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Abstract: In preterm newborns the immaturity of the immune system is remarkable, with reduced
innate and adaptive immune responses. Many bioactive compounds in breast milk, such as growth
factors and adipokines, contribute to the immune system’s maturation in early life. However, studies
on the immunoregulatory activity in preterm neonates are practically nonexistent. The aim of the
present study was to determine whether a nutritional supplementation in early life with leptin or
epidermal growth factor (EGF) was able to promote the maturation of the systemic and intestinal
immune system in preterm conditions. For this purpose, premature rats were daily supplemented by
oral gavage with leptin or EGF. Term and Preterm groups receiving vehicle were used as controls.
Preterm rats showed deficiencies compared to full-term ones, such as lower body weights, erythrocyte
counts, plasma IgG and IgM concentrations and B cell percentages, and higher values of Th and
Tc TCRαβ+ cells in mesenteric lymph nodes, and intestinal permeability, among others. However,
leptin and EGF supplementation were able to revert some of these deficiencies and to improve the
premature immune system’s development. These results suggest that leptin and EGF are involved in
enhancing the maturation of the systemic and intestinal immune system in preterm conditions.
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1. Introduction

Prematurity is one of the main causes of neonatal death. Advances in medicine over the years have
enabled the survival of preterm newborns who would previously have died [1]. In premature infants,
the third trimester is missed, triggering an incomplete development in the fetus and its organs, making
these babies more susceptible to neural and respiratory problems, among other complications [2].
Moreover, the gastrointestinal tract of term infants—which should also develop in the last trimester—is
immature at the time of birth, and consequently, more undeveloped in preterm newborns than in term
ones. The underdeveloped intestine and other factors, such as the immature intestinal immune system,
unestablished microbiota, or the high intestinal permeability, make the premature infant predisposed
to suffering from necrotizing enterocolitis (NEC), a common disease in premature babies [3].

It is well known that breast milk constitutes the optimal source of nutrition for the newborn [4].
As this is also the first choice to nourish preterm babies, if the mother is unable to produce the
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volume of milk required, donor milk is preferred to infant formula [5]. However, in cases where the
newborn is very premature, parenteral nutrition is the first option, since the intestine is not ready
to receive food [6]. Nevertheless, 5 days after birth the mother can start to give small volumes of
breast milk until reaching the enteral volume, reducing parenteral nutrition and facilitating weight
gain [7]; and when the preterm infants’ birth weight is very low, it is recommended to supplement the
donor milk with fortifier powders from bovine milk to increase protein, calcium, and vitamin D levels,
among other factors [8]. Hence, breast milk feeding is recommended for preterm babies because of its
effect of reducing NEC [9–12], promoting brain development [13], stimulating intestinal maturation [6],
promoting the development of oral tolerance [14], and reducing infections [15]. Moreover, preterm
breastfed infants showed a lower metabolic syndrome rate, less insulin and leptin resistance, and lower
blood pressure, later in life than newborns nourished with infant formula [5,16].

In addition to inter and intra-individual differences among the milk composition of mothers, some
differences between term and preterm milk have also been described. Hence, preterm breast milk
has higher levels of protein, free amino acids, and sodium [5], but lower levels of lactose have been
described [17]. Interestingly, preterm breast milk has higher concentrations of immune factors such
as lactoferrin, cytokines (IL-6, IL-10, TNF-α), and secretory immunoglobulin (Ig)A than term breast
milk [5], stimulating the immature immune system of the preterm newborn [18]. In addition, breast
milk contains other bioactive factors with immunomodulatory properties, such as growth factors
(transforming growth factor (TGF)-β and epidermal growth factor (EGF)) and adipokines (leptin and
adiponectin) [19,20]. We have recently demonstrated in term rats that leptin and EGF supplementations
during the suckling period are able to enhance early immune system development [21–23]. However,
the influence of these bioactive compounds on the preterm immune system remains unexplored.
We hypothesize that these milk bioactive factors could also have a role in the development of the
immature immune system in premature conditions. Thus, the aim of the present study was to determine
the effects of supplementation with leptin and EGF on the immune systems of premature suckling rats.
Specifically, we focused the study on evaluating the effects of leptin and EGF on different variables of
innate and adaptive immunity affected by premature delivery [24].

2. Materials and Methods

2.1. Animals

Twenty-one pregnant Wistar rats from Janvier Labs (Le Genest-Saint-Isle, France) at different
stages of gestation were used. Specifically, nine of them were at 13 days of gestation (G13), three at 14
days of gestation (G14) and nine at 15 days of gestation (G15). Dams were individually housed in
cages, fed with chow and water ad libitum, and monitored daily. The animals were maintained under
controlled temperature and humidity conditions, in a 12:12 h light:dark cycle in the Animal Facility of
the Faculty of Pharmacy and Food Science.

The studies were performed in accordance with the criteria outlined by the Guide for the Care
and Use of Laboratory Animals. Experimental procedures were reviewed and approved by the Ethical
Committee for Animal Experimentation of the University of Barcelona (CEEA/UB reference 148/18).

2.2. Experimental Design

Three G14 pregnant dams were allowed to deliver naturally at term (day 22 of gestation).
G13 pregnant dams (n = 9) had a caesarean (C)-section one day before normal delivery (day 21 of
gestation), giving birth to preterm pups. Due to the possible impact of surgery on the dams, they were
not allowed to keep the neonates, so the pups were accepted and breastfed by surrogate dams.
G15 dams (n = 9) were allowed to deliver at term one day before term dams. These dams nursed
the pups born in preterm conditions (i.e., surrogate dams). It was important that surrogate dams
had delivered two days before the C-section to ensure that they had enough milk in their breasts to
breastfeed preterm pups. Litters were culled to 10 pups per lactating dam and they had free access to
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the nipples and rat diet during 17 days of the suckling period. Handling was done in the same time
range to avoid the influence of biological rhythms.

2.3. Dietary Supplementation

Rats were distributed into four experimental groups: Term (T), Preterm (P), P+Leptin and
P+EGF. Each group was composed of three litters (n = 30 pups/group). T group was formed by
the three lactating dams with their corresponding litters delivered at term. P group was formed by
three surrogate mothers with three litters delivered by C-section. P+Leptin group was formed by
another three surrogate mothers with three litters delivered by C-section and supplemented during
17 days with a solution of 0.7 µg/kg/day of leptin (PeproTech®, Rocky Hill, NJ, USA) in mineral
water. The P+EGF group was formed by another three surrogate mothers with three litters from those
delivered by C-section but they were supplemented over 17 days with a solution of 100 µg/kg/day of
EGF (PeproTech®) in mineral water. These doses were selected according to previous studies showing
immunomodulatory effects [21–23]. The T and P groups were administered with the same volumes
of vehicle as the supplemented groups (10 mL/kg/day) during the first 17 days of suckling. To allow
gastric emptying, litters were separated from their dam a half-hour before oral supplementation.
Meanwhile animals were weighed daily. Pups received the supplements daily by oral gavage using
low-capacity syringes (Hamilton Bonaduz, Bonaduz, Switzerland) adapted to oral 25 or 23-gauge
gavage tubes (ASICO, Westmont, IL, USA), as previously described [22].

