). The accuracy of the results was further validated through
the inclusion of internal quality control urines: A (target iodine value: 59.9 µg/L, range: 47.2–72.5),
B (98.1 µg/L, 88.3–107.9) and C (158.9 µg/L, 140.2–177.5). External validation of our results was
provided by inclusion of the certified reference material Seronorm Trace Metal Urine Level 1 (target
value: 105 µg/L, certified iodine range: 84–126), and through participation in the CDC EQUIP
programme. Observed values were 63.3 µg/L (n = 99), 98.6 µg/L (n = 99) and 157.9 µg/L (n = 99) for
quality control urines A, B and C respectively. The observed value for certified reference material was
102.7 µg/L (n = 33). Assessment of intra-run precision gave coefficients of variation (CV) of 1.42% at
60 µg/L, 1.67% at 98 µg/L and 2.34% at 159 µg/L. Inter-run precision gave a CV of 2.4% at 60 µg/L,
4.7% at 98 µg/L and 6.0% at 159 µg/L. The method limit of quantification was 1.46 µg/L.

Urinary creatinine concentrations were assessed through a standard microplate assay utilising
the Jaffe reaction. Assessment of creatinine intra-assay precision gave a CV of 2% at 10 mg/L, 1% at
70 mg/L and 1.1% at 120 mg/L. Assessment of inter-assay precision gave a CV of 14.5% at 10 mg/L,
9.7% at 70 mg/L and 5.5% at 120 mg/L.

2.3. Outcomes

The primary and a priori outcome for the analysis was birth weight centile. Secondary outcomes
were birth weight, SGA, and spontaneous preterm birth. SGA was defined as a birth weight centile
<10th on a customised centile chart that accounts for maternal height, weight, parity, ethnicity, neonatal
gestation at delivery and sex [19]. This definition was selected due to its standard use in obstetrics and
applicability to the UK population, and as it is likely to identify foetal growth restriction. Spontaneous
preterm birth was defined as spontaneous preterm labour or preterm premature rupture of the
membranes resulting in preterm birth at less than 37 weeks’ gestation. These birth outcomes were
selected due to the key role of dietary iodine and thyroid hormones in regulating neonatal growth,
and the existence of prior studies identifying links between birth weight and preterm birth [20–23].

2.4. Statistical Analysis

Prior to analysis, a set of exclusion parameters were applied. Analysis was limited to participants
with urine samples at both time points, using the mean UIC per participant [24]. Exploratory data
analysis was then conducted to ensure all values were plausible and all combinations of values were
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possible. Two participants had duplicate measures at the same time point removed and an additional
four participants were excluded due to possessing UIC values more than 3 standard deviations
outside of the mean UIC on a log scale. Participant characteristics were described, stratified by location.
Geometric mean and median UIC and I:Cr are presented with 95% confidence intervals (CIs), alongside
the proportion of participants with estimated UIC < 50 µg/L. All analyses were completed using Stata
version 15.1 (StataCorp. Stata statistical software: Release 15.1. College Station, TX: Stata Corporation,
Texas, USA, 2017).

Linear regression was used to quantify associations between UIC and I:Cr for continuous birth
outcomes (birth weight and birth weight centile) and logistic regression was used for binary outcomes
(SGA and spontaneous preterm birth < 37 weeks). Estimates (with 95% CI) are presented based on
the arithmetic mean across the two time points for both UIC and I:Cr for mothers providing both
samples (primary analysis) and stratified by time point (secondary analyses). All results are presented
as unadjusted and adjusted for known confounders. Directed acyclic graphs were used to inform
which variables should be included as covariates, and to prevent over-adjustment [25]. Ethnicity,
age, geographic location and socioeconomic index were adjusted for by inclusion in the regression
model, except where ethnicity was already accounted for in the birth weight centile and SGA outcomes.
Maternal height, weight, parity, neonatal gestation at delivery and sex were also taken into account
in the definition of birth weight centile and SGA. The robustness of birthweight and spontaneous
preterm birth results to additional adjustment for maternal BMI was assessed.

2.5. Ethics Statement

Ethical approval was gained from local research ethics committees for each SCOPE recruitment site
(South East Multi-centre Research Ethics Committee/St Thomas Hospital Research Ethics Committee,
2005082; South East Multi-Centre Research Ethics Committee/Central Manchester Research Ethics
Committee, 06/MRE01/98). All participants provided written informed consent.

