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Abstract: Type-2 diabetes (T2D) is one of the major global health challenges and a substantial 

economic burden. Egg and egg-derived components have been indicated to possess antioxidant, 

anti-inflammatory, anti-hypertensive, immunomodulatory, and anti-cancer activities. However, the 

scientific evidence about the benefits of egg on T2D is debatable. The relationship between egg 

consumption and the risk of T2D from observational epidemiological studies is not consistent. 

Interventional clinical studies, however, provide promising evidence that egg consumption 

ameliorates the risk of T2D. Current research progress also indicates that some egg components and 

egg-derived peptides might be beneficial in the context of T2D, in terms of insulin secretion and 

sensitivity, oxidative stress, and inflammation, suggesting possible application on T2D 

management. The current review summarizes recent clinical investigations related to the influence 

of egg consumption on T2D risk and in vivo and in vitro studies on the effect and mechanism of egg 

components and egg-derived peptides on T2D. 
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1. Introduction 

Diabetes is a rapidly growing public health problem worldwide, which is characterized by 

prolonged hyperglycemia and impaired insulin secretion together with or without insulin resistance. 

Type-1 diabetes is caused by the cell-mediated autoimmune destruction of pancreatic β-cells and 

accounts for 5–10% of diabetic cases. The majority of diabetes victims (90–95%) are affected by type-

2 diabetes (T2D), marked by insulin resistance and relative insulin deficiency [1]. T2D is closely 

associated with life style—especially diet and exercise—and is preventable.  

According to the World Health Organization, between 1980 and 2014, the global prevalence of 

diabetes among adults has been increasing from 4.7% (108 million people) to 8.5% (422 million 

people) [2], in which the westernized lifestyle with dietary changes and lack of exercise is believed to 

play a role [3–5]. Thus, the identification of effective dietary components that can reduce the risk of 

T2D or slow down the progression of complications is important to improve the quality of life for 

diabetic patients and people at risk of T2D. Egg is one of the major protein sources in the diet. Also, 

egg is composed of a broad range of health beneficial components including amino acids, vitamins, 

minerals, and carotenoids [6]. To date, there are some evidence showing the beneficial property of 

some egg components and egg-derived peptides in the context of T2D, which are often associated 

with their anti-oxidative and anti-inflammatory properties [6–8]. In this review, we will provide an 

update on the mechanism and potential of egg, egg components, and egg-derived peptides on T2D 

management. 
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2. Egg Consumption and the Risk of T2D  

The in vivo study addressing the effect of whole egg consumption on T2D is very limited. In 

Zucker diabetic fatty rats, eight-week feeding of dried whole egg-based diet was shown to reduce 

blood glucose and triglyceride concentrations, decrease the percentage of body fat, suppress weight 

gain, and increase circulating 25-hydroxycholecalciferol level, compared to diabetic rats fed with 

casein-based diet [9,10]. 

In terms of human study, contradicting observational evidence has been gained from 

prospective cohort [11–23], case-control [24], and systematic studies [25–29] in different populations 

on the relationship between the consumption of egg and T2D risk. A positive association between 

egg intake and the risk of T2D seemed to be only reported in the US population [12,17,23,29–31]. For 

example, Djousse et al. showed in a 20-year cohort study with 22,071 male physicians (≥40 years at 

entry) and 39,876 female healthcare workers (≥45 years at entry) in the US that the consumption of 7 

eggs/week increased the risk of T2D in both men (Hazard Ratio, HR, 1.58, CI 1.25–2.01) and women 

(HR, 1.77, CI 1.28–2.43), compared to subjects who had egg consumption of <1/week [12]. In another 

large cohort study, a positive association between the frequency of egg consumption and the 

incidence of T2D was reported in 4,568 African American subjects (average age: 55 ± 13 years, 64% 

female) [17]. In addition, higher egg intake was suggested to be correlated with higher blood glucose 

concentration and negative cardiovascular outcomes in T2D patients in a cohort study conducted in 

the United Kingdom [32]. However, it has been shown in a prospective cohort study performed in 

eastern Finland that there was a negative association between egg consumption and the risk of T2D 

in middle-aged and older men [18,33]. An inverse association was also reported between egg intake 

and fasting plasma glucose and serum C-reactive protein concentrations [18]. In a Korean study that 

recruited 7,002 middle-aged and older individuals (3,318 men and 3,684 women), egg consumption 

was found to be negatively associated with T2D risk in men, but not in women, suggesting the 

existence of gender differences [34]. Taken together, a meta-analysis that included above mentioned 

five cohort studies conducted in the US and Finland indicated that egg intake is not a risk factor for 

T2D [35].  

