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Abstract: Some functional food components may help maintain homeostasis by promoting balanced
gut microbiota. Here, we explore the possible complementary effects of p-fagomine and w-3
polyunsaturated fatty acids (w-3 PUFAs) eicosapentaenoic acid/docosahexaenoic acid (EPA/DHA
1:1) on putatively beneficial gut bacterial strains. Male Sprague-Dawley rats were supplemented
with p-fagomine, w-3 PUFAs, or both, for 23 weeks. Bacterial subgroups were evaluated in fecal
DNA by quantitative real-time polymerase chain reaction (qQRT-PCR) and short-chain fatty acids
were determined by gas chromatography. We found that the populations of the genus Prevotella
remained stable over time in animals supplemented with p-fagomine, independently of w-3 PUFA
supplementation. Animals in these groups gained less weight than controls and rats given only w-3
PUFAs. p-Fagomine supplementation together with w-3 PUFAs maintained the relative populations
of Bacteroides. w-3 PUFAs alone or combined with p-fagomine reduced the amount of acetic acid and
total short-chain fatty acids in feces. The plasma levels of pro-inflammatory arachidonic acid derived
metabolites, triglycerides and cholesterol were lower in both groups supplemented with w-3 PUFAs.
The p-fagomine and w-3 PUFAs combination provided the functional benefits of each supplement.
Notably, it helped stabilize populations of Prevotella in the rat intestinal tract while reducing weight
gain and providing the anti-inflammatory and cardiovascular benefits of w-3 PUFAs.

Keywords: Weight; gut microbiota; Prevotella; Bacteroides; p-fagomine; iminosugar; iminocyclitol;
w-3 PUFAs

1. Introduction

There is some evidence that dietary components such as soluble fiber, polyphenols and
polyunsaturated fatty acids (PUFAs) may have functional effects that protect against metabolic
disorders and cardiovascular diseases [1-4]. It is also becoming increasingly evident that some of these
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effects are mediated by changes in gut microbiota [5]. Diet has been shown to influence microbiota
in both animal models and humans [6-8]. Although the gut microbiota is relatively stable in healthy
adults [9], short-term disturbances can rapidly change its composition [10,11] with unknown effects on
the host organism.

p-Fagomine (1,2-dideoxynojirimycin) is a six-ring iminocyclitol: a carbohydrate analog with
a nitrogen atom in place of the endocyclic oxygen. p-Fagomine was first isolated from seeds of
buckwheat (Fagopyrum esculentum) and it is also present in other plant parts such as mulberry
(Morus alba) leaves and gogi (Lycium chinense) roots [12,13]. The functional effects of p-fagomine
include a reduction of post-prandial blood glucose concentration, achieved through the inhibition
of intestinal disaccharidases [14]; and reductions in high-fat-diet-induced weight gain, low-grade
inflammation and impaired glucose tolerance, probably all achieved by counteracting adverse changes
in gut microbiota [15,16]. Moreover, p-fagomine promotes the diversity of gut microbiota by increasing
populations of Bacteroidetes in healthy rats while mitigating the age-related reduction in the populations
of putatively beneficial Lactobacillus and Bifidobacterium bacteria [17].

Eicosapentaenoic acid (EPA, 20:5, n-3) and docosahexaenoic acid (DHA, 22:6, n-3) are the major
w-3 PUFAs of marine origin. EPA and DHA are essential dietary components that could help to
reduce risk factors (plasma cholesterol and triglycerides, oxidative stress, and blood pressure) for
cardiovascular diseases [4,18], and other pathologies that involve inflammation [19]. w-3 PUFAs are
believed to exert their anti-inflammatory effects by competing with arachidonic acid (ARA) metabolism
and fostering the synthesis of anti-inflammatory mediators such as resolvins [19]. However, the effects
of w-3 PUFAs on gut microbiota are poorly documented [20]. It has been reported that EPA and DHA
significantly increase the populations of Firmicutes (Lactobacillus genus) and Bifidobacteria in mice fed
a high-fat diet [21,22]. In contrast, we found that the mixture EPA/DHA 1:1 reduced the population
of Lactobacilliales in Wistar—Kyoto (WKY) rats fed a standard diet [23]. As buckwheat p-fagomine
and w-3 PUFAs have different effects on Lactobacillus spp. and Bifidobacterium spp., we decided to test
whether their combination had any additive or complementary effects. We previously reported that a
combination of EPA/DHA 1:1 and proanthocyanidins can be instrumental in promoting balanced gut
microbiota [23]. In this paper, we now also focus on the populations of Prevotella, because this genus
has been directly associated with improved glucose metabolism in humans [24], which is ultimately
one of our main interests. We measured different variables in test animals (fat accumulation, weight
gain, lipid profile and inflammation markers) that are pertinent to the known effects of p-fagomine
and w-3 PUFAs. Other studies have examined the effects of supplements on animal models subjected
to more or less severe dietary challenges such as high-fat or high-sugar loads. As functional food
components are primarily supposed to maintain the normal functions of the body, here we chose to
test the effects on normal rats fed a standard diet. Therefore, the goal of this study was to explore the
possible complementary functional effects of p-fagomine and EPA/DHA 1:1 on healthy rats.