3. Results

3.1. Participant Characteristics

Table 1 shows participant characteristic summary statistics, including but not limited to maternal
age, ethnicity, socioeconomic index, marital status, smoking status, alcohol consumption, height,
weight and BMI. The mean maternal age at recruitment was 29 years, 457 (84%) were White Caucasian
and 397 (73%) non-smokers (see Table 1). Data were available for 541 participants (151 from London,
260 from Manchester, and 130 from Leeds) after exclusions, with a urine sample available from each
participant at both 15 and 20 weeks’ gestation. A total of 1082 urine samples were analysed for iodine,
with the overall geometric mean of 130 µg/L and a median of 134 µg/L.

3.2. Iodine Status

Geometric mean UIC varied by marital status, geographical location, neonatal gestational age at
delivery and gestational time point (Table 2). UIC also varied across time points, with the 20 week
concentrations being on average lower than the 15-week concentrations. Participants from Leeds had
lower mean UIC (110 µg/L, 95% CI: 99, 121) than participants from Manchester (132 µg/L, 95% CI: 123,
143) or London (145 µg/L, 95% CI: 126, 168). Participants delivering preterm (<37 weeks) generally
had similar UIC to those who delivered at term. Consistent with UIC, I:Cr was associated with
geographical location and marital status, but not time point or gestational age at delivery. Additionally,
I:Cr differed by maternal age category, ethnicity, socioeconomic index and maternal smoking status
in the first trimester. Of the three sites, participants at Leeds and Manchester had lower geometric
mean I:Cr when compared to London, with Leeds having the lowest. Individuals with UIC (<50 µg/L)
constituted 9% (95% CI: 7, 12) across all three sites, with these individuals constituting 9%, 7% and
13% of the Leeds, Manchester and London sites respectively.
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Table 1. Participant characteristics by location.

Participant
Characteristics

Overall (N = 541) London (N = 151) Manchester (N = 260) Leeds (N = 130)

n (%) n (%) n (%) n (%)

Mean maternal age (years)
18–24 121 (22) 12 (8) 62 (24) 47 (36)

25–29 160 (30) 37 (25) 84 (32) 39 (30)

30–34 189 (35) 71 (47) 79 (30) 39 (30)

35+ 71 (13) 31 (21) 35 (13) 5 (4)

Maternal ethnicity
White Caucasian 457 (84) 123 (81) 217 (83) 117 (90)

Other 84 (16) 28 (19) 43 (17) 13 (10)

Maternal socioeconomic index (quartiles)
Q1 (more
deprived) 126 (23) 12 (8) 66 (25) 48 (37)

Q2 133 (25) 31 (21) 68 (26) 34 (26)

Q3 145 (27) 52 (34) 62 (24) 31 (24)

Q4 (less deprived) 137 (25) 56 (37) 64 (25) 17 (13)

Marital status
Single 84 (16) 14 (9) 38 (15) 32 (25)

Married 258 (48 95 (63 114 (44) 49 (38)

Living as married 199 (37) 42 (28) 108 (42) 49 (38)

Maternal smoking status in 1st trimester
Non-smoker 397 (73) 128 (85) 186 (72) 83 (64)

Smoker 144 (27) 23 (15) 74 (28) 47 (36)

Maternal alcohol consumption in 1st trimester (units/week)
0 153 (28) 34 (23) 85 (33) 34 (26)

<2 94 (17) 38 (25) 38 (15) 18 (14)

2–7 160 (30) 41 (27) 79 (30) 40 (31)

>7 134 (25) 38 (25) 58 (22) 38 (29)

Gravidity
1 385 (71) 105 (70) 184 (71) 96 (74)

2 119 (22) 35 (23) 61 (23) 23 (18)

3+ 37 (7) 11 (7) 15 (6) 11 (8)

Maternal height (cm)
<160 103 (19) 31 (21) 53 (20) 19 (15)

160–169 300 (55) 85 (56) 148 (57) 67 (52)

170+ 138 (26) 35 (23) 59 (23) 44 (34)

Maternal weight at 1st visit (kg)
<60 154 (28) 44 (29) 77 (30) 33 (25)

60–69 190 (35) 60 (40) 89 (34) 41 (32)

70–79 107 (20) 34 (23 48 (18) 25 (19)

80+ 90 (17) 13 (9) 46 (18) 31 (24)

Maternal body mass index at 1st visit (kg/m2)
<20 38 (7) 12 (8) 13 (5) 13 (10)

20–25 289 (53) 84 (56) 143 (55) 62 (48)

25–30 148 (27) 42 (28 69 (27) 37 (28)

30+ 66 (12) 13 (9) 35 (13) 18 (14)

Spontaneous preterm delivery (<37 weeks)
No 523 (97) 144 (95) 252 (97) 127 (98)

Yes 18 (3) 7 (5) 8 (3) 3 (2)

Neonatal sex
Male 277 (51) 78 (52) 140 (54) 59 (45)

Female 264 (49) 73 (48) 120 (46) 71 (55)

Numbers represent the number of individuals in each category, with the percentage in brackets.
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Table 2. Urinary iodine concentration and iodine-to-creatinine ratio by participant characteristics.