The reported discrepancies among observational studies conducted in the US and other 

countries on the relationship between egg consumption and the risk of T2D could be caused by a 

number of reasons. In a meta-analysis of prospective cohort studies, Wallin et al. [29] suggested that 

the various food consumption habits among different countries and cultures could partly explain the 

heterogeneity in various reports. It has been widely reported that obesity and T2D is correlated with 

high intake of red meat, fat, and sugar in the diet [36,37], which is characterized as a common dietary 

pattern in the US population [38]. In fact, Sabate et al. [22] found that there was a significant 

interaction between meat and egg intake in a cohort study conducted with 55,851 participants in the 

US. Furthermore, the impact of socioeconomic factors including political environment, culture, 

income and stress on the prevalence of T2D might contribute to the inconsistency of the results among 

different countries [39,40]. It was well-established that social determinants such as income, education, 

housing, and accessibility to nutritious foods are critical players in the development of T2D [41,42]. 

In addition, alcohol intake and the use of tobacco and drugs are risk factors of T2D [43,44]. In 

particular, chronic stress, which leads to increases in blood pressure, blood glucose concentration and 

cortisol level as a consequence of allostatic overload [45], has been closely associated with the 

increased risk of T2D [46]. Other limitations of the observational studies are the unexcluded 

environmental factors and selection bias, and the uncontrolled confounding variables [47]. Also, the 

cooking methods—such as frying, boiling, and steaming—may impact overall nutritional profile and 

metabolism of egg intake [48,49]. Although cholesterol was once hypothesized as a risk factor for 

cardiovascular disease, accumulating evidence revoke the hypothesis [27,30,50]; the 2015–2020 

Dietary Guidelines for Americans thus removed the limit of cholesterol intake. Currently, there is no 

consensus on the recommendation of egg intake for T2D patients, however, one egg a day is believed 

to be safe [51]. 

Unlike the observational studies, the short-term clinical studies have shown that high egg 

consumption is correlated with significant improvements on blood lipid level, cholesterol profile, 
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insulin sensitivity, or hyperglycemia [52,53], suggesting higher egg consumption might be beneficial 

on insulin resistance in T2D. The effect of high-egg consumption on insulin resistance, glucose 

metabolism, and cholesterol level has been investigated in interventional studies such as randomized 

clinical trials [52–54] and the results were summarized in Table 1. Metabolic syndrome characterized 

by obesity, hyperlipidemia, hypertension, insulin resistance, and chronic inflammation is believed to 

be a predictor of T2D [55,56]. To investigate the effects of daily egg intake on lipoprotein metabolism 

and insulin resistance along with carbohydrate restriction in subjects with metabolic syndrome, 

Blesso et al. [52] conducted a randomized, single-blind, parallel designed study for 12 weeks to 

compare the meals containing three whole eggs or yolk-free egg substitute. Although both whole egg 

group and egg substitute group significantly resulted in improvement on very-low-density 

lipoprotein (VLDL) particle size, atherogenic lipoprotein subclasses, and oxidized low-density 

lipoprotein (LDL), whole egg group was shown to have greater increase in high-density lipoprotein 

cholesterol (HDL-C) and large HDL particles and higher reduction in total VLDL and medium VLDL 

particles than egg substitute group. Furthermore, plasma insulin concentration and insulin resistance 

were significantly reduced in whole egg group only [52], Which suggests that egg diet might be 

effective in managing metabolic syndrome. In addition, the inclusion of whole eggs provided 

additional benefits in improving insulin resistance compared to yolk-free egg diet [52], indicating the 

contribution of egg yolk components to this effect. Similarly, 65 subjects with T2D or impaired 

glucose tolerance were randomized to receive two low-energy diets, one with high protein and high 

cholesterol content plus two eggs per day, another is high protein-low cholesterol diet containing 

100g of lean animal protein. After 12 weeks, diet containing 2 eggs/day did not change the blood lipid 

profiles of T2D subjects, while HDL-C was improved [53]. In another study conducted by Ratliff et 

al. in healthy men, one week of daily consumption of eggs for breakfast resulted in reduced energy 

intake and lower plasma glucose and insulin concentrations compared to a bagel breakfast [57]. A 

similar result was reported in a randomized, single-blind, crossover trial (n = 34) in adults with T2D, 

which showed that the intake of 2 eggs/day for 12 weeks significantly reduced body weight, waist 

circumference, visceral fat rating, and percent body fat [58]. The inclusion of eggs in the diet did not 

change the glycemic hemoglobin A1c (HbA1c) and homeostasis model assessment-insulin resistance 