2. Materials and Methods

2.1. Animals and Diets

Male Sprague-Dawley (SD) rats (n = 36) from Envigo (Indianapolis, IN, USA), aged 10-11 weeks
were housed (n = 3 per cage) under controlled conditions of humidity (60%), and temperature
(22 £ 2 °C) with a 12 h light-12 h dark cycle. Prior to the nutritional intervention, the animals were
fed a standard diet (2014 Teklad Global 14% Protein Diet from Envigo) ad libitum with free access
to water (Ribes, Barcelona, Spain) for two weeks. Then they were divided into 4 groups (1 = 9 per
group): the control (CTL) group fed only the standard diet; a group supplemented with p-fagomine
(FG); a group supplemented with w-3 PUFAs (EPA/DHA 1:1) (w-3); and a group supplemented
with both p-fagomine and w-3 PUFAs (FG + w-3). p-Fagomine (>98%) manufactured by Bioglane
SLNE (Barcelona, Spain) was generously provided by Taihua Shouyue (HK) International Co. Ltd.
(Hong Kong, China). It was included in the feed at a proportion of 0.96 g/kg feed as defined in previous
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studies [14,16]. The mean daily dose of p-fagomine was 4.6 mg per 100 g body weight, calculated from
a mean feed consumption of 4.8 g feed per day per 100 g body weight. The mixture EPA/DHA 1:1 was
obtained by mixing the appropriate quantities of the commercial fish oils AFAMPES 121 EPA (AFAMSA,
Vigo, Spain) and EnerZona Omega 3 RX (EnerZona, Milan, Italy). These w-3 PUFAs were administered
by oral gavage using a gastric probe once a week at a dose of 0.8 mL oil per kg body weight. The dose
and EPA/DHA proportions used were those reported previously [25]. To compensate for the stress of
probing and the excess calories from the fish oil in groups w-3 and FG + w-3, the animals in groups
CTL and FG were administered soy bean oil at the same dose and at the same time.

All the procedures carried out strictly adhered to European Union Directive 2010/63/EU for the
care and management of laboratory animals, and were licensed by the regional Catalan authorities
(reference no. DAAM7921), as approved by the Spanish CSIC Subcommittee of Bioethical Issues.

2.2. Data and Sample Collection

Feed consumption was monitored daily and body weight was measured weekly throughout
the experiment. Based on feed intake, the mean daily dose of p-fagomine was 4.5 mg/100 g body
weight. Energy intake was calculated as estimates of metabolizable energy based on the Atwater
factors: 4 kcal/g protein, 9 kcal/g fat, and 4 kcal/g available carbohydrate.

After week 21 of the experiment, fecal samples were collected by abdominal massage, immediately
frozen and stored at —80 °C until analysis. To reduce circadian rhythm interference, samples were
taken 2-3 h into the light period. Blood samples were collected from the saphenous vein after overnight
fasting. Plasma was separated by centrifugation and stored at —80 °C until analysis.

At the end of the experiment (week 23), rats were fasted overnight and anaesthetized
intraperitoneally with ketamine and xylazine (80 and 10 mg/kg body weight, respectively). Blood was
collected by cardiac puncture, then plasma was immediately obtained by centrifugation and stored at
—80 °C until analysis. Perigonadal fat was collected, weighed and immediately frozen in liquid Nj.
All the samples were stored at —80 °C until analysis.

2.3. Glycemic Status

An oral glucose tolerance test (OGTT) was performed at week 18 on fasted animals. A solution
of glucose (1 g/kg body weight) was administered by oral gavage before the test, and blood glucose
concentration was measured 15, 30, 45, 60, 90 and 120 min after the glucose intake. Blood glucose
concentration was measured by the enzyme electrode method, using an Ascensia ELITE XL blood
glucose meter (Bayer Consumer Care, Basel, Switzerland).

Fasting blood glucose and plasma insulin levels were also measured after week 21, in fasted animals.
Plasma insulin levels were measured using the rat/mouse insulin enzyme-linked immunosorbent assay
(ELISA) kit from Millipore Corporation (Billerica, MA, USA).