On the days of sacrifice (i.e., 10 and 17), the lengths (nose−anus) of the animals were also measured.
On the same days, the body mass index (BMI) was determined, calculated as body weight/length2

(g/cm2), as was the Lee index, calculated as 3√weight/length × 1000 (3√g/cm).

2.4. Caesarean Intervention

To obtain premature pups in P, P+Leptin, and P+EGF groups, a C-section at G21 was required.
The procedure was based on the methodology described previously [24]. Dams, anesthetized with
isofluoran inhalation, were immediately sacrificed by cervical dislocation, in order to avoid pups being
affected by the administration of a longer exposure to anesthesia. Immediately, the offspring were
extracted one by one by hysterectomy. They were separated from the placenta, the umbilical cord was
cut and emptied, the airway was cleared of fluid with a paper towel, and respiratory function was
activated with a soft massage on the chest. They were then cleaned carefully with warm physiological
serum (37 ◦C) to remove the remaining blood, and a knot was made with the umbilical cord. Then,
they were randomly distributed among the nine surrogate mothers’ cages. Preterm pups were mixed
with the bedding of the cage so that they acquired the smell of the new mother to avoid their rejection.
Preterm rats were accepted by the corresponding surrogate mothers, which had previously been
separated from their own offspring, except two pups that were kept to help prevent cannibalism by the
surrogate dam.

2.5. Sample Collection and Processing

At day 10, animals were intramuscularly anesthetized with ketamine (90 mg/kg) (Merial Laboratories
S.A., Barcelona, Spain) and xylazine (10 mg/kg) (Bayer A.G., Leverkusen, Germany), exsanguinated,
and the small intestine (SI) was collected. On this day, three random rats from each litter (9 rats/group)
were used to analyze blood cell count, plasmatic Ig concentration, and the phagocytic activity of
leukocytes. Another three rats from each litter (9 rats/group) were used to perform histomorphometric
and immunofluorescence staining studies and determine the gene expressions and permeability of the
SIs. Moreover, livers, spleens, and thymuses from all rats were collected and weighed. In addition,
small and large intestines were measured.

Blood samples collected in heparin/lithium tubes were used to perform the phagocytic assay. After
that, the remaining blood was centrifuged to obtain plasma for Ig quantification following previous
conditions [22]. An automated hematological analyzer (Spincell 3, Spinreact, Barcelona, Spain) was
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used to determine the composition of the cellular elements of the blood. For the histological study,
the SI was washed and a 1 cm portion from the distal jejunum was cut, placed in cassettes and fixed in
4% paraformaldehyde, as previously described [24]. Moreover, another 0.5 cm portion of the distal
jejunum was immediately conserved in RNAlater® (Ambion, Applied Biosystems, Austin, TX, USA),
incubated at 4 ◦C overnight, and stored at −20 ◦C until PCR analysis.

At day 17, rats were anesthetized as described above. Similar to day 10, blood samples were
collected to determine the Ig pattern from plasma. Furthermore, livers, thymuses, and spleens were
weighted, and intestines were measured. Moreover, mesenteric lymph nodes (MLNs) were also
obtained [22].

2.6. Phagocytic Assay

To evaluate the phagocytic activity of leukocytes, the commercial kit Phagotest® (Glycotope,
Biotechnology, Heidelberg, Germany) was used according to the manufacturer’s instructions,
as previously described [24]. Briefly, opsonized fluorescein isothiocyanate (FITC)-labelled Escherichia coli
were added to the heparinized blood and incubated for 10 min at 37 ◦C. Then, the tubes were placed in
ice to stop phagocytosis. After washing and centrifugation, cells were incubated in a lysis solution in
order to eliminate the erythrocytes and fix the leukocytes. Finally, the cellular DNA was stained with a
propidium iodide solution.

Analyses were performed using a GalliosTM flow cytometer (Beckman Coulter, Miami, FL, USA)
at the Scientific and Technological Centers of the University of Barcelona (CCiT-UB) and assessed by
FlowJo v10 software (Tree Star Inc., Ashland, OR, USA) as previously described [24]. The phagocytic
activity was expressed as the percentage of fluorescent cells (monocytes or granulocytes) in the
particular population studied. The mean fluorescence intensity, indicative of the extent of phagocyte
efficiency was also quantified.

2.7. Immunoglobulin Quantification

Plasma IgA, IgM, IgG1, IgG2a, IgG2b, and IgG2c concentrations were quantified by a ProcartaPlex
Rat Antibody Isotyping Panel (eBioscience, Frankfurt, Germany), according to the manufacturer’s
protocol and previous studies [22]. Results were analyzed by the Luminex MAGPIX analyzer
(Luminex®, Austin, TX, USA) at the CCiT-UB. Assay sensitivity was as follows: 0.48 pg/mL for IgA,
0.02 ng/mL for IgM, 0.78 ng/mL for IgG1, 0.02 ng/mL for IgG2a, 0.11 ng/mL for IgG2b, and 0.19 pg/mL
for IgG2c.

2.8. MLN and Spleen Lymphocytes Isolation

Lymphocytes from MLNs and spleens were isolated, as previously described [21,22], by passing
the tissues individually through a sterile 40 µm mesh cell strainer (Thermo Fisher Scientific,
Barcelona, Spain). A resultant cell suspension from the spleen required an additional step to lyse the
erythrocytes [22]. Cell counting and viability were assessed by CountessTM Automated Cell Counter
(InvitrogenTM, Thermo Fisher Scientific). Lymphocytes from both organs were then used to study
their phenotype.

2.9. Lymphocyte Immunofluorescence Staining and Flow Cytometry Analysis

For flow cytometry analysis, lymphocytes (2 × 105) from spleens and MLNs were labeled with
mouse anti-rat monoclonal antibodies (mAb) conjugated to FITC, phycoerythrin (PE), peridinin-
chlorophyll-a protein (PercP), allophycocyanin (APC), or BD Horizon™ BV421, as in previous
studies [21,22]. In this case, the mAb used were anti-CD4, anti-CD8α, anti-CD8β, anti-TCRαβ,
anti-NKR-P1A, anti-TCRγδ, and anti-CD45RA (BD Biosciences, San Diego, USA). After staining with
standard procedures [21], analyses were performed using a GalliosTM Cytometer (Beckman Coulter,
Miami, FL, USA) at the CCiT-UB. All results were assessed by the FlowJo v.10 software.
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2.10. Intestinal Permeability Assay

At day 10, the permeability of the intestinal epithelial barrier was also determined in vivo by the
paracellular passage of 4 kDa-dextran into the blood, as previously described [24]. Briefly, a solution of
4 kDa-dextran conjugated to FITC (Sigma-Aldrich, St. Louis, MO, USA) was orally administered to rats
using the low-capacity syringes adapted to oral gavage tubes. There was an additional group of animals
that was only administered with an equivalent volume of PBS (10 mL/kg) to rule out the background
fluorescent levels of the types of samples. After 4 h of the dextran administration, the animals
were euthanized and plasma was obtained, diluted, and the fluorescence emission was quantified
in triplicate at an excitation wavelength of 490 nm in the Modulus™Microplate spectrophotometer
(Turner Byiosystems, Sunnyvale, CA, USA).