Participant
Characteristics

Mean Urinary Iodine Concentration (µg/L) Mean Iodine-to-Creatinine ratio (µg/g)

Geometric mean (95% CI) Median (95% CI) Percent < 50µg/L (95% CI) Geometric mean (95% CI) Median (95% CI)

Overall 130 (122, 138) 134 (124, 145) 9 (7, 12) 193 (182, 205) 186 (175, 201)

Maternal age (years)
18–24 127 (114, 141) 135 (117, 154) 9 (5, 16) 137 (123, 153) 145 (126, 157)

25–29 116 (104, 129) 122 (100, 135) 9 (5, 14) 190 (171, 211) 186 (162, 222)

30–34 138 (124, 154) 140 (119, 164) 11 (7, 16) 228 (208, 251) 219 (201, 254)

35+ 147 (122, 176) 144 (122, 191) 6 (2, 14) 232 (197, 272) 210 (175, 249)

Maternal ethnicity
White Caucasian 130 (122, 139) 134 (124, 147) 10 (7, 13) 201 (189, 214) 190 (176, 209)

Other 127 (112, 143) 124 (103, 147) 4 (1, 10) 155 (135, 178) 160 (142, 193)

Maternal socioeconomic index (quartiles)
Q1 (More deprived) 125 (112, 139) 128 (109, 163) 6 (2, 11) 157 (141, 174) 153 (144, 182)

Q2 132 (117, 149) 135 (114, 150) 9 (5, 15) 199 (177, 223) 199 (161, 225)

Q3 133 (118, 151) 135 (113, 162) 10 (6, 16) 209 (186, 235) 202 (172, 224)

Q4 (Less deprived) 129 (114, 146) 132 (119, 149) 11 (6, 17) 209 (186, 236) 200 (177, 228)

Marital status
Single 112 (98, 128) 114 (99, 135) 13 (7, 22) 140 (123, 159) 150 (127, 175)

Married 128 (117, 141) 130 (119, 146) 10 (7, 15) 216 (199, 234) 211 (186, 230)

Living as married 140 (128, 154) 147 (126, 162) 6 (3, 10) 192 (174, 211) 184 (163, 211)

Maternal smoking status in 1st trimester
Non-smoker 134 (124, 144) 135 (124, 151) 9 (7, 13) 207 (193, 221) 200 (180, 217)

Smoker 119 (108, 132) 126 (111, 143) 8 (4, 14) 160 (145, 177) 154 (143, 180)

Maternal alcohol consumption in 1st trimester (units/week)
0 133 (120, 148) 135 (117, 161) 7 (4, 12) 183 (166, 202) 184 (163, 212)

<2 124 (107, 143) 125 (99, 153) 11 (5, 19) 193 (168, 222) 186 (161, 206)

2–7 135 (121, 151) 132 (119, 155) 6 (3, 11) 205 (183, 230) 201 (169, 225)

>7 124 (108, 141) 134 (108, 158) 13 (8, 20) 191 (169, 216) 178 (158, 203)

Gravidity
1 129 (120, 139) 134 (124, 149) 10 (7, 13) 198 (185, 211) 188 (174, 209)

2 131 (117, 147) 125 (115, 151) 7 (3, 13) 183 (161, 209) 183 (147, 210)

3+ 130 (104, 163) 120 (102, 174) 8 (2, 22) 179 (148, 218) 188 (154, 217)
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Table 2. Cont.