2.4. Plasma Lipid Profile

Plasma triglycerides, total cholesterol, high-density lipoprotein (HDL)-cholesterol and low-density
lipoprotein (LDL)-cholesterol were measured using a spectrophotometric method and the corresponding
kits from Spinreact (Girona, Spain) as described elsewhere [26,27].

2.5. Plasma Lipid Mediators of Inflammation

Several hydroxyeicosatetraenoic acids (HETEs), lipid mediators from the metabolism of ARA,
were determined in plasma by liquid chromatography coupled with tandem mass spectrometry
(LC-MS/MS) using a method modified from Dasilva et al. [28]. Erythrocyte-free plasma samples
(90 pL) were thawed, diluted in the presence of butylated hydroxytoluene (BHT), and spiked with
the internal standard (12HETE-d8), Cayman Chemicals, Ann Arbor, MI, USA). Then, the samples
were centrifuged (800 g, 10 min), and the lipids in the supernatants were purified by solid-phase
extraction (SPE). The LC-MS/MS analyzer consisted of a Dionex UltiMate 3000 Series chromatograph
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(Thermo Fisher, Rockford, IL, USA) coupled to a dual-pressure linear ion-trap mass spectrometer LTQ
Velos Pro (Thermo Fisher, Rockford, IL, USA) operated in negative electrospray ionization (ESI) mode.
A C18-Symmetry 150 x 2.1 mm inner diameter, 3.5 ym column (Waters, Milford, MA, USA) with a
C18 4 X 2 mm guard cartridge (Phenomenex, Torrance, CA, USA) were used in the separation step.
Samples (10 pL) were eluted with a binary system consisting of 0.02% aqueous formic acid [A] and
0.02% formic acid in methanol [B] under gradient conditions of: 0 min, 60% B; 2 min, 60% B; 12 min,
80% B; 13 min, 80% B; 23 min, 100% B; 25 min, 100% B; and 30 min, 60% B, at a flow rate of 0.2 mL/min

2.6. Fecal Microbial Populations

The relative populations of selected bacterial phyla, orders and genera (Bacteroidetes, Firmicutes,
Lactobacilliales, Bifidobacteriales, Prevotella, and Bacteroides) were estimated in fecal DNA by
quantitative real-time polymerase chain reaction (QRT-PCR). DNA was extracted from feces using
a QIAamp® DNA Stool Mini Kit from QIAGEN (Hilden, Germany) and its concentration was
quantified using a Nanodrop 8000 Spectrophotometer (ThermoScientific, Waltham, MA, USA). qRT-PCR
experiments were carried out in triplicate using a LightCycler® 480 II (Roche, Basel, Switzerland).
Each qRT-PCR well contained DNA (2 pL of a 20 ng/uL solution) and a master mix (18 uL) made of 2X
SYBR (10 puL), the corresponding forward and reverse primer (1 pL each), and water (6 pL). All the
reactions were paralleled by analysis of both a non-template control (Milli Q water) and a positive
control (Table 1) from DSMZ (Braunschweig, Germany). The qRT-PCR cycling conditions were: 10 s at
95 °C, then 45 cycles of 5 s at 95 °C, 30 s at the primer-specific annealing temperature (Table 1), and 30 s
at 72 °C (extension). The specificity of the qRT-PCR reactions was assessed by melting curve analysis
which consisted of heating to 95 °C and maintaining this temperature for 2 s, then cooling to 65 °C and
maintaining this temperature for 15 s, and running a temperature gradient from 65 °C to 95 °C at a rate
of 0.11 °C/s, with five fluorescence recordings per °C. The relative DNA abundances for each bacterial
subgroup were calculated from the second derivative maximum of their respective amplification curves
(Cp, calculated in triplicate) by considering Cp values to be proportional to the dual logarithm of the
inverse of the specific DNA concentration, following the equation: [DNAa]/[DNAb] = 2Cpb—Cpa [29].
Amounts of total bacteria were normalized as 16S rRNA gene copies per mg of wet feces (copies/mg).

Table 1. Quantitative real-time polymerase chain reaction (PCR) primers and conditions.