2.11. Periodic Acid−Schiff Staining

By increasing the gradient of ethanol, fixed intestinal samples were dehydrated. Then, they were
paraffin-embedded, cut into 5µm sections, deparaffinized and rehydrated for periodic acid−Schiff (PAS)
staining, as previously described [24]. The observation of the intestinal architecture was performed
using the bright-field of an Olympus BX41 microscope (Olympus Corporation, Shinjuku, Tokyo, Japan).
All the morphometric measurements were processed with the ImageJ program (image processing and
analysis in Java, National Institute of Mental Health, Bethesda, MD, USA). The sample size was six
animals, representative of the three litters in each experimental group (2 animals/litter). Six to ten villi
were selected randomly from each animal and the villi’s heights, widths and epithelium perimeters
were measured. Moreover, the number of goblet cells per villus and their corresponding areas were
also evaluated.

2.12. Small Intestine Gene Expression

SI portions kept in RNAlater® were homogenized for 30 s in lysing matrix tubes (MP Biomedicals,
Illkirch, France) using a FastPrep-24 instrument (MP Biomedicals), as previously described [25]. Total
RNA was extracted by RNeasy® mini kit (Qiagen, Madrid, Spain) following the manufacturer’s
instructions. RNA quantification was performed with a NanoPhotometer (BioNova Scientific, CA,
USA). Later, cDNA was obtained in a thermal cycler PTC-100 Programmable Thermal Controller
using TaqMan® Reverse Transcription Reagents (Applied Biosystems, Weiterstadt, Germany).
The specific PCR TaqMan® primers (Applied Biosystems) used to assess gene expression with
real-time PCR (ABI Prism 7900 HT, AB) were: MUC-2 (Rn01498206_m1), MUC-3 (Rn01481134_m1),
Prdm1 (Rn03416161_m1, I, encoding for Blimp-1), Fcgrt (Rn00583712_m1, I, encoding for FcRn),
zona occludens (ZO)-1 (Rn02116071_s1), occludin (Rn00580064_m1), and claudin-4 (Rn01196224_s1). The
relative gene expressions were normalized with the housekeeping gene Gusb (Rn00566655_m1, I)
using the 2–∆∆Ct method, as previously described [26]. Results are expressed as percentage of values
of each supplemented group normalized to the mean value obtained for the reference group (T group),
which was set at 100%.

2.13. Immunofluorescence Study of Tight-Junction Proteins

Immunofluorescence staining for occludin, ZO-1, claudin-2, and claudin-4 proteins were performed
using the same paraffin-embedded intestine previously described for PAS staining. Briefly, after
deparaffinizing the slides with xylene (Honeywell Chemicals, Diegem, Belgium) for 25 min at
60 ◦C, the intestine sections were rehydrated in serial dilutions of 100%–30% ethanol, and finally,
with PBS solution. Antigen unmasking was performed using a TRIS EDTA solution at pH 9
(10 mM Tris-aminomethane (Scharlau, Barcelona, Spain), 1 mM etilendiaminotetraacetic acid (EDTA,
Analyticals, Montedison Group, Milan, Italy)) with 0.05% Tween 20 (Fagron, Barcelona, Spain) at
100 ◦C for 20 min and then washed twice with PBS solution. Then slides were permeabilized with
PBS solution with 0.2% Tween 20 (5 min), followed by 30 min of blocking using PBS with bovine
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serum albumin (BSA 1%) solution. The sections were incubated overnight at 5 ◦C in a humidity
chamber with primary antibodies diluted in blocking solution. The antibodies used in this study were
anti-occludin, anti-ZO-1 polyclonal, anti-claudin-2, and anti-claudin-4 polyclonal, all from Thermo
Fisher Scientific. The dilutions used were 1:50 for ZO-1 and claudin-4, and 1:100 for occludin and
claudin-2. After incubation, the slides were rinsed three times with PBS-0.05% Tween 20 for 10 min.
Then, sections were incubated 1 h at 5 ◦C in a humidity chamber with secondary antibodies. Alexa
Fluor 555 donkey anti-rabbit IgG (H+L, Invitrogen, Carlsbad, MA, USA) was diluted 1:1000 in blocking
solution. Sections were washed three times with PBS-0.05% Tween 20. Finally, nuclei were stained,
sections were incubated 10 min in the humidity chamber with DAPI (1:1000, Invitrogen), then they
were rinsed three times with PBS for 10 min and mounted with Fluoromount G™ (Invitrogen). Controls
were incubated with secondary antibodies only.

Images were taken with a fluorescence laser and optical microscope (BX41, Olympus Corporation,
Shinjuku, Tokyo, Japan) at 40× magnification and stored in tiff format. The time of exposition was
adapted to each staining, but the control images were acquired with the same exposition time. Image
analyses and treatments were performed using the ImageJ program. Images that were modified for
contrast and brightness to enhance their visualization were processed in the same way as the images
corresponding to their respective controls.

2.14. Statistical Analysis

Statistics were performed by the software IBM Statistical Package for the Social Sciences (SPSS,
version 22.0, Chicago, IL, USA). The Levene’s test was used to assess the homogeneity of variance
and the Shapiro−Wilk test to evaluate the distribution of the results. When there was a normal
distribution and equality of variance existed, a conventional one-way ANOVA test was carried out,
followed by the Bonferroni post hoc test. On the other hand, results having different variances and/or
different distributions were evaluated by the non-parametric Kruskal−Wallis test followed by the
Mann−Whitney U post hoc test. Significant differences were established at p < 0.05.

3. Results

3.1. Body Weight and Other Morphometric Variables

Body growth assessment in all four groups during the study showed that, as expected, the weight
of non-supplemented preterm rats was lower than that of the term pups during the first 9 days
(p < 0.05), achieving similar values of the T group after this day. Although EGF supplementation to
preterm pups was not able to revert this lower weight, animals from the P+Leptin group reached term
values at day 7, two days before the P and P+EGF groups did (p < 0.05, Figure 1).

Interestingly, morphometric variables, such as BMI and the Lee index, were also evaluated at
day 10 and 17 of the study without observing any changes due to prematurity or supplementation.
Although relative weights of the spleen, thymus, and liver were not modified due to prematurity or
supplementation, a decrease in relative small and large intestine length was observed in P+Leptin and
P+EGF groups at the end of the study (day 17) (p < 0.05, Table 1).
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Figure 1. Body weight from the four groups: Term (T), Preterm (P), P+Leptin, and P+epidermal
growth factor (P+EGF) the first 10 days of the study. Results are expressed as mean ± SD (n = 12–30
pups/group). Statistical differences: * p < 0.05 versus T group; ϕ p < 0.05 versus P group; # p < 0.05
versus P+EGF group.