(HOMA-IR). However, the exclusion of eggs significantly increased insulin resistance [58]. Also, the 

significant changes in weight and lipid metabolism suggest that egg might be beneficial in the context 

of metabolic syndrome [58]. On the contrary, several other clinical trials indicate that egg 

consumption may not alter metabolic biomarkers associated with T2D [54,59]. Fuller et al. reported 

that the intake of ≥12 eggs/week for 3 months did not significantly change glycemic response and 

blood concentrations of total cholesterol, HDL-C, LDL-C, and total triglycerides compared to low-

egg diet group (<2eggs/week) in subjects with prediabetes or T2D [54]. This study was revalidated in 

a longer term (12 months) by the same research group [59]. There was no significant difference 

between high-egg (≥12 eggs/week) and low-egg diet (<2 eggs/week) in plasma glucose, glycated 

hemoglobin, 1,5-anhydroglucitol, serum lipids, inflammatory cytokines, oxidative stress, and 

adiponectin for 12 months [59]. However, the decrease in plasma glucose concentration and HbA1c 

were higher in high-egg group compared to low-egg group without statistical significance, which is 

probably due to the mixed subjects with prediabetes and T2D and the lack of a control group who 

does not consume an egg diet. Although controversial data exists, the current clinical studies provide 

promising evidence that egg diets ameliorate the risk of T2D. Since the current studies were mostly 

conducted for short term duration, further studies investigating prolonged consumption of eggs are 

warranted in individuals with insulin resistance or T2D.  
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Table 1. Recent clinical studies investigating the effect of egg consumption on T2D 

Egg Dose Subjects Duration 
Study 

Design 

Primary and 

Secondary Outcomes 
Results 

3 eggs/day 

[52] 

37 women with 

metabolic 

syndrome*; aged 

30–70 years  

12 weeks 

Randomized, 

single blind, 

parallel 

design  

Plasma lipids, 

apolipoprotein, 

oxLDL, CETP and 

LCAT 

Improved HDL, 

large HDL 

particles, total 

and medium 

VLDL particles, 

HOMA-IR, and 

LCAT activity  

2 eggs/day 

[53] 

65 subjects with 

T2D or impaired 

glucose tolerance; 

aged 54 ± 8.2;  

BMI 34.1 ± 4.8 

kg/m2 

12 weeks 

Randomized, 

controlled, 

parallel 

design  

Blood lipid, glucose, 

insulin, HbA1c, CRP 

and apoprotein-B, 

homocystein 

Increased HDL 

cholesterol; 

improved 

glycemic and 

lipid profiles  

Egg 

breakfast 

[57] 

21 healthy men; 

aged 20–70 years 
1 week 

Randomized, 

Cross-over 

Fasting blood 

glucose, plasma 

insulin, ghrelin, 

leptin, GLP-1, PYY   

Less variation in 

plasma glucose 

and insulin; 

reduced ghrelin 

response and 

energy intake  

2 eggs per 

day [58] 

34 adults with 

T2D (14 

postmenopausal 

women and 20 

men); mean age = 

64.5 years 

12 weeks 

Randomized, 

controlled, 

single-blind, 

cross-over  

Glycated hemoglobin, 

systolic blood 

pressure, body mass 

index, visceral fat 

rating, waist 

circumference, and 

percent body fat  

Reduced body 

mass index, 

visceral fat, 

waist 

circumference 

and percent 

body fat; 

unchanged 

glycemic control 

High-egg 

diet (≥12 

eggs/week)  

or low-egg 

diet (<2 

eggs/week) 

[54] 

140  

aged subjects with 

prediabetes or 

T2D; 

BMI ≥25 kg/m2 

3 months  

Randomized, 

controlled, 

parallel-arm  

Plasma blood 

glucose, HbA1c, TC, 

LDL-C, HDL-C, TG, 

apolipoprotein B, 

CRP  

No significant 

changes between 

groups  

High-egg 

diet (≥12 

eggs/week) 

or low-egg 

diet (<2 

eggs/week) 

[59] 

 