AmnealmgO Sequences (5'-3) Positive Control Reference
Temperature (°C)

Target Bacteria DNA

. F: ACT CCT ACG GGA GGC AGC AGT
Total Bacteria 65 R: ATT ACC GCG GCT GCT GGC @ [30]

. F: ACG CTA GCT ACAGGCTTA A . .
Bacteroidetes 62 R: ACG CTA CTT GGC TGG TTC A Bacteroides fragilis [31]

F: CTG ATG GAG CAA CGC CGC GT Ruminococcus

Firmicutes 52 R: ACA CYT AGY ACT CATCGTTT  productus (321

Lactobacillal 60 F: AGC AGT AGG GAA TCT TCC A Lactobacillus [33]
actobacifiales R: CAC CGC TAC ACA TGG AG acidophylus >

Bifidobacteriales 55 F: CTC CTG GAA ACG GGT GG Bifidobacterium [34]

R: GGT GTT CTT CCC GAT ATCTAC A longum

. F: GGT TCT GAG AGG AGG TCC C . o

Bacteroides 60 R: GCT GCC TCC CGT AGG AGT Bacteroides fragilis [35]
F: CAG CAG CCG CGG TAATA .

Prevotella 60 R: GGC ATC CAT CGT TTA CCG T Prevotella copri [35]

2 The positive control DNA used for the evaluation of Total Bacteria for each subgroup was the one selected as

positive control for that subgroup.

2.7. Fecal Short-Chain Fatty Acids

Short-chain fatty acids (SCFAs) were analyzed in fecal samples after 21 weeks of supplementation
by gas chromatography using a previously described method [35] with some modifications. Briefly,
the freeze-dried feces were weighed (~50 mg dry matter) and a solution (1.5 mL) containing the internal
standard 2-ethylbutyric acid (6.67 mg/L) and oxalic acid (2.97 g/L) in acetonitrile/water 3:7 was added.
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Then, SCFAs were extracted for 10 min using a rotating mixer. The suspension was centrifuged (5 min,
12,880 g) in a 5810R centrifuge (Eppendorf, Hamburg, Germany) and the supernatant filtered through
a 0.45 um nylon filter. Then an aliquot of the supernatant (0.7 mL) was diluted with acetonitrile/water
3:7 to a final volume of 1 mL. SCFAs were analyzed using a Trace2000 gas chromatograph coupled
to a flame ionization detector (ThermoFinnigan, Waltham, MA, USA) equipped with an Innowax
30 m X 530 um X 1 um capillary column (Agilent, Santa Clara, CA, USA). Chrom-Card software was
used for data processing. Helium was used as carrier gas with a linear velocity of 5mL/min. GC oven
temperature was programmed as follows: 80 °C (hold 1min) to 120 °C at 15 °C/min (hold 4 min) to
130 °C at 5 °C/min (hold 4 min) to 235 °C at 8 °C/min (hold 4 min). Flame ionization detector (FID)
detection was performed at a base temperature of 240 °C. Calibration curves were prepared using
seven matrix-matched standards covering the working concentration range. The precision relative
standard deviation (RSD < 15%) and recovery (>70%) of the method were adequate and inter- and
intra-day reproducible.

2.8. Statistical Analysis

All data manipulation and statistical analysis were performed using GraphPad Prism 5 (GraphPad
Software, San Diego, CA, USA). The results are expressed as means with their standard errors (SEM).
The normal distribution and heterogeneity of the data were evaluated, and statistical significance was
determined by one-way analysis of variance (ANOVA) with each group as variable and the Tukey
multiple-comparisons test, two-way ANOVA for repeated measures of body weight and glycemic
response or Student’s f-test to compare the populations of gut microbiota of the CTL group at week 21
vs. week 0. Differences were considered significant when p < 0.05.

3. Results

3.1. Feed and Energy Intake and Body Weight

Feed and energy intake were similar for all the groups throughout the experiment (Table 2).
In contrast, the animals in the FG and FG + w-3 groups gained less weight than those in the CTL
and w-3 groups (Figure 1a). At the end of the study (23 weeks) the animals supplemented with
p-fagomine had significantly (p < 0.05) lower body weight than the controls or those supplemented
with only EPA/DHA 1:1 (Table 2). Animals supplemented only with p-fagomine showed a tendency
(p = 0.06 FG vs. CTL) to store lower perigonadal fat than those not supplemented (Figure 1b).
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Figure 1. Body weight gain (a) and perigonadal fat (b) of the different groups (CTL, FG, w-3 and
FG + w-3) of Sprague-Dawley rats fed a standard diet for 23 weeks. The data represent means with
their standard errors. Comparisons were performed using two-way ANOVA for repeated measures (a),
or one-way ANOVA followed by Tukey’s post-hoc test (b). *p < 0.05 FG vs. CTL group; ®p < 0.05
FG + w-3 vs. CTL group.
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Table 2. Feed and energy intake, body weight, and plasma variables of rats supplemented with
p-fagomine and/or w-3 polyunsaturated fatty acids (PUFAs) for 23 weeks. CTL, control group;
FG, group supplemented with p-fagomine; w-3, group supplemented with w-3 PUFAs (EPA/DHA 1:1);
and FG + w-3, group supplemented with both p-fagomine and w-3 PUFAs.