Table 1. Morphometric variables and relative organ weights or lengths from Term (T), Preterm (P),
P+Leptin, and P+epidermal growth factor (P+EGF) groups at days 10 and 17.

Day 10

T P P+Leptin P+EGF

BMI (g/cm2) 0.33 ± 0.02 0.34 ± 0.02 0.34 ± 0.02 0.34 ± 0.02

Lee Index ((3√g/cm) × 1000) 337.51 ± 7.59 341.57 ± 5.00 337.19 ± 6.45 341.13 ± 8.85

Spleen weight (%) 0.57 ± 0.10 0.59 ± 0.09 0.62 ± 0.07 0.53 ± 0.21

Thymus weight (%) 0.34 ± 0.07 0.33 ± 0.06 0.32 ± 0. 13 0.39 ± 0.04

Liver weight (%) 3.21 ± 0.29 3.45 ± 0.39 3.41 ± 0.14 3.25 ± 0.41

Small intestine length (%) 163.90 ± 20.83 171.31 ± 20.45 158.78 ± 17.00 156.19 ± 19.43

Large intestine length (%) 19.07 ± 2.57 18.75 ± 2.64 17.11 ± 1.63 19.25 ± 2.44

Day 17

BMI (g/cm2) 0.38 ± 0.02 0.39 ± 0.04 0.39 ± 0.01 0.41 ± 0.03

Lee Index ((3√g/cm) × 1000) 327.61 ± 5.67 329.46 ± 13.07 329.72 ± 6.64 336.63 ± 9.34

Spleen weight (%) 0.49 ± 0.05 0.54 ± 0.06 0.55 ± 0.06 0.51 ± 0.16

Thymus weight (%) 0.41 ± 0.08 0.42 ± 0.07 0.43 ± 0.09 0.44 ± 0.06

Liver weight (%) 3.82 ± 0.21 3.87 ± 0.34 3.70 ± 0.30 3.82 ± 0.31

Small intestine length (%) 93.08 ± 11.15 94.67 ± 7.23 84.36 ± 10.30 * ϕ 89.06 ± 10.56 ϕ

Large intestine length (%) 14.25 ± 2.12 13.75 ± 2.86 12.50 ± 1.92 * 12.38 ± 2.46 *

Relative organ weight or length was calculated as weight or length of the organ divided by the body weight × 100.
Data are expressed as mean ± SD (n = 9–12 pups/group). Statistical differences: * p < 0.05 versus T group; ϕ p < 0.05
versus P group. BMI: body mass index.

3.2. Blood Cell Count

On day 10, blood cell count was assessed. No effect due to prematurity or leptin supplementation
was observed in the leukocyte count. However, the supplementation with EGF was able to increase the
leukocyte cell count due to a higher count of the three populations studied, lymphocytes, monocytes,
and granulocytes (p < 0.05, versus T, P, and P+Leptin groups, Table 2).
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However, preterm rats showed a lower count of erythrocytes compared to the T group (p < 0.01,
Table 2) and supplementation with both milk bioactive components was not able to revert it (p < 0.01
versus T group). Preterm animals had lower hemoglobin (Hb) concentrations and hematocrits (HCT),
but higher mean corpuscular hemoglobin (MCH) levels and mean corpuscular volumes (MCVs)
(p < 0.05 versus T group). Although the count of erythrocytes was not modified in preterm animals
supplemented with leptin or EGF, the nutritional interventions were able to revert some of these
alterations by inducing a tendency to increase HCTs and to significantly increase Hb concentrations
and MCH values (p < 0.01 versus P group and p < 0.01 versus T and P groups, respectively, Table 2).
Moreover, leptin nutritional intervention increased the MCVs (p < 0.01 versus P group). Platelet count
was not influenced either by prematurity or the nutritional interventions.

Table 2. Blood cell count from the four groups: Term (T), Preterm (P), P+Leptin, and P+epidermal
growth factor (P+EGF) at day 10 of the suckling period.

Day 10

T P P+Leptin P+EGF

Leukocytes (×109/L) 2.48 ± 0.58 2.45 ± 0.68 2.52 ± 0.45 3.57 ± 1.31 *ϕ ∆

Lymphocytes (×109/L) 1.71 ± 0.49 1.65 ± 0.50 1.74 ± 0.48 2.41 ± 1.02 *ϕ ∆

Monocytes (×109/L) 0.23 ± 0.07 0.21 ± 0.07 0.22 ± 0.05 0.31 ± 0.10 *ϕ ∆

Granulocytes (×109/L) 0.54 ± 0.20 0.59 ± 0.31 0.55 ± 0.20 0.85 ± 0.39 *ϕ ∆

Erythrocytes (×1012/L) 3.41 ± 0.25 3.03 ± 0.21 * 3.12 ± 0.22 * 3.10 ± 0.33 *

Hb (g/L) 82.90 ± 5.75 78.37 ± 5.13 * 85.52 ± 5.27 ϕ 82.94 ± 6.48 ϕ

HCT (%) 28.95 ± 2.02 27.09 ± 2.45 * 28.53 ± 2.54 27.93 ± 2.08

MCV (fL) 86.22 ± 3.40 90.74 ± 3.95 * 92.01 ± 4.08 ϕ 90.04 ± 4.08 *

MCH (pg) 24.64 ± 1.04 25.83 ± 1.37 * 27.48 ± 2.00 *ϕ 26.71 ± 1.94 *ϕ

Platelets (× 1012/L) 467.45 ± 81.99 502.94 ± 89.08 514.44 ± 63.64 455.25 ± 96.91

The results are expressed as mean ± SD (n = 18 pups/group). Statistical differences: * p < 0.05 versus T group;
ϕ p < 0.05 versus P group; ∆ p < 0.05 versus P+Leptin group. Hb: hemoglobin; HCT: hematocrit, MCV: mean
corpuscular volume; MCH: mean corpuscular hemoglobin.

3.3. Phagocytic Function of Blood Leukocytes

The phagocytic activity of blood leukocytes was studied at day 10, focusing on monocytes
and granulocytes. Although no changes due to prematurity or supplementation were observed in
granulocyte phagocytic activity, animals supplemented with leptin showed higher phagocytic activity
in their monocytes compared with the T and P groups (p < 0.01, Figure 2A,B). Moreover, the phagocytic
efficiency of these leukocytes was not modified by either the prematurity or the supplementation
(Figure 2C,D).
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Figure 2. Phagocytic function of blood leukocytes from the four groups: Term (T), Preterm (P), P+Leptin,
and P+epidermal growth factor (P+EGF). Phagocytic activity (A,B) and efficiency (C,D) at day 10 from
monocytes and granulocytes, respectively. Results are expressed as mean ± SD (n = 9 pups/group).
Statistical differences: * p < 0.01 versus T group; ϕ p < 0.05 versus P group.

