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Abstract: Growing evidence exists for the benefits of adequate infant and young children feeding
(IYCF) practices at the weaning stage (≥ 6 months), including optimal growth, building the immune
system, cognitive development, healthy food preferences, and reduced mortality and morbidity rates.
However, these outcomes are not universally experienced. To ensure that a developing country such
as Malawi, where recent studies have shown high rates of food insecurity and malnutrition benefits
from adequate IYCF, five nutrient-dense complementary foods (Recipes 1 to 5) were developed.
Standardized food processing techniques were used in the preparation and combination of Malawian
indigenous food samples. The developed food recipes were assessed for nutrient density and
cultural acceptability through sensory evaluations. Recipe 5 emerged as the winning weaning food
(WWF), with an overall acceptability rate of 65% (mean score of 5.82 ± 0.87). Unlike theoretical
analysis with the ESHA Food Processor, statistical analysis did not show that Recipe 5 met the
Codex Alimentarius recommendations for macro- and micronutrients. However, it showed that the
micronutrient recommendations for iron (p = 0.0001; 95%CI) and zinc (p = 1.00; 95%CI) were partially
met, but not those for calcium and vitamins A and D. The prototype and outcome of this pilot study
will be invaluable for interventions aimed at combating food insecurity and malnutrition in Malawi.

Keywords: food insecurity; malnutrition; infants; young children; complementary food; weaning;
nutrients; Malawi

1. Introduction

Food insecurity continues to be a major global challenge confronting humanity and there are
currently no adequate measures to address the situation. Meanwhile, food security should be every
individual’s right and not merely a privilege. The right to food is enshrined in both international
and national law. However, developed and developing nations still struggle with food sufficiency.
For instance, despite the considerable progress that has been made in the past 25 years at increasing
global food production, about 821 million people worldwide remain food-insecure according to a recent
report on the State of Food Insecurity (SOFI) in the world [1]. This might be attributable to the fact that
food insecurity is a complex phenomenon that affects food availability, affordability, the cultural norms
that dictate acceptable means of acquiring food, and individual food utilization [2]. Furthermore,
the FAO’s Africa Regional Overview of Food Security and Nutrition report of 2018 revealed that food
insecurity rose from 20.8% to 23.2% for sub-Saharan Africa (SSA) between 2015 and 2017, making SSA
the only region across the globe that has been consistently undernourished [3].
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Malawi, as one of the developing countries in SSA, experiences severe food insecurity, leading to
and/or resulting from malnutrition, with 37% of the population living below the poverty line [4].
Despite being known for cultivation of crops like maize and groundnut [5,6], the latest food insecurity
response plan (FIRP) in Malawi shows that the emerging food insecurity situation continues to worsen,
with 22% of the population experiencing severe hunger [7]. Moreover, the majority (45%) of Mzuzu
households (the primary target population in Malawi) are severely food-insecure [8].

Although poverty/lack of income is the most prominent reason for this situation in Malawi,
other factors contribute to food insecurity and malnutrition and have been documented [7,9].
The situation in Malawi signifies a grave danger to the food and nutrition security of not only
infants/young children and their mothers, but entire households. Previous studies have linked
household food insecurity with indicators of malnutrition such as wasting, underweight, stunting,
and overweight/obesity [10–12]. Also, evidence of malnutrition exists across the globe: Over two
billion people suffer from “hidden hunger” or deficiencies of micronutrients such as vitamin A,
iodine (I), iron (Fe), and zinc (Zn), which are morphologically and physiologically essential [13,14].
For example, 63% of children in Malawi aged 6–59 months were reported to have iron deficiency anemia
(<11.0 g Hb/dL), with 2% of children having severe anemia (< 7.0 g/dL). Also, one in three women
aged 15–49 years is anemic [15]. Additionally, the 2018 FAO global report shows that 150.8 million and
50.5 million children under age five are stunted and wasted, respectively, with a greater percentage of
this population living in developing countries such as in SSA [1].

Malnutrition is a major contributor to the global burden of disease, morbidity, and mortality
among infants and young children, and a factor in about 53% of all childhood deaths worldwide.
More than two-thirds of these deaths occur during the first 365 days and are often linked to improper
feeding practices or inadequate complementary foods [16–18]. Malnutrition in infancy can be
caused by inadequate breastfeeding or improper weaning—transitioning from breastfeeding/exclusive
breastfeeding to complementary foods [19]. This is because at about six months and beyond, the demand
for nutrient-dense food increases [20], and an inability to meet this demand often results in malnutrition.
According to the Cost of Hunger study (COHA) of 2015, 23% of child mortality cases in Malawi
are associated with malnutrition [21]. Moreover, only 15% of Malawian children below the age of
five consume a minimum acceptable diet and 27% have a minimally diverse diet. Consequently,
the combination of inadequate dietary diversity of Malawians (owing to overt dependence on
maize), high disease burdens, poor sanitation and hygiene, and gender inequality contributes to
undernutrition [7,15].