. CTL FG w-3 FG + w-3
Variables
Mean SEM Mean SEM Mean SEM Mean SEM
Feed intake
(¢/day/100 g body weight) 4.6 0.5 48 0.4 4.6 0.5 49 0.4
Energy intake ®
(kcal/day/l(%gg body weight) 13.3 14 13.8 1.2 134 1.3 14.1 1.3
Initial body weight (g) 373 7 360 3 363 7 360 7
Final body weight (g) 540 16 493* 5 523 13 497 * 11
Fasting glucose & (mg/dL) 65 2 62 1 67 2 63 2
Fasting insulin & (ng/mL) 0.56 0.10 0.34 0.03 0.65¢ 0.07 0.43 0.06
AUC from OGTT 3750 246.4 3212 246.1 3117 152.4 2674 107.5
Triglycerides (mmol/L) 0.69 0.02 0.61* 0.02 056+ 0.01 0.53%** 0.02
Cholesterol (mmol/L) 3.61 0.04 3.30%* 0.03 3.23%** 0.08 3.24%** 0.06
HDL/LDL 2.82 0.08 2.13%** 0.06 2.34%* 0.03 211*=¢ 0.04

8 Energy intake is estimated as metabolizable energy based on Atwater factors: 4 kcal/g protein, 9 kcal/g fat,
and 4 kcal/g available carbohydrates. & Samples from week 21. Data are presented as means with their standard
errors of the mean; n = 9 per group. Comparisons were conducted using one-way analysis of variance (ANOVA)
and Tukey’s multiple comparisons test. *p < 0.05, **p < 0.01, ***p < 0.001 vs. CTL; Tp < 0.05 vs. FG; ®p < 0.05 vs. w-3.

3.2. Glycemic Status and Plasma Lipid Profile

The areas under the curve from the OGTT between CTL and FG+ w-3 groups were statistically
different at week 18 (Table 2). Fasting blood glucose and plasma insulin concentrations were measured
after week 21 of the intervention. The levels of fasting glucose were statistically similar in all the
groups and below 80 mg/dL (Table 2). The animals supplemented with p-fagomine showed lower
fasting blood insulin concentrations than rats supplemented only with w-3 PUFAs (Table 2).

The levels of total triglycerides, cholesterol and both HDL- and LDL-cholesterol were measured
in plasma after 23 weeks of the intervention (Table 2). The concentrations of plasma triglycerides,
cholesterol and the HDL/LDL ratio were significantly (p < 0.05) lower in the three supplemented
groups than the control values.

3.3. Plasma Lipid Mediators of Inflammation

The levels of ARA-derived pro-inflammatory eicosanoids were measured by LC-MS/MS in plasma
samples collected at the end of the study (Figure 2). The plasma concentrations of 11HETE and 20HETE
(Figure 2b,e) were significantly (p < 0.05) reduced in the two groups supplemented with w-3 PUFAs
with respect to the control group. The concentration of 12HETE (Figure 2c) was significantly (p < 0.05)
lower in the three supplemented groups than the control values and the concentration of SHETE and
15HETE (Figure 2a,d) were significantly (p < 0.05) reduced in the FG+w-3 group compared to the
FG group.
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Figure 2. Lipid mediators from arachidonic acid (ARA): 5SHETE (a), 11HETE (b), 12HETE (c), 15HETE
(d) and 20HETE (e) in plasma, at the end of the study of the different groups (CTL, FG, w-3 and FG
+ w-3) of Sprague-Dawley rats fed a standard diet for 23 weeks. Data are presented as means with
their standard error. Comparisons were conducted using one-way ANOVA and Tukey’s multiple
comparisons test. *p < 0.05, **p < 0.01, ***p < 0.001 vs. CTL; *p < 0.05 vs. FG.

3.4. Bacterial Subgroups of Gut Microbiota

In the CTL group, the proportion of Bacteroidetes significantly (p < 0.05) decreased (83 + 10 at
week 0, 39 £ 9 at week 21) and the proportion of Firmicutes significantly (p < 0.01) increased (9 + 2 at
week 0, 26 + 3 at week 21) with time; the percentages of Bacteroidetes and Firmicutes were similar in
all the groups at the end of the study (week 21).