3.4. Plasma IgA, IgM and IgG Concentrations

On days 10 and 17, plasma IgA, IgM, IgG, and IgG isotypes (IgG1, IgG2a, IgG2b, IgG2c, and the
Th1/Th2-immune response balance) were quantified and summarized in Figures 3 and 4. In all Ig,
a relative, age-associated increase was detected between 10 and 17-day-old rats owing to a normal
immune development in all groups (p < 0.05, Figure 3).Nutrients 2019, 11, x FOR PEER REVIEW 9 of 22 
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Figure 3. Plasma Ig concentrations at day 10 and 17. Plasma IgA (A), IgM (B), and IgG (C) concentrations
from the four groups: Term (T), Preterm (P), P+Leptin, and P+epidermal growth factor (P+EGF),
are expressed as mean ± SD (n = 8–12 pups/group). Statistical differences: * p < 0.05 versus T group;
ϕ p < 0.05 versus P group; # p < 0.05 versus P+EGF group.



Nutrients 2019, 11, 2380 10 of 22

Although no changes were observed in IgA due to prematurity, leptin and EGF supplementations
were able to decrease IgA levels at day 17 (p < 0.01 versus T and P group and p < 0.05 versus T group,
respectively, Figure 3A). In the case of leptin, this significant decrease could already be seen at day 10
(p < 0.01 versus T group). Moreover, animals delivered prematurely showed lower concentrations of
IgM at day 17 compared to full-term ones (p < 0.05, Figure 3B), without modification at day 10. However,
supplementation with leptin or EGF was not able to revert this change associated with prematurity.

Regarding IgG and its isotypes, prematurity reduced the concentration of IgG (p < 0.01 versus
T group, Figure 3C) and three of its isotypes (IgG1, IgG2b, and IgG2c) (p < 0.01 versus T group,
Figure 4A,C,D) on both days studied, without modifying the IgG2a concentration (Figure 4B).
The Th1/Th2 ratio was calculated considering the Th1-related IgG isotypes (IgG2b and IgG2c) and the
Th2-related ones (IgG1 and IgG2a) in rats [27,28]. Results showed that prematurity induced lower
Th1 antibody response, which was evidenced by a decrease in the Th1/Th2 ratio on both days studied
(p < 0.01, Figure 4E).
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Figure 4. Plasmatic concentration of IgG subclasses at days 10 and 17. IgG1 (A), IgG2a (B), IgG2b
(C), IgG2c (D), and Th1/Th2 ratios (E) from the four groups: Term (T), Preterm (P), P+Leptin,
and P+epidermal growth factor (P+EGF) are expressed as mean ± SD (n = 8–12 pups/group). Statistical
differences: * p < 0.05 versus T group; ϕ p < 0.05 versus P group; # p < 0.05 versus P+EGF group.

The supplementation with leptin, but not EGF, showed a tendency to increase IgG1 at day 10
(Figure 4A). Nevertheless, at day 17, P+Leptin and P+EGF groups showed similar IgG1 levels to the P
group, having lower values compared to the T group (p < 0.01). With regard to IgG2a, leptin and EGF
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supplementations decreased its concentration at day 17 (p < 0.01 versus T and P groups) and in the
case of leptin, this change could already be detected at day 10 (p < 0.01 versus T, P and P+EGF groups,
Figure 4B). Moreover, leptin supplementation decreased IgG2b concentration compared with the others
studied groups (p < 0.01, Figure 4C). Finally, leptin supplementation increased the concentration of
IgG2c to levels achieved by term animals (p < 0.05 on both days studied versus P and P+EGF groups,
Figure 4D), whereas EGF decreased IgG2c levels on both days studied (p < 0.01 versus T and P groups,
Figure 4D). Overall, the changes produced by leptin and EGF supplementations reverted the Th1/Th2
ratio decrease induced by prematurity on both days studied, inducing a Th1/Th2 ratio similar to that
found in the T group (p < 0.01 versus P group, Figure 4E).

3.5. Lymphocyte Composition of the Spleen and MLN

At day 17, the lymphocyte pattern was characterized in the spleen and MLN and summarized in
Figures 5 and 6. The main population present in the spleen was B cells and the percentages of the rest
of the populations were lower (Figure 5). On the other hand, these percentages changed in the MLN,
where the main population was Th, followed by B cells and Tc TCRαβ+; and in lower proportions,
Tc TCRγδ+, NK, and NKT cells (Figure 6).

In the spleen, although no changes in phenotypical composition appeared due to prematurity,
a tendency to decrease the proportion of B, Th, and Tc TCRαβ+ cells was observed, but without
reaching statistical significance (Figure 5A). Leptin supplementation for 17 days was not able to revert
these effects induced by prematurity, and in addition, it decreased the percentage of Tc TCRαβ+ cells
even more (p < 0.05). However, animals supplemented with EGF increased the splenic B cell proportion
to similar levels of those of the T group (p < 0.01 versus P group, Figure 5A). Moreover, a decrease in
Th and Tc TCRαβ+ was observed due to EGF supplementation (p < 0.05 versus T, P, and P+Leptin
groups, Figure 5A). In regard to the CD8 co-receptor, no changes were observed on splenocytes on
account of prematurity or leptin supplementation. Nevertheless, EGF supplementation decreased the
CD8+ cell percentage (p < 0.01, Figure 5B). This change was due to a reduction in the proportion of
both CD8αα+ and CD8αβ+ cells (p < 0.05, Figure 5B).Nutrients 2019, 11, x FOR PEER REVIEW 11 of 22 
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Figure 5. Main lymphocyte subsets (A) and CD8+ cells and their both forms (CD8αα+ and CD8αβ+) cell
percentages (B) in the spleen from the four groups: Term (T), Preterm (P), P+Leptin, and P+epidermal
growth factor (P+EGF) at day 17. The results are expressed as mean ± SD (n = 8–12 pups/group).
Statistical differences: * p < 0.05 versus T group; ϕ p < 0.05 versus P group; ∆ p < 0.05 versus
P+Leptin group.

Regarding lymphocytes from MLN, despite there being no significant changes observed in the Tc
TCRγδ+, NKT, NK, and CD8+ subsets of premature rats with respect to term ones, a decrease in B cell
percentages and an increase in Th and Tc TCRαβ+ proportions were observed in non-supplemented
preterm rats (p < 0.05 versus T group, Figure 6). Leptin supplementation for 17 days did not produce
any significant effect on the lymphocyte composition of the MLN. However, EGF increased B cell
percentages (p < 0.05 versus P group, Figure 6A) and decreased Th and Tc TCRαβ+ cell proportions
(p < 0.05 versus T, P, and P+Leptin group), with the same tendency observed in splenocytes. Moreover,
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an increase in the NK subset was observed in rats supplemented with EGF (p < 0.05 versus T, P, and
P+Leptin groups, Figure 6A). Furthermore, the CD8+ lymphocyte proportion in MLN was not affected
by prematurity or leptin supplementation, but EGF supplementation for 17 days was able to decrease
its percentage. This decrease was caused by a reduction in CD8αβ+ cell percentage (p < 0.01 versus T,
P, and P+Leptin groups).
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Figure 6. Main lymphocyte subsets (A) and CD8+cells and their both forms (CD8αα+ and CD8αβ+)
cell percentages (B) in the mesenteric lymph nodes (MLNs) from the four groups: Term (T), Preterm
(P), P+Leptin, and P+epidermal growth factor (P+EGF) at day 17. The results are expressed as mean ±
SD (n = 8–12 pups/group). Statistical differences: * p < 0.05 versus T group; ϕ p < 0.05 versus P group;
∆ p < 0.05 versus P+Leptin group.