Participant
Characteristics

Mean Urinary Iodine Concentration (µg/L) Mean Iodine-to-Creatinine ratio (µg/g)

Geometric mean (95% CI) Median (95% CI) Percent < 50µg/L (95% CI) Geometric mean (95% CI) Median (95% CI)

Maternal height (cm)
<160 129 (112, 148) 126 (104, 159) 8 (3, 15) 202 (175, 234) 175 (157, 212)

160–169 134 (123, 145) 134 (123, 152) 10 (7, 14) 196 (182, 212) 197 (176, 212)
170+ 122 (110, 137) 131 (115, 152) 9 (5, 15) 180 (161, 202) 170 (152, 206)

Maternal weight at 1st visit (kg)
<60 131 (116, 146) 126 (112, 152) 9 (5, 15) 207 (185, 231) 201 (175, 234)

60-69 124 (112, 137) 125 (111, 141) 8 (5, 13) 195 (177, 214) 190 (170, 209)
70–79 130 (112, 149) 135 (114, 172) 12 (7, 20) 202 (177, 231) 177 (159, 209)
80+ 143 (125, 163) 157 (127, 173) 8 (3, 15) 160 (140, 184) 159 (128, 210)

Maternal body mass index at 1st visit (kg/m2)
<20 131 (106, 163) 130 (98, 175) 5 (1, 18) 178 (138, 229) 157 (121, 253)

20–25 127 (116, 138) 127 (117, 146) 10 (7, 14) 207 (192, 224) 200 (181, 221)
25–30 128 (115, 143) 134 (115, 151) 9 (5, 15) 186 (167, 209) 177 (161, 205)
30+ 149 (128, 174) 164 (126, 182) 8 (3, 17) 162 (139, 190) 161 (132, 210)

Geographical location
London 145 (126, 168) 130 (114, 177) 13 (8, 20) 242 (210, 279) 228 (181, 273)

Manchester 132 (123, 143) 139 (126, 158) 7 (4, 10) 183 (171, 196) 183 (165, 202)
Leeds 110 (99, 121) 116 (99, 135) 9 (5, 16) 165 (149, 183) 168 (149, 193)

Spontaneous preterm delivery (<37 weeks)
No 130 (122, 138) 134 (124, 144) 9 (7, 12) 194 (183, 206) 188 (175, 202)
Yes 132 (89, 196) 147 (75, 254) 11 (1, 35) 171 (129, 226) 155 (140, 246)

Neonatal sex
Male 128 (118, 139) 134 (119, 147) 10 (7, 14) 199 (184, 215) 186 (174, 210)

Female 132 (121, 143) 134 (122, 151) 8 (5, 12) 187 (172, 204) 184 (163, 206)

Appointment
15 weeks gestation 134 (125, 143) 135 (127, 152) 12 (10, 15) 176 (165, 188) 172 (159, 189)
20 weeks gestation 101 (94, 109) 107 (95, 115) 23 (19, 27) 188 (177, 200) 183 (170, 200)
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3.3. Birth Outcomes

Table 3 shows the associations between mean UIC per participant and continuous birth outcomes.
There was little evidence of any association between UIC and birth weight (−14 g per 50 µg/L increase
in mean UIC, 95% CI: −35, +6). Results were similar when iodine was corrected for creatinine, with no
evidence of any association with birth weight (−8 g per 50 µg/g increase in mean I:Cr, 95% CI: −20,
+4). When birth weight was considered further as a customised birth centile, again no evidence of an
association was found between mean UIC or mean I:Cr. Birth outcome associations with UIC were
largely consistent when iodine levels were assessed at individual time points.

Table 3. Change in continuous birth outcomes associated with a 50 µg/L increment in mean urinary
iodine concentration or 50 µg/g increment in iodine-to-creatinine ratio. 95% confidence intervals are
included in brackets.

Change in Outcome per 50 µg/L
Increment in Urinary Iodine

Concentration

Change in Outcome per 50 µg/g
Increment in Iodine-to-Creatinine Ratio

Appointment Unadjusted Adjusted * Unadjusted Adjusted *

Birth weight (g)
15 weeks −6 g (21, +10) −7 g (−23, +8) 0 g (−9, +9) −4 g (−14, +5)
20 weeks −9 g (−27, +9) −13 g (−31, +5) −3 g (−14, +7) −8 g (−19, +4)

Mean −10 g (−30, +10) −14 g (−35, +6) −2 g (−14, +9) −8 g (−20, +4)

Birth weight
centile **

15 weeks 0.0% (−0.8, +0.8) −0.2% (−0.9, +0.6) +0.1% (−0.3, +0.6) 0.0% (−0.5, +0.4)
20 weeks +0.1% (−0.8, +1.0) −0.2% (−1.1, +0.7) 0.0% (−0.5, +0.5) −0.2% (−0.7, +0.4)

Mean 0.0% (−0.9, +1.0) −0.2% (−1.3, +0.8) +0.1% (−0.5, +0.6) −0.1% (−0.7, +0.5)

* Adjusted for maternal age, city, ethnicity and socioeconomic index. ** Additionally, gestation at delivery, maternal
height and weight, parity and child’s sex were taken into account in the definition of birth weight centile.