Significant differences in the relative populations of the genera Prevotella and Bacteroides were
detected when comparing the control group at different times and between groups at the end of the
study (Figure 3d,e). The populations of both genera significantly decreased in the control group after
21 weeks (Prevotella: 32 + 8 at week 0, 6 = 2 at week 21; Bacteroides: 65 + 11 at week 0, 13 + 2 at
week 21). The proportion of Prevotella was significantly (p < 0.05) higher in animals supplemented
with p-fagomine (FG and FG + w-3 groups) than in the other groups (Figure 3d). The percentage of
Bacteroides was higher (p < 0.05) in animals supplemented with the combination of p-fagomine and
w-3 PUFAs; while neither single supplementation significantly modified the proportions of this genus
on its own (Figure 3e).

The percentage of Lactobacillales was significantly (p < 0.05) higher in the w-3 group than in the
FG group at the end of the intervention (Figure 3g), while the population of Bifidobacteriales was
significantly (p < 0.05) higher in the FG group than in the w-3 group (Figure 3h).
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Figure 3. Bacteroidetes (a), Firmicutes (b), Bacteroidetes:Firmicutes ratio (c), Prevotella (d),

Bacteroides (e), Prevotella:Bacteroides ratio (f), Lactobacillales (g) and Bifidobacteriales (h) in fecal
samples after 21 weeks, of the different groups (CTL, FG, w-3 and FG + w-3) of Sprague-Dawley rats
fed a standard diet. Data are presented as means with their standard error. Comparisons were made
using one-way ANOVA followed by Tukey’s post-hoc test. *p < 0.05 vs. CTL; Tp < 0.05 vs. FG.

3.5. Short-Chain Fatty Acids

w-3 PUFA supplementation (w-3 and FG + w-3 groups) reduced the fecal acetate content and
the total short-chain fatty acids with respect to the control groups (p < 0.001). The concentration of
isobutyric acid was significantly (p < 0.001) lower in the three supplemented groups than the control
values (Table 3).
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Table 3. Short-chain fatty acids (SCFAs) in feces after 21 weeks. CTL, control group; FG, group
supplemented with p-fagomine; w-3, group supplemented with w-3 PUFAs (EPA/DHA 1:1); and FG +
w-3, group supplemented with both p-fagomine and w-3 PUFAs.

SCFAs CTL FG w-3 FG + w-3
Mean SEM Mean SEM Mean SEM Mean SEM
Acetic acid 115 13 125 14 23%** 6 19*** 4
Propionic acid 13.5 0.9 15.7 3.6 9.2 1.6 10 2
Isobutyric acid 2.7 0.2 0.9%** 0.1 0.9%** 0.2 0.9%** 0.1
Butyric acid 17 2 27 9 12 3 16 3
Isovaleric acid 1.8 0.2 1.3 0.3 1.2 0.3 1.2 0.1
Valeric acid 14 0.1 1.7 0.5 1.3 0.3 1.6 0.2
Total SCFAs 152 9 158 19 48%** 11 49*** 7

Data are presented as means with their standard errors of the mean; n = 9 per group. Short-chain fatty acids (SCFAs)
are given as millimoles per kilogram of feces. Comparisons were conducted using one-way ANOVA and Tukey’s
multiple comparisons test. ***p < 0.001 vs. CTL.

4. Discussion

The present study focuses on the effect of the combination of p-fagomine and w-3 PUFAs
(EPA/DHA 1:1) on gut microbiota of SD rats fed a standard diet. Our goal was to assess the capacity
of these supplements to maintain a healthy status over time. Measuring and discussing biologically
significant effects of food components in normal rats (or humans) is a particularly difficult task
because the metabolic changes experienced by adequately fed animals are small. In the present study,
the animals in all the groups were normoweight with normal growth curves (Figure 1a) and presented
normal values of fasting blood glucose (Table 2) throughout the whole experimental intervention
(=5 months). Some statistically significant changes were recorded that may offer clues as to the putative
protective effects of the supplementations and their combination. A weekly single dose of EPA/DHA
(1:1) did not modify weight gain compared to the CTL group (SD rats) (Figure 1a), in agreement with
our previous observations [25] in spontaneously hypertensive obese (SHROB) rats, which are a cross
between an SD male and a WKY female rat [36]. Another study by our group showed that intensive
daily supplementation with EPA/DHA (1:1) slightly increased both weight gain and perigonadal fat
in female WKY rats compared to the group supplemented with the same dose of soybean oil [23].
These results highlight the differences between rat strains and doses in terms of response to putatively
obesogenic components [37]. p-Fagomine consistently reduced weight gain in the present study, as in
previous reports [15,16]. We have now shown here that this iminosugar reduced body weight gain by
15% over the 5 months of the intervention, when administered either alone or together with w-3 PUFAs.
These results are in line with previous studies which proved that p-fagomine was capable of reducing
body weight gain in both SD and WKY rats fed energy-dense diets [15,16,38]. Therefore, p-fagomine
appears to be effective at reducing body weight gain in both SD and WKY rats fed either a standard or
an obesogenic diet. The supplemented animals also showed reduced levels of plasma triglycerides
and total cholesterol at the end of the intervention (Table 2). This reduction of plasma triglycerides as a
result of p-fagomine supplementation agrees with our previous observations in rats fed an obesogenic
diet [38]. The reduction in the plasma concentration of triglycerides and cholesterol resulting from
w-3 PUFA supplementation also agrees with previous studies where this treatment reduced the levels
of total plasmatic fatty acids in healthy rats [27]. The effects of w-3 PUFAs on the lipid profile seem
to be related to the upregulation of the expression of genes encoding proteins involved in fatty acid
oxidation and downregulation of genes encoding proteins necessary for lipid synthesis [39].