128 subjects with 

prediabetes or 

T2D; aged ≥18 

years; BMI ≥25 

kg/m2 

12 

months  

Randomized, 

controlled, 

parallel-arm  

Plasma glucose, 

HbA1c, 1,5-

anhydroglucitol, 

traditional serum 

lipids, markers of 

inflammation, high-

sensitivity C-reactive 

protein, interleukin 6, 

soluble E-selectin, 

oxidative stress, and 

adiponectin 

No significant 

changes between 

groups 

* The National cholesterol Education Program’s Adult Treatment Panel III report definition [60]. 

cholesteryl ester transfer protein: CETP; C-reactive protein: CRP; glucagon-like peptide 1: GLP-1; 

lecithin cholesterol acyltransferase: LCAT; total cholesterol: TC; triglyceride: TG; oxidized LDL: 

oxLDL 

3. Egg Components and T2D 

3.1. Egg White Hydrolysate (EWH) 
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EWH produced using alcalase, flavourzyme, neutrase, trypsin, pepsin, pancreatin, and 

peptidase all showed in vitro activities against oxidative stress and inflammation [61], which are 

closely inter-connected processes involved in the onset and development of T2D and the progression 

of complications [62]. Oxidative stress is the result of the overproduction of intracellular reactive 

oxygen species (ROS) and reactive nitrogen species that damage lipids, proteins, and DNA [63]. The 

exposure of high concentration of glucose (i.e., 30 mM) causes ROS production through mitochondria 

pathway in pancreatic β-cells, which in turn inhibit glucose-stimulated insulin secretion (GSIS) 

[64,65]. Glucose also induces ROS generation and apoptosis in podocytes, whose degeneration 

predicts nephropathy in the context of T2D [66]. ROS was shown to induce insulin resistance in 

adipose tissue, skeletal muscle, and hepatocytes by impairing insulin signaling [67–69]. Furthermore, 

there is an association between oxidative stress and negative prognosis of diabetic retinopathy in 

both animal model and human patients [70]. Prolonged oxidative stress leads to chronic 

inflammation, while inflammation can induce oxidative stress [71]. Inflammation is the body’s 

protective response in the purpose of fixing an injury, infection, or irritation, which requires adequate 

balance between a broad spectrum of mediators, including vasoactive amines, complements, 

cytokines, chemokines, and eicosanoids [72]. The blood levels of pro-inflammatory cytokines and 

chemokines such as interleukin (IL)-1, IL-6, IL-18, tumor necrosis factor (TNF)-α, and monocyte 

chemotactic protein (MCP)-1 were reported to be elevated in T2D patients compared to normal 

subjects [73–75]. Adipose tissue inflammation is believed to play a crucial role in the development of 

impaired insulin secretion and sensitivity in T2D [76]. TNF-α and IL-1β are known to trigger 

apoptosis of islets [77], suppress GSIS in both islets and pancreatic beta-cells [78,79], and inhibit 

insulin signaling in adipose, muscle and liver cells and tissues mainly by suppressing the 

phosphorylation of insulin receptor, insulin receptor substrate (IRS)-1 and Akt (protein kinase B) [80–

84]. Higher egg consumption is associated with lower concentrations of blood pro-inflammatory 

cytokines in T2D patients [53,85], although egg contains both anti- and pro-inflammatory 

components, such as anti-inflammatory lutein and zeaxanthin, pro-inflammatory cholesterol, and 

phospholipids being both anti- and pro-inflammatory [6]. Egg proteins, which are mostly in egg 

white, are generally considered to be anti-inflammatory, unless inducing an allergic reaction [6]. 

EWH was also reported to have bile acid-binding, angiotensin I-converting enzyme (ACE)-

inhibitory and dipeptidyl peptidase 4 (DPP-4)-inhibitory activities in different potency based on in 

vitro experiments [61]. ACE is an enzyme that hydrolyzes angiotensin I to produce angiotensin II, 

which elevates blood pressure, promotes inflammation, and plays a role in the development of 

insulin resistance [86,87]. DPP-4 is an enzyme degrading incretin hormones such as glucagon-like 

peptide 1 (GLP-1) [88], which is secreted by intestinal L-cells in response to nutrient load and is 

known to promote insulin secretion from pancreatic β-cells, preserve β-cell proliferation and 

regeneration, and inhibit glucagon production [89].  