There is thus a need for a paradigm shift from the maize-dominated foods in Malawi to more
diversified and nutrient-adequate foods that would address food insecurity and malnutrition as
well as create job opportunities, boosting the economy and steering Malawi away from poverty to
being a self-sufficient nation. A solution to the identified problems is proposed in this study through
the focus on the development of diversified nutrient-dense complementary food recipes for IYC,
made by combining locally sourced plant (e.g., soy) and animal (e.g., goat meat) foods and entrenching
appropriate complementary feeding practices for sustainability.

In this pilot study, five nutrient-dense complementary food recipes were developed using the
Codex Alimentarius guidelines on formulated complementary foods for older infants and young
children, with the aim of choosing one, the winning weaning food (WWF), by sensory evaluation.

2. Methodology

The food processing approach deployed for the product development was a modification of Zotor
and colleagues’ conceptual framework [22]. These stepwise approaches used in the development of the
five nutrient-dense food recipes are summarized in the conceptual framework (Figure 1). The study
design originally comprised three stages and 12 steps, as shown in Figure 1; however, only stage 1 and
2, with eight steps, were undertaken in this phase of the study.
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Figure 1. A schematic diagram showing the stages and processes involved in the development of
complementary food (adapted from Zotor et al., 2015) [22].

2.1. Stage 1

Step 1—Needs assessment/market research: Besides relying on the information provided
by Malawian collaborators, a thorough desktop assessment was done to ascertain the food and
nutritional challenges affecting infants and young children in Malawi. The literature search was done
through Google Scholar, the Demographic and Health Survey (DHS) website for Malawian journal
articles, Medline or PubMed, Cochrane Library, and Web of Science. Articles were searched using
varying keywords like “infant,” “nutrition,” “infant food,” “infant weaning,” “complementary food,”
“baby food,” “infant formula,” “infant feeding,” “infant nutrition,” “infant weaning formula,” “6–23
months children,” “introduction of complementary foods,” and “infant and young children feeding.”
All articles related to the topic were considered, but priority was given to articles not more than five
years old.

Step 2—Formulation of criteria: This was determined with the recommended specifications for
supplementary foods in Malawi and the Codex Alimentarius standards [23]. The criteria included
adequate nutrient density for complementary food measured per 100 g dry matter in terms of
energy/macronutrients and micronutrients, affordability, cultural acceptability, and whether the food is
safe for human consumption [8].

2.2. Stage 2

The Development of the Complementary Food

Laboratory assessments and experiments, chemical analysis of nutrient composition, meal
preparations/cooking practical for formulated food recipes, and data capturing were done at this stage
with raw food samples obtained from different grocery stores in Lubbock, TX, USA.
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Step 3—Selection of food items: Substitutes for Malawian indigenous foods were selected for
analysis based on findings from the literature and reports from our correspondents. These staples were
picked to provide adequate energy and make up for commonly observed micronutrient deficiencies
such as vitamin A and D, iron (Fe), zinc (Zn), and calcium (Ca) [15], while considering their affordability
and accessibility to the low-income population in Malawi.

Step 4—Parboiling and roasting: Food samples such as kidney beans, butternut squash, and sweet
potatoes were parboiled with a small amount of water to reduce nutrient loss and enhance taste and
texture; soybeans and millet were roasted for similar reasons. Other food samples that did not require
processing were directly subjected to drying.

Step 5—Drying: A solar dehydrator, drum, and scientific ovens were used for drying in Malawi [24].
However, drying for this study was restricted to an electric/scientific oven. Food samples such as
uncooked goat meats were treated with 3.5% salt and 3% vinegar/lemon juice, where appropriate,
before being dried in an oven (as was done in Malawi). Butternut squash, plantains, and sweet potatoes
were peeled, washed with water, cut open to remove the seeds (in the case of the butternut), and chopped
into small pieces to enhance the drying process. Butternut squashes/pumpkins, sweet potatoes,
and carrots were precooked before drying to avoid a raw taste and enhance the doneness. Most of the
food samples (fruit and vegetables) were slowly dried at 65 ◦C to retain the quality of yield, while goat
meat was dried at a higher temperature (127 ◦C) to prevent microbial activity. Food samples were
typically dried within 24 to 48 h, ground, and temporarily stored in Ziploc bags at ambient temperature
before analysis. Figure 2 describes the food processing approach adopted.
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Figure 2. Food sample processing.

Step 6—Shelf life test: Dried food samples were tested for water activity (≤0.3) in order to gauge
the microbial activity using a water activity meter. Carbonyl and thiobarbituric (TBAR) analyses were
performed to assess the protein and lipid oxidation (rancidity), respectively, according to the modified
Buege and Aust method [25], as described by Luque and co-authors [26].