3.6. Intestinal Barrier Function

To study the intestinal permeability, an in vivo assay was performed evaluating the paracellular
pass of the 4 kDa-dextran labeled with FITC at day 10 (Figure 7). Premature animals had lower
intestinal permeability, showing a lower concentration of FITC dextran in their plasma compared
to that found in animals from T group (p < 0.05, Figure 7). Leptin and EGF supplementation for
10 days was able to revert this effect, reaching FITC-dextran levels similar to those observed in term
rats (p < 0.05 in P+Leptin and P+EGF groups versus P group, Figure 7).
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Figure 7. Intestinal permeability to 4 kDa-FITC-dextran from the four groups: Term (T), Preterm (P),
P+Leptin, and P+epidermal growth factor (P+EGF) at day 10. Results are expressed as mean ± SD
(n = 9 pups/group). Statistical differences: * p < 0.05 versus T group; ϕ p < 0.05 versus P group.

3.7. Intestinal Histomorphometric Study

At day 10, the morphology of the distal jejunum was also evaluated, focusing on intestinal villi
and goblet cell characteristics. The variables of the villi studied—widths, heights, and perimeters—are
summarized in Table 3. No histological differences due to prematurity or supplementations were
observed in the villi’s variables. In regard to the goblet cells, animals born in preterm conditions
showed a lower number of the cells in the villi, which, in addition, were smaller (p < 0.05 versus T
group, Figure 8). Although the P+Leptin and P+EGF group also exhibited a lower number of goblet
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cells (p < 0.05 versus T group), they had a similar area with respect to the T group, reversing the
prematurity effect (p < 0.05 versus P group, Figure 8).

Table 3. Histomorphometric variables of the small intestine: villi widths, heights, and perimeters from
the four groups: Term (T), Preterm (P), P+Leptin, and P+epidermal growth factor (P+EGF) at day 10 of
suckling period.

T P P+Leptin P+EGF

Villi width (µm) 165.91 ± 29.73 157.70 ± 29.17 166.96 ± 12.67 157.19 ± 32.49

Villi height (µm) 571.40 ± 104.95 547.55 ± 41.60 502.00 ± 49.46 487.76 ± 75.86

Villi perimeter (µm) 1223.07 ± 181.95 1213.25 ± 115.10 1176.00 ± 148.57 1102.18 ± 184.14

The results are expressed as a mean ± SD (n = 6 pups/group).Nutrients 2019, 11, x FOR PEER REVIEW 13 of 22 
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values similar to the P group (p < 0.01 versus T group, Figure 9B). No significant differences were 
detected between groups on Blimp-1 gene expression. Moreover, the gene expression of tight junction 
proteins was also analyzed, but they were not modified by either the prematurity or the 
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Figure 8. Number of goblet cells/villi (A), goblet cells area (B), and representative images of histological
sections of the jejunum with periodic acid−Schiff (PAS) staining from the four groups: Term (C), Preterm
(D), P+Leptin (E), and P+epidermal growth factor (P+EGF) (F) at day 10 of the suckling period. Results
of Figure 8A,B are expressed as mean ± SD (n = 6 pups/group). Statistical differences: * p < 0.05 versus
T group; ϕ p < 0.05 versus P group. Goblet cells with densely stained granules can be observed along
the length of the villi (Figure 8C–F). Scale bar = 50 µm for 400 ×.

3.8. Intestinal Gene Expression

The gene expression of proteins involved in mucus production, such as MUC-2 and MUC-3;
molecules used as biomarkers of intestinal maturation, such as Blimp-1 and FcRn; and proteins from
tight junctions, such as ZO-1, occluding, and claudin-4, were evaluated at day 10 (Figure 9). In regard
to the expression of mucins, premature animals had lower MUC-2 gene expression without changes in
the MUC-3 gene (p < 0.01 versus T group, Figure 9A). Leptin supplementation increased both mucins’
gene expression; however, this increase was only significant for MUC-3 (p < 0.01 versus T, P, and
P+EGF groups, Figure 9A). No changes were observed after the EGF supplementation.
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With reference to the gene expression of the intestinal maturation biomarkers Blimp-1 and
FcRn, an increase in FcRn was observed in preterm rats, and leptin was not able to revert this effect,
showing values similar to the P group (p < 0.01 versus T group, Figure 9B). No significant differences
were detected between groups on Blimp-1 gene expression. Moreover, the gene expression of tight
junction proteins was also analyzed, but they were not modified by either the prematurity or the
supplementation (Figure 9C). EGF did not induce any effect at the expression levels of the genes studied.Nutrients 2019, 11, x FOR PEER REVIEW 14 of 22 
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Figure 9. Gene expression in small intestine samples from the four groups: Term (T), Preterm (P),
P+Leptin, and P+epidermal growth factor (P+EGF) at day 10 of the suckling period. MUC-2 and
MUC-3 (A), Blimp-1 and FcRn (B), ZO-1, occludin, and claudin-4 (C). Results are expressed as mean ±
SD (n = 9 pups/group). Statistical differences: * p < 0.05 versus T group; ϕ p < 0.05 versus P group;
# p < 0.05 versus P+EGF group.

3.9. Intestinal Immunofluorescent Study

Immunofluorescent staining was performed in order to observe the changes in the distribution
of occludin, ZO-1 and claudin-2 and -4 due to prematurity or nutritional interventions. The staining
pattern of occludin was similar among studied groups and localized in the apical membrane (Figure 10).
A delocalization of ZO-1 in the P group was observed compared to the T group. Nevertheless, P+EGF
reached a similar staining pattern to the T group. In addition, claudin-2 and -4 were also studied.
Both T and P groups showed a similar staining pattern to claudin-2 but P+EGF showed an increase in
fluorescence levels with respect to the T group. Moreover, claudin-4 showed an increase in fluorescence
stain in premature rats with respect to term rats (Figure 10). In regard to supplementations, P+Leptin
and P+EGF showed a staining pattern similar to that of the T group.
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Figure 10. Immunofluorescent staining of small intestine tissue for occludin, ZO-1, claudin-2,
and claudin-4. Representative images from Term (T), Preterm (P), P+Leptin, and P+epidermal
growth factor (P+EGF) intestines at day 10. Similar results were obtained in five animals in each group.
Nuclei were stained with DAPI (blue). Localization of occludin, ZO-1, claudin-2, and claudin-4 (red)
were observed by fluorescence microscopy at 400×magnification. Scale bar: 50 µm.