Table 4 shows associations between mean UIC per participant and binary birth outcomes.
No evidence of an association was observed between SGA and mean UIC or mean I:Cr. There was
no evidence that spontaneous preterm birth was associated with mean iodine concentration, with a
50 µg/L increase in mean UIC associated with 0% increase in the odds of spontaneous preterm birth
(95% CI: −16%, +20%), nor was there any evidence found of an association between mean urinary I:Cr
and spontaneous preterm birth (odds ratio: 0.91, 95% CI: 0.78, 1.07).

Table 4. Relative increase in odds of binary birth outcomes (odds ratios) associated with a 50 µg/L
increment in mean urinary iodine concentration or 50 µg/g increment in iodine-to-creatinine ratio.
95% confidence intervals are included in brackets.

Odds Ratio per 50 µg/L
Increment in Urinary Iodine

Concentration

Odds Ratio per 50 µg/g
Increment in

Iodine-to-Creatinine Ratio

Visit Unadjusted Adjusted * Unadjusted Adjusted *

Small for
gestational age **

15 weeks 1.03 (0.96, 1.10) 1.05 (0.97, 1.13) 1.00 (0.95, 1.04) 1.01 (0.97, 1.06)
20 weeks 1.05 (0.97, 1.13) 1.08 (0.99, 1.16) 1.00 (0.95, 1.05) 1.02 (0.97, 1.07)

Mean 1.05 (0.97, 1.14) 1.09 (1.00, 1.20) 1.00 (0.94, 1.05) 1.02 (0.96, 1.09)

Spontaneous
preterm birth
(<37 weeks)

15 weeks 1.03 (0.90, 1.18) 1.02 (0.89, 1.17) 0.96 (0.85, 1.09) 0.96 (0.85, 1.08)
20 weeks 0.98 (0.82, 1.17) 0.97 (0.81, 1.17) 0.89 (0.75, 1.07) 0.89 (0.76, 1.06)

Mean 1.02 (0.85, 1.22) 1.00 (0.84, 1.20) 0.91 (0.77, 1.08) 0.91 (0.78, 1.07)

* Adjusted for maternal age, city, ethnicity and socioeconomic index. ** Additionally, gestation at delivery, maternal
height and weight, parity and child’s sex were taken into account in the definition of small-for-gestational-age.

Estimates for birth weight and spontaneous preterm birth outcomes were not substantially
changed on adjustment for maternal BMI (data not shown).



Nutrients 2019, 11, 441 9 of 12

4. Discussion

World Health Organization (WHO) guidelines are commonly applied for assessing iodine
deficiency disorders [3]. These guidelines define a median population UIC > 100 µg/L as iodine
sufficient for school-age children and non-pregnant adults. In addition the proportion of participants
with a UIC < 50 µg/L must not exceed 20% of the population to be considered iodine sufficient.
Currently, WHO guidelines define iodine status during pregnancy as either sufficient (median UIC
150–249 µg/L) or insufficient (<150 µg/L). Each of the three cities we have assessed in the SCOPE
birth cohort would be classed as iodine insufficient under these pregnancy guidelines. Median UIC
varied between each city with London and Manchester cohorts giving the highest median UIC, whilst
Leeds gave the lowest. On average, UIC decreased between 15 and 20 weeks of pregnancy, though no
such decrease was observed when assessing I:Cr.

Despite the presence of iodine insufficiency in the cohort, there was no evidence of any association
between UIC or I:Cr and birth outcomes. Only a small number of studies have assessed potential links
between UIC in pregnancy and neonatal outcomes [13,20–23], all of which involved populations that
were either sufficient [20,23] or borderline sufficient in iodine [13,21,22]. The majority of studies have
found no association between UIC and birth weight [13,20,22]. Two studies found positive associations
between UIC and birth weight [21,23], but these associations were inconsistent across trimesters.