Step 7—Nutritional experimental analysis: Food sample analyses complied with the standard
protocols of the Association of Official Analytical Chemists (AOAC). Performed AOAC methods
included: Moisture 950.46, ash 920.153, protein (automated method) 992.15, carbohydrates
986.25 (determination by difference) and advanced chloroform/methanol lipid extraction 982.23.
A multianalyte method using flame atomic absorption spectrophotometry (FAAS) (AOAC 985.35) and
the USDA wet ashing procedure were used to determine the micronutrients Ca, Fe, and Zn. However,
the vitamin A and D values were obtained from the USDA database [27] owing to the inability of
carrying out experiments after an HPLC machine breakdown. The resultant data from our lab were
subsequently compared to the data obtained from the USDA, Kenya, and the West African food
composition tables to observe possible similarities or differences.

Step 8—Formulation and preparation of product: Formulations were based on the results of
the nutrient composition of the analyzed food samples in accordance with Codex Alimentarius (CA)
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recommendations [28]. The results obtained for each category of nutrients were entered into the ESHA
Food Processor as ingredients for 13 separate analyzed food samples and thereafter combined to
form five different nutrient-dense recipes of complementary foods. The ESHA Food Processor was
used to analyze the recipes and nutritional values obtained from total grams of each ingredient used
(recipe quantifications) and generate corresponding food labels, as shown in Figure 3. The serving size
specifications of the food labels aided in meal preparation.
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Step 9—Sensory analyses: A purposive sample of 50 panelists (58% male and 42% female) from
Africa, but residing in the USA, was used to determine the sensory attributes of the developed recipe,
after obtaining approval from the Institutional Review Board (IRB). The sensory session was conducted
using a nine-point hedonic scale, with participants rating foods according to appearance, taste/flavor,
texture/consistency, aroma/smell, overall acceptability, and most preferred recipe. Standardized
methods, as outlined by the Society of Sensory Professionals, were used [29].

Data Analyses: All data analyses were performed with version 3.4.3 R programming language
- Revolution Analytics (Dallas, TX, USA). A linear mixed model (LMM) was used to determine
if there were significant differences between the food quality ratings as perceived by the sensory
evaluators. The choice of LMM was because, as a consumer test, LMM mimics a “real-life” situation
where panelists are treated as random effects. On the other hand, a one-sided (one-tailed) test was
performed to ascertain whether the nutrient densities of the five developed complementary foods met
the CA standards.

3. Results and Discussion

Poverty, malnutrition, food insecurity, ignorance/inadequate nutritional knowledge, a lack of
appropriate infant and young child feeding practices, a heavy burden of infectious diseases/illnesses,
poor hygiene, and sanitation are major challenges confronting Malawians, as revealed by the needs
assessment and market research phase of the study. Moreover, these factors are linked to other factors
like drought, lack of water, and overdependence on social grants [30]. These factors, combined,
are responsible for the high prevalence of maternal and childhood undernutrition, low life expectancy,
and high infant mortality rate observed in Malawi [8,15,31].
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Therefore, the solution to the identified problems was embedded in the formulation criteria for the
various recipes. These criteria encompass: (i) nutrient density as recommended by CA. For instance,
the nutrient density of the complementary food measured per 100 g (3.5 ounces) dry matter comprised a
minimum of 410 kcal of energy or 4 kcal per gram weight on a dry basis with energy from protein being
15% maximum and at least 20% for fat. However, no stipulated amount was given for carbohydrates in
the Codex document. According to the literature, about 45-60% of energy per caloric serving or daily
intake should be supplied from carbohydrates for children aged 6–36 months [32,33]. Notwithstanding,
starch and fiber contribute to the total carbohydrates in food and are recommended by the CA [28].
Additionally, Ca, Fe, Zn, and vitamins A and D, which are essential for adequate growth, health,
and cognitive development, were considered for the formulation criteria [34,35]. (ii) Developed recipes
being affordable to the low-income population in Malawi when estimated by costing products in terms
of dollars per kilogram (kg) for food ingredients using a nutrient calculator and/or the ESHA Food
Processor. Moreover, the developed complementary food was cheaper than the commercial alternative
(Lukuni kala), which costs $2.13 per kg from Mzuzu market. Although a previous study in Malawi
documented the high cost of ASF, leading to its rare consumption [8], the present study addresses
this issue. (iii) Cultural acceptability of the developed recipe, which was set at 60% for the sensory
evaluation rating since this study served as a pilot study. (iv) Safety of food for human consumption,
which was ascertained from a preliminary study involving the drying of food samples, a literature
study, and a shelf life study.

The outcome of the desktop assessment of nutritional needs, the formulation criteria,
and information gathered from collaborators in Malawi informed the selection of 13 food samples,
which included goat meat, butternut squash/pumpkin, kidney beans, cornmeal, sweet potatoes,
spinach/pumpkin leaves, millet, soybeans, plantains/bananas, onions, carrots, mushrooms, and kale.
Aside from goat meat, which was introduced in the developed recipes, all food samples are staples
commonly consumed in Malawi and are suitable for complementary foods. Also, these food samples
were selected based on their nutritional value and potential contribution to an optimized health status
within the target population.