4. Discussion

We have previously reported that in full-term rats the supplementation with leptin and EGF
during the whole suckling period results in an enhancement of both the systemic and intestinal immune
system [21–23]. However, little is known about the activity of these compounds in the naïve immune
system of the preterm infant. These results prompted us to study whether those effects could also be
observed in the rats born in preterm conditions. For that, a preterm rat model, recently set up in our
laboratory, was used [24]. To achieve our aims, preterm rats born by C-section were supplemented
with leptin and EGF during the first 17 days of life. The data presented here demonstrate that the
supplementation with leptin was able to increase the hemoglobin concentration, to enhance phagocytic
activity of monocytes, to modify plasma Ig concentration to a Th1 pattern, to revert the premature
effect on intestinal permeability, to increase goblet cells’ area, and to increase MUC-3 gene expression.
In addition, EGF supplementation increased both leukocyte and erythrocyte counts, decreased Th,
T TCRαβ+ and CD8+ cell percentages, and increased the B cell proportion in MLNs and the spleen.
Moreover, both milk components reversed prematurity’s effects on intestinal permeability and goblet
cell size.

With regards to body growth, the body weight of premature pups was lower than full-term ones
only during the first 9 days, with no differences detected between them after that day. These results
were similar to those observed in the preterm rat model, for which lower weight was observed during
the whole study (10 days) [24], confirming in our model, the well-known observation that the length of
gestation period has an effect on body weight. Although EGF-supplemented rats showed the same
pattern as the P group, interestingly, leptin-supplemented pups were able to achieve the weight of the
T group two days before the P group. Although a weight loss was expected, given the satiating role
of leptin described in adults [29,30], no changes in body weight were observed in previous studies
performed with rats supplemented with leptin during the whole suckling period [21,31]. However,
it has to be taken into account that those rats were born at term, while in our study they were born
prematurely. Moreover, no differences were found between BMIs, Lee indices, or organ relative weights.
The punctual decrease observed in the relative length of small and large intestine due to leptin and EGF
supplementations was not in line with that found in other studies performed in term rats [21,23,32].
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Moreover, there is no information regarding the impact of leptin or EGF on the intestinal growth
in preterm conditions. Therefore, further studies are needed to better understand the role of these
components in the context of prematurity.

Focusing on the blood cell count, the preterm rats showed lower counts of erythrocytes, and lower
Hb concentrations and HCTs compared to term ones. In addition, they showed higher MCH levels and
MCVs, suggesting the presence of a macrocytic hyperchromic anemia. This result was in line with the
macrocytic anemia observed in humans and in our previous study in preterm rats [24,33]. Premature
infants may have anemia due to multiple factors, such as rapid body growth, low plasma levels of
erythropoietin, or inadequate nutrient intake, among others [34,35]. Although the supplementation
with leptin and EGF was not able to revert the erythrocyte count, the MCV or MCH, it was able to
increase the mean Hb concentration compared to the P group. Little is known about the effect of leptin
or EGF in erythropoiesis and even less in prematurity, but it might be a mechanism to compensate
the reduced number of erythrocytes. However, the effect of EGF raising the leukocyte count could be
explained by its role in hematopoiesis, increasing cellular proliferation and decreasing the apoptosis of
hematopoietic stem cells in mice [36,37].

Newborns have a very immature immune system, due to a reduced adaptive immune response
because of their lack of contact with pathogens until birth. Thus, the infant is mainly protected
by an immature innate immunity. In our study, although no differences were observed in both
phagocytic activity and the efficiency of both monocytes and granulocytes because of the prematurity
and EGF supplementation. Rats supplemented with leptin showed a higher phagocytic activity of their
monocytes. This result is in accordance with the role of leptin in enhancing the phagocytic activity
of monocytes/macrophages in adult rodents [38,39]. This increase might be beneficial to the preterm
newborn, since it implies an early maturation of the innate immune response.

In preterm animals, the concentrations of IgM and IgG were lower than T group. In line with our
results, it has been described that human preterm infants have lower serum IgM and IgG concentrations,
which, in addition, correlates positively with the gestational age and the weight of the baby at the time
of birth [40]. The lower IgG concentration was not reverted by these breast milk components. Moreover,
the supplementation with leptin and EGF reduced the plasma IgA concentration on both days studied
and at day 17, respectively. It has been previously described that B cells have leptin receptors on their
surfaces, suggesting a direct effect of leptin on B cell function [39]. However, little is known about
the effect of leptin or EGF on IgA secretion. Nevertheless, we have previously reported the ability
of leptin to decrease IgA in the intestinal compartment at the end of the suckling period in full-term
rats [21]. Nevertheless, it must be taken into account that the main concentration of IgA detected in the
intestine compartment comes from the mother’s milk and not from the newborn. Further studies must
be directed to ascertain the mechanisms involved in this decrease due to leptin supplementation.

In regard to IgG isotypes, this model of prematurity induced a reduction in both Th1-related
IgG (IgG2b and IgG2c) and Th2-related IgG (IgG1), reducing the Th1/Th2 ratio compared with rats
that were born at term. This result is in accordance with the bias towards a Th2 response described
for preterm humans [41], making preterm infants more vulnerable to infections. Leptin is suggested
to enhance the Th1 response and to inhibit the Th2 one [19,42]. In our study, with the exception
of IgG2b, a decrease in both IgG1 and IgG2a, and an increase in IgG2c, was observed. Thus, these
changes counteract the Th1/Th2 imbalance present in preterm animals. On the other hand, little is
known about the effect of EGF on IgG isotypes and we reported here, the influence of this growth
factor on IgG1, IgG2a, IgG2b, and IgG2c. Preterm rats supplemented with EGF showed a decrease
in IgG1, IgG2a, and IgG2c, increasing the Th1/Th2 ratio. These effects suggest that leptin and EGF
might enhance the Th1 response, improving the Th1/Th2 balance, representative of later stages. Thus,
both supplementations seem to be involved in promoting the adequate initial immune homeostasis
induced by breast milk that encourages a shift from an intrauterine Th2 predominant response to a
Th1/Th2 balanced response [43,44].
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In the present study, we have described for the first time, the effect of prematurity on the rat
lymphocyte composition in the spleen and MLN, and also the impact of a supplementation with leptin
or EGF on its composition. It has been previously described that preterm infants have a lower absolute
number of B, Th, Tc, and NK cells in cord blood compared to term ones [45,46]. On the contrary,
Correa-Rocha et al. reported that premature infants had a higher percentage of Th and Tc and a lower
percentage of NK and B cells in cord blood [45]. Similar results in lymphocyte composition were
observed in our study, where the prematurity condition lowered the proportion of B cells and raised
those of Th and Tc TCRαβ+ cells in MLNs at day 17. Nevertheless, no changes were observed in the
lymphocyte pattern in the spleen.

