Supplementary Table S1. Blood collection and B12 measurement in r	nilk
---	------

Time of blood collection	Investigations	Vitamin B12 measurement in milk [8]
Day-0	Complete blood count, lipids, creatinine, vitamin B12, holotranscobalamin, homocysteine, MMA	Cow & buffalo
1 st week	vitamin B12, holotranscobalamin, homocysteine, MMA	
2 nd week	vitamin B12, holotranscobalamin, homocysteine, MMA	Cow & buffalo
3 rd week	vitamin B12, holotranscobalamin, homocysteine, MMA	
4 th week	Haemogram, lipids, creatinine, vitamin B12, holotranscobalamin, homocysteine, MMA	

Supplementary Table S2. Vitamin B12 concentration in milk (uncorrected) ^a

Measured on day	Vitamin B12 (µg/L) ^a in milk from M/S Chitale Bandhu dairy [8]			
	Cow	Buffalo		
-14	3.05	3.25		
-13	2.85	3.10		
-12	3.20	3.00		
start 0	2.90	3.15		
14	3.20	3.00		

^a Measurements of B12 in milk samples were performed according to the standard procedures of Architect (Abbott) and ADVIA Centaur XP (Siemens). A separate follow up assay indicated that a preliminary extraction of milk samples increased the measured B12 by factor ≈ 1.3 (sample or standard +1 mM KCN, 100 °C, 20 min; +2% SDS, 100 °C, 20 min; +0.2 M KCl, 0 °C, 20 min; supernatant used). Therefore, the results from Table S2 were multiplied by 1.3, giving the final value of B12 $\approx 3.9 \mu g/L (0.78 \mu g/200 mL)$ in both samples.

Supplementary Table S3. Fitting parameters of the markers, responding to the treatment with CN-B12 capsules, cow milk or buffalo milk.

\ Marker	CN-B12	probability	cow milk	probability	buffalo milk	probability
Fit\	fitting <i>P</i> _i	of ref. value	fitting <i>P</i> i	of ref. value	fitting <i>P</i> i	of ref. value
ΔB12	Eq. 1 (no <i>P</i> ₃)		Eq. 1 (no <i>P</i> ₃)		Eq. 1 (no <i>P</i> ₃)	
$P_1 \pm SE$	not	not	0.0 ± 4.8	1.0	0.0 ± 4.5	1.0
$P_2 \pm SE$	applicable	applicable	10.5 ± 2.1	$3 \cdot 10^{-6}$	10.3 ± 2.0	$1 \cdot 10^{-6}$
(p overall)				(3.10-6)		(1.10-6)
ΔB12	Eq. 2		Eq. 2		Eq. 2	
$P_1 \pm SE$	0.0 ± 6.3	1.0	0.0 ± 5.5	1.0	0.0 ± 5.0	1.0
$P_2 \pm SE$	-14.8 ± 9.8	0.13	10.3 ± 8.6	0.24	3.7 ± 7.9	0.64
$P_3 \pm SE$	49.8 ± 17.7	0.006	0.42 ± 15.6	0.98	11.1 ± 14.3	0.44
(p overall)		(8·10 ⁻⁴)		(0.24)		(0.28)
ΔholoTC	Eq. 2		Eq. 2		Eq. 2	
$P_1 \pm SE$	0.0 ± 2.0	1.0	0.0 ± 2.6	1.0	0.0 ± 2.0	1.0
$P_2 \pm SE$	-5.2 ± 3.2	0.12	-10.7 ± 4.1	0.01	-11.6 ± 3.2	$5 \cdot 10^{-4}$
$P_3 \pm SE$	10.6 ± 5.8	0.07	21.5 ± 7.4	0.005	22.7 ± 5.7	$2 \cdot 10^{-4}$
(p overall)		(0.008)		(5.10-5)		(1.10-7)
R(MMA)	Eq. 1		Eq. 1		Eq. 1	
$P_1 \pm SE$	1.00 ± 0.03	1.0	1.00 ± 0.07	1.0	1.00 ± 0.07	1.0
$P_2 \pm SE$	-0.11 ± 0.04	0.01	$0.015 \pm$	0.65	0.001 ± 0.09	0.99
$P_3 \pm SE$	0.019 ± 0.01	0.11	0.031	0.71	0.003 ± 0.03	0.91
(<i>p</i> , overall)		(0.001)		(0.46)		(0.90)
R(Hcy)	Eq. 3		Eq. 3		Eq. 3	
$P_1 \pm SE$	1.00 ± 0.02	1.0	1.00 ± 0.02	1.0	1.00 ± 0.02	1.0
$P_2 \pm SE$	-0.26 ± 0.06	$6 \cdot 10^{-5}$	-0.25 ± 0.03	$6 \cdot 10^{-12}$	-0.21 ± 0.04	$1 \cdot 10^{-7}$
$P_3 \pm SE$	0.60 ± 0.33	0.08	1.15 ± 0.51	0.03	1.07 ± 0.62	0.09
(p, overall)		(5.10-6)		$(2 \cdot 10^{-13})$		(1.10-8)

The underlined and bold figures highlight the increasing levels of significance for deviation from a "zero response".