Moreover, goat meat was selected as the source of heme iron in this study because it is one of the
most common animals kept as livestock in Africa. Apart from being an age-old and high-quality source
of meat and milk, goats have provided benefits to farmers and indigent dwellers in the developing
world as they are adaptable to various climatic conditions, relatively cheap to rear, and their ability to
survive diseases and feed effectively make them thrive on several natural resources that other livestock
would not graze on [36]. In spite of being criticized for overgrazing, they can control bush encroachment
and are a source of lean meat, which is nutritious and not taboo to people of different religions [37,38].
Also, goat-rearing ranks first in Malawi, above domesticated cattle, pigs, and sheep [39,40]. Moreover,
a study based on trials with rats, which were fed 10% of protein from goat meat, showed that goat
meat possesses a high biological value and a digestibility coefficient of approximately 60.4% and 97%,
respectively [41,42], making it suitable for complementary foods.

The processing of the selected food samples (as in Figure 2) transformed the ingredients into flour
for nutrient analyses and cooking. Notable changes occurred in the color and moisture content of
food samples, as shown in Tables 1 and 2, during the food processing stage. All food samples became
flaky after the drying process, breaking/separating easily into tiny pieces when crushed. Table 2 shows
the moisture content of dried food samples and raw food samples. The results achieved at least 60%
moisture loss for raw food samples and less than the recommended 14-15% moisture loss for dried
samples [43,44]. According to Jay and colleagues, dried foods typically contain 25% moisture or less,
with a water activity (aw) range of 0 to 0.60, while the moisture in shelf-stable foods is between 15%
and 50%, with an aw range of 0.60 to 0.85 [45,46], and they are said to contain an intermediate amount
of moisture. The drying process significantly reduced the moisture content and extended the shelf life
of food samples to at least six months.



Nutrients 2019, 11, 2292 7 of 16

Table 1. Moisture content of dried and raw food samples.

Food Sample Percentage Moisture Loss in Dried Foods

Goat meat (dry) 2.64
Kidney beans (dry) 9.05

Millet (dry) 3.009
Soybeans (dry) 5.11

Food Sample Percentage Moisture Loss in Raw Foods

Plantains (raw) 62.98
Sweet potatoes (raw) 82.11

Butternut squash (raw) 90.7
Kale (raw) 91.2

Spinach (raw) 92.4
Onions (raw) 88
Carrots (raw) 87

Mushrooms (raw) 90.5

Table 2. Color transformation after drying of food samples.

Food Ingredients Color before Drying Color after Drying

Goat meat Dark red Grayish brown
Butternut Squash Yellow Pale brown

Sweet potatoes Red Reddish brown
Spinach Green Dark green

Plantains Yellow Pale yellow
Red Onions White flesh tinged with red Dark brown

Carrots Bright orange Pale orange
Mushrooms Grayish white Dark brown

Kale Green Dark green

The changes in color resulted from the effect of temperature and drying time on food sample.
Aside from color, higher temperature and more drying time affect the taste and nutrient contents of
products. The smallest observable change in color happened when the temperature was low (about
40 ◦C) or high (about 90 ◦C) with a shorter drying time [47].

Although microbial tests (for lipid and protein oxidation) to determine the shelf life of dried
goat meat after keeping for six months appeared negative, such tests were not carried out on the
remaining food samples as ample evidence exists in the literature of their shelf stability when optimally
dried [48,49]. Furthermore, the results from the nutritional experimental analysis of the various
food samples and the comparable values of vitamin A and D obtained from the USDA database are
shown below.

As is evident from the results, most of the analyzed food samples such as onions (437 kcal),
soybeans (455 kcal), millet (405 kcal), goat meat (393 kcal), kale (379 kcal), carrots (366 kcal), mushrooms
(362 kcal), kidney beans (361 kcal), cornmeal (343 kcal), butternut squash (385 kcal), sweet potatoes
(375 kcal), and plantains (377 kcal) are nutrient-dense food options, with spinach (329 kcal) being the
least nutrient-dense. Nutrient density can be described as the nutrient content of foods expressed
per 100 g (as in Table 3), or 100 kcal, or per serving size. It is often an estimation of the nutrient to
calorie ratio. A clear distinction between nutrient and energy density is that while energy density
solely describes macronutrients (carbohydrates, fats/lipids, and protein), nutrient density refers to
nutrient-rich foods (NRFs) capable of supplying both macronutrients (e.g., protein and dietary fiber) and
micronutrients (e.g., vitamins and minerals). According to Drewnowski and Fulgoni, another approach
to visualizing nutrient density is calculating the percentage daily value (DV) of the various nutrients
per serving of food, with respect to the total caloric content in the food. For example; a six-ounce
plain (skim) milk yogurt that supplies < 5% DV of daily calorie but in turn supplies Ca > 30% DV,
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P > 25% DV, K > 10% DV, Zn > 10% DV and Mg > 5% DV can be said to be NRF owing to its useful
nutrient-to-calorie ratio [50].