Regarding the influence of milk bioactive components on the lymphocyte composition at day 17,
leptin supplementation did not reverse any of the effects induced by prematurity in either studied
compartment. Nevertheless, rats supplemented with EGF showed higher levels of B cells and lower
percentages of Th and Tc TCRαβ+ in both studied lymphoid organs, modifying premature changes
observed in MLNs. Little is known about the effect of this growth factor on the spleen lymphocyte
composition. So, these results are a first approach to elucidate the role of this growth factor modulating
lymphocyte pattern in prematurity. Furthermore, in MLNs, EGF was also able to increase NK cell
percentage at day 17. Little is known about the effect of EGF on NK cells, but the enhancement of this
population in early life could be beneficial to the preterm infants who have a higher rate of infections
due to their immature immune systems [41]. Regarding the cells bearing CD8 molecules, EGF was
able to decrease that cell proportion in premature rats, in both compartments, but acting in different
ways. While the diminution of the CD8+ percentage was due to a lower proportion of CD8αβ+ in the
MLNs, the decrease in the spleen was caused by both forms of CD8 co-receptor (CD8αα and CD8αβ).
However, the influence of EGF in the CD8+ cell population has scarcely been explored.

Those changes in phenotypical lymphocyte proportions in both the spleen and MLNs due to
leptin and EGF supplementation would also lead to a modification in their patterns of secretion of
pro-inflammatory and anti-inflammatory cytokines. Following on, in previous studies in term rats
supplemented with these bioactive compounds, we observed changes in the cytokines released by
cultured lymphocytes from MLNs and spleen [21–23]. Particularly, leptin was able to promote an
anti-inflammatory pattern of cytokines [21,22], whereas EGF induced the release of pro-inflammatory
cytokines [23].

At day 10 of the suckling period, the intestinal barrier function was studied by means of the
evaluation of the permeability to 4-kDa-dextran. Previous studies carried out in our laboratory
reported a decrease in intestinal permeability due to prematurity [24]. This unexpected output was
also observed in the present study, thus confirming this result. The supplementation with leptin or
EGF for 10 days was able to revert this effect and increase the intestinal permeability to values observed
in full-term rats. Supporting this result, an increase in the intestinal paracellular permeability after
an intraperitoneal injection of leptin was also reported in rats [47]. Nevertheless, that suggests the
outcome of the review that EGF plays an important role in regulating intestinal permeability and
epithelial barrier integrity [48]. In this sense, Clark et al. described that EGF treatment decreased
intestinal paracellular permeability, reducing the concentration of lactulose in blood compared to the
control group [49].

In the intestinal histomorphometric study, no changes were observed in the variables studied in
the villi between groups. In respect to cells, the three preterm groups showed a lower number of goblet
cells, and in the case of the P group, they were of a smaller size than those from the T group. However,
leptin and EGF supplementations were able to increase goblet cell size. In this regard, it has been
reported that a smaller size and density of the goblet cells could be related to immaturity, producing
less mucus at the intestinal barrier level [49]. Thus, leptin and EGF could promote the maturation of
these cells, improving mucus production. Moreover, it has been described that a supplementation
with EGF increased goblet cell density and mucin production [49].
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Goblet cells are specialized epithelial cells that play an important role in the intestine by
synthesizing and secreting mucus, including MUC-2, which is responsible for the gel-forming
mucins [50]. Although no changes were observed in MUC-3 gene expression, premature rats showed
lower MUC-2 levels than full-term ones. So, the decrease in MUC-2 gene expression could be related
to the lower number and size of goblet cells observed in the histomorphometric study. Moreover,
the tendency to increase MUC-2 gene expression by leptin supplementation might be related with its
capacity to increase goblet cell size. Moreover, although prematurity did not modify MUC-3 gene
expression, nutritional intervention with leptin was able to increase its expression. This effect was
previously observed in rats after leptin supplementation during suckling, after a perfusion of leptin
in the rat’s colon or after adding leptin in an in vitro study [2]. EGF was previously reported to
increase MUC-2 gene expression [49]. However, this result was not observed in our study. Therefore,
more studies are needed to elucidate the role of this growth factor on the expression of mucins.

The neonatal Fc receptor (FcRn) mediates the transfer of IgG from the placenta to the fetus, and
from suckled maternal milk to the neonatal circulation [51]. The expression of this gene is a good
biomarker of the process of intestinal maturation in lactating rats because it is highly expressed in early
life and decreases at weaning [52]. Thus, a higher expression of this gene in preterm rats could mean a
higher intestinal immaturity compared to the term ones. However, leptin or EGF supplementation
was not able to revert this change. Neither the prematurity nor the supplementations modified Blimp-1
gene expression, suggesting that neither of them have a role in the expression of this gene, which is
also associated with maturation, in premature conditions.

The formation and localization of tight junctions is important for the maintenance of intestinal
permeability, and for the epithelial barrier function [49]. For this reason, gene expressions of ZO-1,
occludin and claudin-4 were studied. However, no differences were found in their gene expressions
due to prematurity or supplementations. Nevertheless, other approaches show the involvement of
those proteins in related functions. Subsequently, in an in vitro study, the addition of 100 ng/mL of
leptin to Caco-2 BBe cell culture decreased occludin gene expression [53]. Regarding EGF, Xu et al.
showed that its oral administration to early weaned piglets promoted ZO-1’s and occludin’s gene
expressions [54]. In addition, another study demonstrated that a supplementation with EGF was able
to increase occludin’s gene expression in rats with NEC [49].

To gain more in-depth knowledge about tight junction proteins, an immunofluorescent staining
of the small intestine was performed. ZO-1 has an important role in tight-junction assembly, while
claudin-4 is a key molecule for barrier-forming [55]. Takehara et al. reported that higher expression
of claudin-4 is related to an increased paracellular permeability [56]. Supporting that result, in our
study non-supplemented preterm rats that had higher permeability showed an increase in claudin-4
fluorescent intensity compared to term rats. Moreover, rats supplemented with leptin or EGF showed
lower permeability, and their claudin-4 fluorescence was similar to animals born at term. Furthermore,
the supplementation with EGF showed an increased fluorescence of claudin-2. Little is known about
the effect of EGF on this tight-junction protein; however, in NEC neonatal mice models, animals with
NEC had increased claudin-2 expression and intestinal permeability [57]. Therefore, the increase in
claudin-2 expression could be related with the higher permeability found in the EGF-supplemented rats.
Further studies are needed to better understand the role of these components on tight-junction proteins.

5. Conclusions

Overall, the results obtained in this study show that prematurity produces, among other changes,
a delay in the maturation of the neonatal immune system. However, the daily supplementation
with leptin or EGF during the suckling period is able to partially counteract some of these changes:
specifically, some aspects of both the systemic and intestinal immune system of preterm rats, reinforcing
the role of both bioactive components of human milk in terms of modulating the intestinal barrier’s
function and the immune response in early life.
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