There are some in vivo studies indicating that EWH might be beneficial in the context of T2D 

(Table 2). In spontaneous T2D mice with moderate obesity, eight weeks feeding of protease-produced 

EWH resulted in an improved glucose tolerance as shown in oral glucose tolerance test and 

intraperitoneal glucose tolerance test, which was accompanied with a lower plasma insulin 

concentration, suggesting both insulin secretion and sensitivity could be altered [90]. In high-fat diet 

(HFD)-fed rats, oral administration of pepsin-prepared EWH for 6 weeks was shown to decrease fat 

pad mass, increase lean mass, and alleviate glucose intolerance and insulin resistance, which were 

accompanied with enhanced Akt phosphorylation in liver, muscle, and fat tissues [91]. The plasma 

concentrations of IL-1α, IL-β, and MCP-1 in HFD-fed rats were also reduced by EWH 

supplementation [91]. EWH obtained from protease digestion significantly improved the fasting 

blood glucose concentration and HOMA-IR in non-obese spontaneous diabetic rats, without altering 

serum levels of insulin and adiponectin, DPP-4 activity, and homeostasis model assessments-insulin 

secretion [92]. However, in rats fed with a high-fat and high-sucrose diet, the same EWH had no effect 

on serum glucose and insulin concentrations [93]. Feeding with alcalase-produced EWH for 15 weeks 

was reported to protect against renovascular damage in obese T2D rats, which was accompanied 

with suppressed renal mRNA expression of TNF-α, without altering blood GLP-1 and glucose 
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concentrations [94], suggesting the effect may not be dependent on its DPP-4 inhibiting activity. These 

results indicate that the effect of EWH on glucose and insulin metabolism and T2D-associated 

inflammation may be dependent on the preparation methods and the obese condition associated with 

diabetes. However, it should be noted that there is big variation in EWH dose (highest/lowest = ~10) 

in the current available studies [90–94].  

Table 2. In vivo studies of the effect of EWH on T2D 

EWH 

Preparation 

Method 

Animal 

Model/Group 

EWH Dose/ 

Duration 
Major Results 

Protease [90] 
Nagoya-Shibata-

Yasuda mice  

27.6% (w/w, 

diet) 

/8weeks  

Decreased plasma glucose and insulin 

concentration; improved insulin resistance 

Alcalase [94] 
Obese Zucker 

rats 

1 g/kg (body 

weight)/day/15 

weeks 

Reduced renal mRNA expression of IL-1β, IL-13, 

and TNF-α; decreased renal P22(phox)protein 

expression; unchanged blood GLP-1 and glucose 

concentration 

Thermolysin 

and Pepsin 

[91] 

High-fat diet-fed 

rats 

4% (w/w, diet)/6 

weeks 

Reduced plasma IL-1α, IL-β, and MCP-1 

concentrations and fat pad mass; increased lean 

mass and upregulated Akt phosphorylation in 

liver, muscle, and fat tissues; improved glucose 

tolerance and insulin sensitivity 

Protease [92] 
Goto-Kakizaki 

rats 

27.6% (w/w, 

diet)/6 weeks 

Decreased fasting blood glucose concentration 

and triglyceride content in muscle; improved 

HOMA-IR;  

Protease [93] 

Rats fed with a 

high-fat and 

high-sucrose diet 

39.4% (w/w, 

diet)/6 weeks 

 Reduced food intake, body weight gain and fat 

deposition; decreased stearoyl-CoA desaturase 

and glucose-6-phosphate dehydrogenase activity 

in liver and muscle; suppressed serum levels of 

triacylglycerol and leptin; increased muscle 

weight; upregulated fecal excretion of 

triacylglycerol, cholesterol, and total bile acids  

The mechanism of EWH’s benefit on T2D is largely unknown. However, there are some in vitro 

studies supporting the insulin mimetic or sensitizing effects of EWH. Adipose tissue dysfunction 

plays a critical role in the development of insulin resistance and impaired metabolic homeostasis in 

T2D [95]. The differentiation of 3T3-F442A mouse pre-adipocytes was shown to be promoted by EWH 

(prepared by thermoase and pepsin) as evidenced by upregulated lipid accumulation and 

adiponectin production, possibly by upregulating the protein expression of peroxisome proliferator 

associated receptor gamma (PPAR)-γ and CCAAT/enhancer-binding protein alpha [96]. EWH 

treatment also increased the phosphorylation of extracellular signal regulated kinase 1/2 and 

attenuated c-Jun phosphorylation in 3T3-F442A cells, which was associated with decreased COX-2 

expression, a critical regulator of inflammatory pathway. In addition, EWH treatment potentiated 

Akt phosphorylation induced by insulin [96]. In rat skeletal muscle cells L6, EWH were reported to 

improve TNF-α-impaired glucose uptake in response to insulin by promoting insulin signaling [97].  