Table 3. Results obtained from chemical analysis of food samples sourced from Lubbock, TX, USA.

Food Sample
(100 g)

Energy
(Kcal)

Carbohydrate
(g)

Protein
(g) Fat (g) Iron

(mg)
Zinc
(mg)

Calcium
(mg)

* Vitamin A
(mcg)

* Vitamin D
(mcg)

Goat meat 393.00 4.62 83.50 4.34 10.76 4.13 14.64 0 0
Butternut squash 385 87 6.42 1.19 0.28 0.82 7.68 532 0

Kidney beans 361.90 63.69 23.74 1.20 10.38 8.45 42.27 0 0
Cornmeal 343.35 68.32 7.07 4.50 5.10 6.04 42.45 121 0

Sweet potatoes 375.9 81.3 10.79 0.66 0.52 0.81 9.10 8512.2 0
Spinach 329 28.48 38.87 6.59 12.72 2.07 78.47 500 0
Millet 405.17 77.73 13.05 4.50 35.35 6.54 5.60 0 0

Soybeans 455.32 33.52 35.80 19.59 0.29 10.48 62.19 3.85 0
Plantains 377.2 89.1 3.67 0.53 0.39 0.82 0.72 45 0
Onions 473.35 63.29 13.67 18.19 2.17 4.04 18.17 1 0
Carrots 366.47 84.56 3.76 1.31 3.55 1.20 40.57 3120 0

Mushrooms 362.55 52.69 37.04 0.25 2.03 8.70 17.77 0 7
Kale 379.17 63.06 27.68 1.64 13.86 2.07 42.45 146 0

* Values from USDA database.

The carbohydrate contribution (per gram) in the different food samples is highest in plantains
(89 g), followed by butternut squash (87 g), carrots with 84 g, sweet potatoes with 81 g, then millet
with 77 g and cornmeal with 68 g. Other food items with higher (63 g) carbohydrates include kale,
kidney beans, and onions. The protein contribution (per 100 g of goat meat) is 83 g according to this
analysis. Two vegetables with higher values of protein obtained in this analysis were spinach (38 g)
and mushrooms (37 g), which were closely followed by soybeans (35 g) and kale (27 g). The amount of
fat per 100 g of food sample is highest in soybeans (19 g), followed by onions (18 g).

For micronutrients, the highest amount of iron was observed in millet (35 mg), followed by kale
(13 mg), spinach (12 mg), goat meat (10 mg), and kidney beans (10 mg). Theoretically, the amount of
iron in goat meat should supersede all other listed food items in this experiment, but studies have
revealed the volatile nature of some micronutrients such as iron and vitamin C when exposed to
heat [51–53]. The mineral ashing process, which was carried out under intense heat (550–600 ◦C),
can be implicated in the relatively low iron content recorded for goat meat. Although other methods
that do not interfere with the integrity of the mineral constituents of food samples exist, they were not
deployed in this experiment. The amount of zinc (10 mg) was highest in soybeans, closely followed by
mushrooms (8 mg) and kidney beans (8 mg). Calcium amounts also showed some variability in the
analyzed food samples. For example, spinach (78 mg) was followed by soybeans (68 mg), kidney beans
(42 mg), cornmeal (42 mg), kale (42 mg), and carrots (40 mg), while butternut (7 mg), sweet potatoes
(9 mg), millet (5 mg), and plantains (1 mg) had low values. On the other hand, most of the analyzed
food samples did not contain vitamin D, except for mushrooms with 7.0 mcg. High amounts of vitamin
A were recorded in sweet potatoes (8512.2 mcg), carrots (3120 mcg), butternut squash (532 mcg),
and spinach (500 mcg).

Since the analyzed food samples were obtained in Lubbock, TX, USA instead of Malawi (in Africa),
it became necessary to determine the comparability of the nutrient compositions in order to verify the
reliability of the nutritional experimental analysis results when formulating complementary foods
for an African population. Moreover, a previous study has shown that variability in the nutrient
composition of foods is inevitable with regional differences [54]. According to other studies, this
variability may depend on plant variety, geographical conditions, or the methods of cultivation [55,56].
However, an attempt to compare all the analyzed food samples with nutrient information on other
food composition tables from West Africa, Kenya, and the United States Department of Agriculture
(USDA) was futile because of the differences in the states of some of the food samples; while all our
results were derived from dried food samples, other nutrient composition tables were inconsistent,
featuring results from fresh/wet food samples in some cases. An example is presented in Table 4,
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where the nutrient values for goat meat obtained from Lubbock could not be compared with those
from West Africa, Kenya, and the USDA database as a result of the difference in state.

Table 4. Comparison of nutrients in dried goat meat for Lubbock, Africa, and the USDA.