Inflammatory status is another variable that may be influenced by dietary habits and ageing.
The anti-inflammatory effect of EPA and DHA in both humans and animal models of disease is
well documented [19]. We show here that EPA/DHA 1:1 reduced the levels of several ARA-derived
pro-inflammatory lipid mediators: 11HETE, 12HETE and 20HETE (Figure 2). This reduction may be
explained by the displacement of the pro-inflammatory w-6 pathway towards the w-3 pathway, as both
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metabolic pathways share several oxygenases (cyclooxygenase and lipoxygenases) [19]. p-Fagomine
only reduced the levels of pro-inflammatory mediator 12HETE. We have suggested that p-fagomine
might be effective at the very early stages in the development of low-grade inflammation by a eubiotic
effect of on gut microbiota [16] while w-3 PUFAs would have an anti-inflammatory effect after the
pro-inflammatory pathways have been activated [19]. The results presented here are suggesting that
the anti-inflammatory activity of the combination between p-fagomine and EPA/DHA 1:1 can be
ascribed mainly to the w-3 PUFAs as p-fagomine only reduced the levels of 12HETE. It should be
noted that the animals given only the iminosugar were administered a dose of soybean oil equivalent
to the dose of PUFAs in the w-3 groups. The amount of linoleic acid (w-6, 51% in soybean oil) given
to the animals in the FG group might have counteracted the putative anti-inflammatory activity of
p-fagomine. This would explain the lack of activity in the FG group (mediators 5HETE, 11HETE,
15HETE and 20HETE) and the significant differences in the levels of 5SHETE and 15HETE between
the FG + w-3 and the FG group. The combination of supplements in the absence of supplemented
soybean oil resulted in a significant reduction in the levels of all the mediators tested (Figure 2).

As it is becoming increasingly evident that fat accumulation, low-grade inflammation and gut
microbiota are all interconnected [35,40-42], we examined the changes in relevant bacterial groups
experienced by our experimental animals. The population of Bacteroidetes, the main gut microbiota
phylum, was seen to reduce significantly over time in the control animals and neither p-fagomine nor
w-3 PUFAs had any significant influence on it. As the supplements did not show any statistically
significant effect at the phylum level, we examined the genera Prevotella and Bacteroides, which are
major subgroups of Bacteroidetes. In humans, diets that are high in complex carbohydrates and
dietary fiber have been associated with dominance of the genus Prevotella; whereas high fat/protein
diets have been connected with higher levels of the genus Bacteroides [8,11]. Human subjects with
a high Prevotella/Bacteroides ratio appear to lose more body fat when on diets that are high in fiber
than subjects with a low Prevotella/Bacteroides ratio [43]. In agreement with this, the consumption of
barley kernel-based bread resulted in both improved glucose metabolism and increased populations
of Prevotella, particularly P. copri [24]. Those same authors also offered evidence of a cause and
effect relationship between Prevotella and glucose metabolism efficiency in the host, as germ-free
mice transplanted with microbiota from responders had improved glucose tolerance and showed
increased populations of Prevotella, compared to mice given microbiota from non-responders [24]. Here,
we report that the populations of Prevotella dropped significantly in SD rats over the 21-week period of
the intervention in both the CTL and w-3 groups. Meanwhile, theses populations remained stable in
animals supplemented with p-fagomine, independently of w-3 PUFA supplementation (Figure 3d).
Those animals (the FG and FG + w-3 groups) had the lowest body weight gain. As the proportion of
Prevotella in gut microbiota is directly related to the intake of dietary fiber and to improved glucose
tolerance [24], we suggest that p-fagomine exerts a fiber-like action which affects microbiota-related fat
accumulation and weight gain. Both w-3 PUFAs and p-fagomine appear to induce a slight increase of
Bacteroides which was statistically significant in the case of the double supplementation (the FG + w-3
group) (Figure 3e). The group supplemented only with p-fagomine presented a Prevotella to Bacteroides
ratio that was significantly higher than those of the other groups (Figure 3f). Meanwhile, in the
FG + w-3 group, the Prevotella/Bacteroides ratio was not statistically different from that in the CTL
group; this is probably because of the additive effect of p-fagomine and w-3 PUFAs on the populations
of Bacteroides (Figure 3e). The physiological significance of the observation that p-fagomine and
w-3 PUFAs may induce an increase in the populations of Bacteroides is something to be examined in
future studies.