3.2. Lutein and Zeaxanthin 

Lutein and zeaxanthin are carotenoid with similar structures to pre-vitamin A (β-carotene), 

which are concentrated at the macula as the primary pigment molecules [98]. Carotenoids are known 

for their potent antioxidant activity [99]. Egg yolk contains high level of lutein and zeaxanthin (~143 

and 94 μg/yolk, respectively) [100], higher than most fruit and vegetables [101]. The serum 

concentrations of lutein and zeaxanthin increased 26 and 38% respectively after consuming 1 egg/day 

for 5 weeks in individuals aged >60y, without changes on concentrations of total cholesterol, LDL-C, 

HDL-C, and triglyceride in serum [100].  



Nutrients 2019, 11, 357 7 of 17 

 

Lutein and zeaxanthin function as the major pigment molecules in retina [98]. The macular 

pigment optical density has been shown to be significantly lower in T2D patients than both type-1 

diabetes subjects and normal individuals, although the level was comparable between T2D patients 

with or without retinopathy [102]. The lutein and zeaxanthin blood concentration in T2D patients 

with retinopathy was significantly lower than normal subjects [103]. In addition, in a cross-sectional 

study that involved 111 T2D patients, the plasma concentration of non-pro-vitamin A carotenoids, 

including lycopene, lutein, and zeaxanthin, was found to be significantly lower in patients with 

retinopathy than subjects without retinopathy. Furthermore, the ratio of carotenoids that are not pro-

vitamin A to the ones that are pro-vitamin A in plasma was negatively associated with the risk of 

diabetic retinopathy [104]. 

There are some in vivo studies indicating possible benefits of lutein on insulin resistance and 

secretion. In rats fed with high-fat diet, lutein administration by gavage for 45 days attenuated hepatic 

insulin resistance, possibly by increasing the expression of IRS-2, phosphatidylinositol 3-kinase 

(PI3K), and glucose transporter (GLUT)-4 in liver at both transcription and translation levels [105]. 

The expression of PPAR-α and sirtuin 1 were also increased, which are players in insulin signaling 

as well [105]. Lutein and zeaxanthin treatment for eight weeks significantly reduced serum insulin 

concentration in high-fat diet-fed rats [106], indicating the modulating effect on insulin secretion.  

The possible protecting role of lutein and zeaxanthin against diabetic retinopathy has been 

suggested by both animal and human studies. Lutein and zeaxanthin were shown to attenuate the 

oxidative damage of retina in high-fat diet-fed rats which develop obesity and insulin resistance, as 

evidenced by reduced malondialdehyde concentration and increased activity of antioxidant enzymes 

in retina [106]. Lutein treatment improved the result of electroretinogram test, reduced oxidative 

stress, and suppressed nuclear factor kappa B (NF-κB) activity in retina of diabetic rats induced by 

alloxan [107], which is a toxic glucose analogues causing β-cell damage through generating free 

radicals [108]. Zeaxanthin was reported to have similar protective property on the development of 

diabetic retinopathy as well. In diabetic rats induced by streptozotocin—which is another β-cell 

damaging glucose analogue mainly acting by inducing DNA damage [108]—zeaxanthin 

supplementation inhibited the levels of lipid peroxide, oxidatively modified DNA, electron transport 

complex III, nitrotyrosine, and mitochondrial superoxide dismutase in the retina, which were 

accompanied with reduced retinal expression of vascular endothelial growth factor and intercellular 

adhesion molecule-1 [109]. In db/db diabetic mice, dietary supplementation of wolfberry which has 

high lutein and zeaxanthin content was reported to restore the thinned retina, especially the inner 

nuclear and photoreceptor layers, and protect the integrity of the retinal pigment epithelia by 

improving mitochondria function and attenuating hypoxia, oxidative stress, and ER dysfunction 

[110,111]. The protecting effect of lutein on retina in the context of T2D was shown to be comparable 

with docosahexaenoic acid in terms of oxidative stress, apoptosis, thickness of the outer and inner 

nuclear layers, and electroretinogram in diabetic rats [112]. In T2D patients with diabetic retinopathy, 

three-month supplementation of lutein and zeaxanthin significantly improved visual acuity, 

increased contrast sensitivity, and decreased fovea thickness [103]. These evidence suggests that 

dietary lutein and zeaxanthin supplementation might be a promising strategy to alleviate the 

development of diabetic retinopathy, which requires further investigation.  