Nutrient (Per 100 g Dried Goat Meat) Own (Lubbock) West Africa Kenya USDA

Energy (Kcal) kJ (393) 1644 (216) 900 (192) 804 (143) 599
Protein (g) 83.50 25.40 26.90 27.10

Fat (g) 4.340 12.20 9.30 3.03
Carbohydrates (g) 4.62 0.00 0.00 0.00
Vitamin A (mcg) 0.00 0.00 21.00 0.00
Vitamin D (mcg) 0.00 0.00 0.00 0.00

Zinc (mg) 4.13 5.00 4.48 5.27
Calcium (mg) 14.64 16.00 14.00 17.00

Iron (mg) 10.76 3.30 2.60 3.73
Fiber - - - -
Ash 4.91 1.60 1.50 1.46

water (g) 2.64 56.80 57.10 68.21

Notwithstanding, Table 5 reveals how cornmeal or maize (which is a staple food in Malawi) fared
when compared to results obtained from our in-lab analyses. Cornmeal makes a popular dish in
Malawi known as “insima,” which is typically consumed as cooked porridge. Most of the nutrient
values obtained from cornmeal samples from Lubbock compared favorably with all the other sources,
except for a few nutrients with wide variations such as vitamin A and calcium. The reason for this
disparity is the fortification of cornmeal in the USA. While other maize samples were not fortified
with vitamin A and/or calcium, the sample obtained in Lubbock for the purpose of this analysis was
generously fortified with vitamin A and calcium.

Table 5. Comparison of nutrient values of dried corn: Lubbock, West Africa, Kenya, and the
USDA database.

Nutrient (Per 100 g of Cornmeal) Own (Lubbock) West Africa Kenya USDA

Energy (Kcal) Kj (343.35) 1436.57 (351) 1480 (345) 1450 (365) 1527
Protein (g) 7.07 9.70 7.94 9.42

Fat (g) 4.50 4.00 4.50 4.74
Carbohydrates (g) 68.32 64.5 63.40 74.26
Vitamin A (mcg) 121.00 0.00 0.00 0.00
Vitamin D (mcg) 0.00 0.00 0.00 0.00

Zinc (mg) 6.04 1.73 1.88 2.21
Calcium (mg) 42.45 18.00 24.00 7.00

Iron (mg) 5.10 3.80 2.60 2.67
Fiber - 9.00 9.40 -
Ash 2.09 1.40 1.20 1.20

water (g) 18.02 11.50 13.60 10.37

The ESHA Food Processor software was used for multiple combinations until a seemingly balanced
recipe (in terms of the Codex recommendations for macro- and micronutrients) was obtained before
generating a food label, as presented in Table 6. Each of the recipes (Recipes 1 to 5) was strategically
developed to contain goat meat in order to ensure an adequate supply of protein and iron. Similarly,
all five recipes contained sunflower oil. The introduction of oil became necessary owing to the difficulty
encountered in meeting the macronutrient recommendations for fat (≥ 20% of total energy (TE))
during the formulation process. Attaining micronutrient adequacy for all of the developed recipes was
difficult when theoretically and statistically analyzed using the ESHA food processor and the one-tailed
test, respectively. Moreover, according to Osendarp and colleagues, infants and young children are
often able to meet their macronutrient (e.g., protein) requirements by consuming locally available
complementary foods, but not for “problem nutrients” such as calcium, iron, and zinc. They further
revealed that optimizing the utilization of indigenous foods by increasing the frequency and amount
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of nutrient-dense foods will improve the intakes of these nutrients, but they still may only partially
meet the iron and zinc requirements [57,58].

Table 6. Food components of the developed recipes.

Recipe 1 Recipe 2 Recipe 3 Recipe 4 Recipe 5

* Goat meat * Goat meat * Goat meat * Goat meat * Goat meat
Sweet potatoes Cornmeal Plantains Kidney beans Mushrooms

Kale Butternut squash Onions Spinach Cornmeal
Sunflower oil Sunflower oil Soybeans Millet Carrots

Sunflower oil Sunflower oil Sunflower oil

* Animal source of protein.