Charoenratana et al. [20] found that lower UIC was associated with increased odds of preterm
birth in Thai women and studies examining links between thyroid hormone concentrations and
birth outcomes suggest that pregnant women with hypothyroidism are at greater risk of preterm
birth than euthyroid women [26,27]. Whilst these results appear to contradict ours, it should be
noted that our study examined gestational time points in the second trimester of pregnancy, whereas
Charoenratana et al. measured UIC across all three trimesters and. In addition, a number of other
studies have found no evidence of an association between UIC and preterm birth [13,21,22]. Mild iodine
deficiency is known to be linked to maternal hypothyroxinemia, a condition characterized by low
free T4 levels despite normal free T3 concentrations [28], which in turn has been related to adverse
neurodevelopmental outcomes [29]. Conversely, the association between hyperthyroidism and preterm
birth is well documented, with the majority of these cases being associated with increased levels of
anti-thyroid autoantibodies [27]. However this study was unable to measure thyroid hormone levels,
nor examined a hyperthyroid population. We suggest that further studies are warranted in order to
clarify the relationship between iodine status and thyroid hormone concentrations with birth outcomes
during pregnancy.

Whilst London and Manchester participants had higher UIC values, they also had smaller
proportions of participants in the lowest category of socioeconomic status, with London having the
smallest. In contrast, Leeds had the highest proportion. As our study found that lower socioeconomic
status was associated with lower UIC, our results may suggest that regions of the UK with a greater
proportion of citizens with a lower socioeconomic index may be at greater risk of iodine insufficiency.
Additionally, participants in the 25–29 age category generally had lower UIC values than participants
in other age categories, whilst active smokers generally had lower mean UIC values than non-smokers.
Whilst the proportion of participants in each cohort with UIC values <50 µg/L was adequate under
WHO guidelines for the general population (<20% of all participants), our observed proportions still
constitute a large number of pregnant women who may be at risk for inadequate iodine intakes, if these
samples are representative of the UK population as a whole [3].

This study also found that UIC decreased on average between the two time points. A number of
changes occur in foetal physiology during the second trimester of pregnancy, with the most notable
being the activation of the foetal thyroid between weeks 16–18 of pregnancy [30]. An increase in free
T4 allocation to the foetal cerebral cortex also occurs from the mid-point of the first trimester, peaking
in weeks 13–20 of pregnancy [30]. These increases in foetal thyroid hormone demand, along with
increased iodine trapping and hormone production by the maternal thyroid to meet these demands,
could account for the decrease in UIC seen at week 20, compared with week 15. Changes in renal
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physiology during pregnancy may also have contributed to the observed decrease in UIC [30,31].
Renal iodine clearance via urine increases by roughly 35–50% throughout pregnancy, a change that
results in a shortfall in available serum iodine and a compensatory increase of iodine uptake by
the thyroid [31]. Previous studies have suggested that the maternal thyroid responds to low iodine
status by upregulating thyroid stimulating hormone (TSH) to stimulate increased iodine capture [31].
The decrease in UIC we observe between weeks 15 and 20 may translate into altered TSH, free T3 or
T4, but unfortunately this could not be assessed in the present study. A further possibility is that these
observed differences were due to differing urine dilutions of participants at these time points. Notably
the difference in UIC observed between time points was not observed when using the I:Cr, a correction
aimed at reducing inter-individual variability in UIC [22]. This result suggests that iodine excretion
may actually remain relatively constant between 15 and 20 weeks.

Our study was limited by a number of factors. Sample collection was restricted to the second
trimester of pregnancy, and used spot rather than 24 h urine samples, which are limited in their
applicability for assessing iodine status to the population level, rather than providing information on
individual chronic iodine intakes. In addition, recruitment was restricted to a small number of UK
cities and as a result, the study may have been limited in its assessment of iodine status in surrounding
suburban and rural areas. Our study also has a number of strengths. These include the large number
of participants available for each of our three geographical sites compared with many prior UK iodine
studies, the collection of demographic details through face-to-face interviews with participants, the
use of robust analytical procedures for assessing biomarkers of iodine status, and controlling for a
number of potentially confounding variables in the statistical modelling. To the best of our knowledge,
this is the first study to compare iodine status between geographically separate UK populations.

5. Conclusions

In conclusion, we have demonstrated that the iodine status of pregnant women in our study
cohort is generally insufficient by WHO guidelines, with variations in iodine concentrations occurring
across different cities in the UK. This finding broadly supports conclusions made by prior UK studies
that pregnant women in the UK are insufficient in dietary iodine [10–16]. However, we have not found
evidence that this is adversely associated with the birth outcomes assessed in this study. More detailed
follow-up of maternal thyroid function, foetal and childhood growth, plus cognitive development are
required to assess the long-term implications of this level of iodine insufficiency.
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