3.3. Choline  

Choline is a serine-derived water-soluble amine and is the build block of phosphatidylcholine 

and sphingomyelin, which are essential membrane phospholipid and precursors of second 

messengers diacylglycerol and ceramide. Choline is also a precursor of an crucial neurotransmitter 

acetylcholine, which is involved in voluntary muscle movement and cognitive function [113]. 

Another important physiological function of choline is that it is required for the transport of 

triglyceride in lipoprotein from liver [114].  

Eggs, liver, and peanuts are good food sources of choline. The choline content in whole egg is 

~100 mg/egg, mainly in egg yolk [115,116]. There are some evidence showing the beneficial effect of 

choline on glucose and insulin metabolism. In mice with metabolic syndrome, muscle synthesis of 
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fatty acid and triglyceride was reduced by choline dietary supplementation, whereas glycogen 

generation was increased. In addition, phosphorylation of IRS-1 and Akt in muscle was enhanced by 

choline [117]. In a study that involved 2394 adults from Newfoundland, the dietary choline intake 

was negatively associated with blood concentrations of fasting glucose and insulin and HOMA-IR in 

both males and females with age, total calorie intake, and physical activity level being controlled 

[118]. Choline was also reported to aid in the delivery of insulin ingested orally. An ionic liquid 

consist of choline and geranate was shown to improve oral insulin delivery and result in a 

significantly reduced blood glucose level for up to 12 hours in rats [119], which were attributed to 

enhanced paracellular transport and reduced enzymatic degradation of insulin.  

However, there are also studies showing contradictory results. Phosphatidylethanolamine N-

methyltransferase-deficient mice, which display impaired choline de novo synthesis, were protected 

from high-fat diet-induced obesity and insulin resistance [120]. In addition, a choline-deficient diet 

led to an improved glucose tolerance and less weight gain in wild-type mice [120]. Similar attenuation 

on weight gain and improvement on glucose tolerance and insulin resistance by a choline-deficient 

diet were seen in both ob/ob obese mice and high-fat diet-fed wild-type mice [121]. In a human study 

that involved three prospective cohorts with 203,308 subjects (both male and female) without 

diabetes, cardiovascular disease, and cancer [122], a valid food-frequency questionnaire was used to 

assess the dietary intake of phosphatidylcholine, which can be degraded to choline by gut microbes. 

The results showed that higher phosphatidylcholine intake was associated with increased risk of T2D 

[122].  

4. Egg-Derived Peptides and T2D 

4.1. Alpha-Glucosidase Inhibitory Peptides 

Although individual variation and abdominal discomfort have been reported, synthetic α-

glucosidase inhibitors, such as acarbose and voglibose, were shown to be beneficial against 

postprandial hyperglycemia in diabetic individuals by inhibiting α-glucosidase, which hydrolyzes 

carbohydrate and release monosaccharides for absorption in the small intestine [123,124]. Both 

acarbose and voglibose were effective on improving glucose turnover in T2D patients who were 

taking insulin and metformin and blood glucose levels were not adequately controlled [125], 

indicating α-glucosidase inhibitors could be valuable supplements for T2D patients. It was also 

reported that voglibose diet supplementation augmented GLP-1 secretion in both healthy people and 

mice with T2D, which is attributed to the delaying effect on carbohydrate absorption [126,127]. 

However, acarbose was not shown to increase GLP-1 secretion in patients with T2D [128], indicating 

α-glucosidase inhibitors may have distinct potency on promoting GLP-1 secretion in different health 

conditions. Thus, food-derived α-glucosidase inhibitors might be attractive options replacing 

synthetic ones for the management of T2D. Eight peptides with α-glucosidase inhibitory activity have 

been identified in egg albumin with peptide KLPGF being the most potent one, which was shown to 

have comparable potency as acarbose [129]. Another egg white derived peptide RVPSLM is ~3-fold 

more potent than acarbose in glucosidase inhibition [130]. Peptide VTGRFAGHPAAQ with high α-

glucosidase inhibitory activity was identified from egg yolk protein [131]. However, effect of α-

glucosidase inhibitory peptides from egg on glucose and insulin metabolism in the context of T2D 

requires further study.  