Additionally, a summary of the information on the food labels is presented in Table 7. The table
gives a breakdown of the five developed recipes and some of their nutrient compositions, as generated
by the ESHA Food Processor. All five recipes met the macronutrient codex recommendations for
formulated complementary foods for older infants and young children. Although the recommendation
for carbohydrates remains unclear in the Codex documentation, the prescription in the literature
ranges from 45% to 60% when considering per caloric servings or daily intake [31,32]. Therefore,
based on the recommendations in the literature, only Recipe 5 met the carbohydrate recommendations.
Serving sizes for all recipes ranged from 44 g to 50 g, yielding a total energy range of 180 to 210 kcal.
Aside from meeting the Codex recommendation of 4 kcal/g, this serving size is similar to Dewey’s
recommendations for complementary food for infants in developing countries—about 200 kcal/day for
infants of 6–8 months of age and 300 kcal/day for 9–11 months of age [59]. This implies that serving
sizes for the developed recipe will increase as infants get older and the need to increase serving yields
will be met by multiplying ingredients with desired factor(s) of 2, 3, or more. In other words, one
recipe of about 44 g to 50 g (180 to 210 kcal) will be enough for one day for infants of 6–8 months
of age. On the other hand, none of the recipes aside from Recipe 4 met the Codex micronutrient
recommendation for iron; however, Recipe 5 was the closest to the recommendation at 4.5 mg/100 g
(2 mg/44 g). No vitamin D was present in any of the recipes, including Recipe 5, which had mushrooms
as one of the ingredients, as shown in Table 6. Analysis showed that despite the 7 mcg contained
in the analyzed mushrooms, only 0.35 mcg/serving or 0.8 mcg/100 g was contributed to the recipe
by mushrooms, hence the score of zero. Calcium was low in Recipes 1 to 5 compared to the 500 mg
recommended by the Codex. Meanwhile, the amount of zinc was not reflected in the food labels
by design of the ESHA Food Processor, but its contribution to Recipes 1 and 2 was 1.0 mg/serving
(2 mg/100 g), 4 mg/100 g for Recipe 3, and 4.5 mg/100 g for Recipes 4 and 5. Therefore, Recipes 1 and 2
were close to the 2.4 mg/100 g recommended by the Codex, while Recipes 3, 4, and 5 met the Codex
requirements (2.4–8.3 mg/100 g) for zinc.

The sensory evaluation results showing the mean scores ± SD for each of the five parameters
of appearance, taste/flavor, texture/consistency, aroma/smell, and overall acceptability are presented
in Table 8. Although it was hypothesized that there would be no significant difference in the sensory
evaluation results of the developed complementary foods, the results showed significantly different
mean scores for appearance, taste/flavor, texture/consistency, aroma/smell, and overall acceptability
across all the recipes evaluated. Recipe 3 had the highest mean ± SD score of 5.64 ± 0.54 followed by
Recipe 5 with 5.62 ± 0.54 for appearance. However, Recipe 5 had the highest mean ± SD scores of
6.22 ± 0.51 and 5.8 ± 0.92 for texture and aroma, respectively. Recipe 3 had the highest mean ± SD
score for taste (5.7 ± 1.0).
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Table 7. Summary of the five developed recipes (food labels) as generated by the ESHA Food Processor.

Recipe Serving
Size/Container (g)

Total fat (g)
(% TE)

Protein (g)
(% TE)

Carbohydrate (g)
(% TE) Calories Vitamin D

(mcg)
Calcium

(mg) Iron (mg) Zinc (mg)

1 50 16 (68) 8 (15) 8 (15) 210
(4.2 kcal/g) 0 7 2 0

2 48 15 (67) 7 (14) 9 (18) 200
(4.2 kcal/g) 0 7 1 1

3 50 13 (55) 8 (15) 15 (28) 210
(4.2 kcal/g) 0 11 1 2

4 44 10 (67) 7 (14) 9 (18) 210
(4.8 kcal/g) 0 11 7 2

5 44 6 (30) 7 (15) 24 (53) 180
(4.1 kcal/g) 0 14 2 2

Codex 100 ≥ 20 6 to 15 - 400
(4 kcal/g) 5 500 5.8–10%

bioavailability
4.1–10%

bioavailability

Nutrient values are stated per serving size/container and not per 100 g, as in the last column for the Codex
Alimentarius standard values. TE = total energy.

Table 8. Mean scores for sensory evaluation ratings.

Mean Scores (± SD) Significance Difference
between Recipes’

Parameters Recipe 1 Recipe 2 Recipe 3 Recipe 4 Recipe 5 p-Value

Appearance 4.42 ± 0.54 5.22 ± 0.54 5.64 ± 0.54 4.72 ± 0.54 5.62 ± 0.54 3.00 × 10−4

Taste/Flavor 4.64 ± 1.0 3.14 ± 1.0 5.7 ± 1.0 4.9 ± 1.0 5.48 ± 1.0 1.10 × 10−10

Texture/Consistency 5.3 ± 0.51 5 ± 0.51 6.04 ± 0.51 5.46 ± 0.51 6.22 ± 0.51 9.60 × 10−6

Aroma 5.52 ± 0.92 3.44 ± 0.92 5.1 ± 0.92 4.94 ± 0.92 5.8 ± 0.92 1.80 × 10−9

Overall Acceptability 4.96 ± 0.87 3.44 ± 0.87 5.52 ± 0.87 5.14 ± 0.87 5.82 ± 0.87 2.60 × 10−13

Additionally, the results in Figure 4 show that Recipes 3 and 5 are the preferred recipes (n = 16).
Since both preference and overall acceptability tests were conducted simultaneously with the same tool,
the highest mean score ± SD for the overall acceptability was 5.82 ± 0.87, in favor of Recipe 5. Therefore,
a rank ordering of these five recipes based on the results of the sensory evaluation sessions shows that
Recipe 5 (16) is the most preferred, followed very closely by Recipe 3 (16) and then Recipe 4 (12).
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Figure 4. Bar chart showing the levels of preference for Recipes 1–5.