A reduction in the populations of some putatively beneficial bacteria such as Lactobacilli and
Bifidobacteria is a risk factor for the development of many intestinal conditions, including diarrhea,
obesity, irritable bowel syndrome and inflammatory bowel disease [44]. Numbers of bacterial species
of the genera Bifidobacterium and Lactobacillus are negatively correlated with adiposity, microbe-derived
inflammation and obesity [42,45]. Our results show that p-fagomine tended to promote the growth
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of Bifidobacteria, while w-3 PUFAs tended to increase the populations of Lactobacilli (Figure 3g,h).
These differences were statistically significant when the two individually supplemented groups were
compared. The results for individual supplementation are in agreement with previous reports by us
and others. For instance, w-3 PUFAs increased the populations of Lactobacilliales and Bifidobacteriales
while reducing w-6 PUFA-induced inflammation in mice [46]; and p-fagomine partially counteracted
the loss of these two groups in WKY rats over time [17]. We show here that combined supplementation
with p-fagomine and EPA/DHA may contribute to host homeostasis by maintaining the relative
populations of putatively beneficial Bifidobacteriales and Lactobacilliales at levels similar to those of
the CTL group.

We also observed differences in fecal SCFAs, which are products of bacterial fermentation.
The two groups supplemented with w-3 PUFAs presented significantly lower concentrations of acetate
(p <0.001) (Table 3). It has been reported that acetate may counteract obesity-induced low-grade
inflammation by upregulating anti-inflammatory regulatory T cells and by reducing the production of
cytokines and chemokines [47-49]. As fecal acetate content was lower in EPA/DHA-supplemented
animals, our results seem to imply that this variable does not contribute to the possible effect of w-3
PUFAs on host homeostasis. A more careful examination of the literature may lead to the opposite
conclusion, as it has been shown that low levels of acetate in feces are inversely correlated with intestinal
absorption [50]; therefore, they may be an indication of higher bioavailability. In fact, high fecal
acetate has been associated with gut dysbiosis, obesity and hypertension [51]. Similarly, lower levels
of excreted SCFAs together with higher Bacteroidetes: Firmicutes ratios have consistently been
associated with the lean healthy phenotype, compared to metabolically altered phenotypes [52]. Thus,
the anti-inflammatory action of w-3 PUFAs may in part be mediated by an increase in acetate absorption
in the intestinal tract. As we did not record any significant intergroup differences in the populations of
Firmicutes, which are supposed to include the main SCFA-producing gut microorganisms, we suggest
that minor species may be affected by w-3 PUFAs, independently of the action of p-fagomine. This is
another point worth exploring in future studies. The main limitation of this study lies in the fact that
differences between groups of healthy rats given dietary supplements are necessarily small and they
hardly reach statistical significance. Nevertheless, the comparative analysis of the present results
with other studies from our group using different rat strains, sex and diets is suggesting a consistent
effect of p-fagomine on weight gain and glycaemia. The evaluation of gut microbiota and their
fermentation products SCFAs presented here has also its limitations. Further studies should address
more comprehensively the possible variations in bacterial subgroups, species and strains. The systemic
concentration of SCFAs would provide a more accurate approximation to their effect that their levels in
feces. The translation of the present results to humans is not straightforward as p-fagomine is not yet
an approved dietary ingredient or new food. Human testing of its effects, whether alone or combined
with w-3 PUFAs, should use food sources such as buckwheat or mulberry, which contain amounts of
the active compound that are too low [13].

5. Conclusions

This paper presents the first evidence that bacteria of the genus Prevotella, which are associated
with functional effects on glucose metabolism, may mediate the microbiota-related effects of p-fagomine
on host homeostasis. The combination between p-fagomine and w-3 PUFAs, stabilizes the populations
of putatively beneficial gut bacteria, and reduces weight gain and pro-inflammatory lipid mediators.
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