4.2. ACE Inhibitory Peptides 

In the context of T2D, angiotensin II, produced from angiotensin I by ACE, has been implicated 

to play a role in the development of insulin resistance. Angiotensin II was reported to inhibit insulin/ 

PI3K/Akt signaling, induce oxidative stress by activating NADPH oxidases, and upregulate 

inflammation by activation of NF-κB [86], which is known to initiate the transcription of pro-

inflammatory genes including cytokines, chemokines, and adhesion molecules [132]. The action of 

angiotensin II is believed to be mainly through a G-protein coupled receptor, angiotensin II type 1 
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receptor [133]. ACE inhibitors, traditionally used for anti-hypertension purpose, have been reported 

to exert favorable effects on kidney, heart and eye functions in T2D patients [134]. 

Milk derived ACE inhibitory tripeptides, IPP (Ile-Pro-Pro) and VPP (Val-Pro-Pro), induced 

similar adipogenic differentiation to insulin, which was accompanied with restored adipokine levels 

and reduced activation of NF-κB [135]. An ACE inhibitory tripeptide, IRW (Ile-Arg-Trp), which is 

derived from egg white ovotransferrin, has been indicated to be beneficial against insulin resistance. 

In fully differentiated L6 myoblasts, IRW were reported to restore TNF-α-impaired insulin- 

stimulated glucose uptake by promoting phosphorylation of IRS-1 tyrosine residue and Akt, which 

were accompanied with decreased phosphorylation of p38 and c-Jun N-terminal kinases [97]. IRW in 

vitro treatment also reversed angiotensin II-impaired insulin-stimulated glucose uptake in L6 

myoblasts, by reducing serine phosphorylation of IRS-1, increasing Akt phosphorylation, 

upregulating GLUT-4 translocation, decreasing expression of angiotensin II type 1 receptor, and 

inhibiting ROS generation [136]. The effect and mechanisms of ACE inhibitory peptides from eggs 

on diabetes largely remain to be elucidated.  

4.3. DPP-4 Inhibitory Peptides 

Several DPP-4 inhibitors (also known as gliptins) have been approved in the US, Europe, Japan, 

and South Korea to treat T2D, which are supposed to augment the bioavailability of incretin 

hormones, prolong the action of insulin, and thus provide benefits on postprandial glucose response 

[137]. Peptide LPQNIPPL originated from water-soluble extract of a gouda-type cheese was reported 

to have DPP-4 inhibitory activities in vitro, and improve glucose tolerance as shown in oral glucose 

tolerance test in healthy rats when administrated together with glucose by intraperitoneal injection 

[138]. In addition, oral administration of peptides with DPP-4 inhibitory activity derived from the 

porcine skin gelatin hydrolysates were demonstrated to improve glucose tolerance in diabetic rats in 

21 and 42 days after streptozotocin injection [139]. Three peptides, YINQMPQKSREA, 

VTGRFAGHPAAQ, and YINQMPQKSRE, with DPP-4 inhibitory activity have been identified in egg 

yolk protein, with YINQMPQKSRE being the most active one (IC50 = 222.8 μg/mL) [131]. However, 

further studies elucidating the effect of egg-derived DPP-4 inhibitory peptides in the context of T2D 

are needed.  

5. Concluding Remark 

To date, the observational epidemiological evidence about the egg consumption and the risk of 

T2D is not consistent, which might be the result of different dietary pattern and socioeconomic 

factors. However, it has been indicated that there is association between higher egg consumption and 

improved blood lipid profile, insulin sensitivity, and glucose response in interventional clinical trials. 

EWH, lutein, zeaxanthin, and ACE inhibitory tripeptides from egg have been shown to have 

some benefits against glucose and insulin intolerance, oxidative stress, and inflammation in the 

context of T2D (Figure 1). The effect of EWH seems to be related to the production process, which 

needs optimization. In addition, the role of α-glucosidase inhibitory peptides, DPP-4 inhibitory 

peptides, and choline from egg in T2D is poorly understood. Thus, more mechanistic studies are 

warranted to elucidate the role of each components of egg on T2D. Furthermore, the absorption and 

bioavailability of the egg components and egg-derived peptides largely remain to be addressed. 
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Figure 1. Major bioactivities of egg components and egg-derived peptides that possibly contribute to 

the benefits in T2D. 
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