In order to statistically assess whether the nutrient densities of the five developed recipes met,
exceeded, or fell below the Codex Alimentarius standards, a simulation was performed as there were
no replicates of nutrient measurements in completed dishes but there were replicates of component
nutrients. From the empirical component sample data, sample means and standard deviations for each
component’s nutrients per standard unit (e.g., 1 g) were obtained. Then, for each recipe and nutrient,
10,000 simulations were performed as follows:
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1. For each component used in the recipe, a nutrient value per 1 g was sampled from a normal
distribution with mean and standard deviation as empirically estimated.

2. That sampled value was multiplied by the amount of the component used in the recipe.
3. An estimate of the total amount of the nutrient in a fully prepared dish was simulated by summing

its components independently.

The above protocol provides an empirical reference distribution for the total amount of a given
nutrient in a given recipe, which may then be used to determine whether recipe has met, exceeded, or
fallen below the CA standard for that nutrient. For example, for a standard that we wish to meet or
surpass, if half of the simulated values met or exceeded the standard, the corresponding p-value would
be p = 0.5. In contrast, if none of the simulated values met or exceeded the standard, the corresponding
p-value would be 1; and if all of the simulated values met or exceeded the standard, the corresponding
p-value would be no more than p = 0.0001 (1 divided by the number of simulations). Note that these
are one-sided tests, as it is desired to know whether or not the Codex Alimentarius standard has been
met (one way or the other), not whether or not the amount of the nutrient in question is equal to the
Codex Alimentarius standard. The simulation reference distributions may also be used to generate 95%
confidence intervals for the average amount of each nutrient in each recipe. These are found in Table 9.

Table 9. Nutrient densities of recipes compared with Codex recommendations.

Nutrient/
100 g Codex A Recipe 1 Recipe 2 Recipe 3 Recipe 4 Recipe 5

Protein 6–15%
16.30

p = 1.00
95% CI: (16.2, 16.4)

16.54
p = 1.00

95% CI: (16.3, 16.8)

15.07
p = 0.52

95% CI: (12.7, 17.4)

19.91
p = 1.00

95% CI: (19.5, 20.3)

16.55
p = 1.00

95% CI: (16.5, 16.6)

Fat 20%
minimum

33.85
p = 0.0001

95% CI: (33.7, 34.1)

31.44
p = 0.0001

95% CI: (30.9, 32.0)

26.37
p = 0.0001

95% CI: (26.4, 27.2)

24.06
p = 0.0001

95% CI: (23.4, 24.8)

14.25
p = 1.00

95% CI: (13.0, 15.5)

Carbohydrate N 15.01
95% CI: (11.7, 18.3)

17.95
95% CI: (17.2, 18.7)

28.77
95% CI: (26.9, 30.6)

47.55
95% CI: (46.0, 49.1)

53.99
95% CI: (52.0, 55.9)

Zinc (mg)
(a) 8.3
(b) 4.1
(c) 2.4

0.53
p = 1.00

95% CI: (0.52, 0.55)

1.16
p = 1.00

95% CI: (1.1, 1.2)

1.98
p = 1.00

95% CI: (1.7, 2.2)

2.30
p = 1.00

95% CI: (2.2, 2.4)

2.32
p = 1.00

95% CI: (2.1, 2.5)

Calcium
(mg) 500

6.66
p = 1.00

95% CI: (5.7, 7.6)

7.35
p = 1.00

95% CI: (6.6, 8.1)

10.53
p = 1.00

95% CI: (9.2, 11.9)

11.33
p = 1.00
95% CI:

(11.1, 11.6)

14.18
p = 1.00

95% CI: (13.7, 14.7)

Iron (mg)
(a) 11.6
(b) 5.8
(c) 3.9

1.87
p = 1.00

95% CI: (1.3, 2.4)

5.71
p = 0.69

95% CI: (5.4, 6.1)

0.73
p = 1.00

95% CI: (0.65, 0.81)

6.97
p = 0.0001

95% CI: (6.7, 7.3)

12.13
p = 0.0001

95% CI: (11.9, 12.3)

(a) 15% bioavailability; (b) 10% bioavailability; (c) 5% bioavailability.

The results from our simulations show that only Recipe 3 came close to meeting the Codex
recommendation for protein. All recipes except Recipe 5 met the Codex standard for fat. Meanwhile,
no specific recommendations for carbohydrates exist in the Codex document, but Recipe 5 achieved
the range of 50-55% that is recommended in the literature [30]. Similarly, the Codex micronutrient
requirements were not significantly met except for iron with 12.13 mg in Recipe 5 and 6.97 mg in Recipe
4. Also, the amount of zinc (2.32 mg) in Recipe 5 came close to meeting the 2.4 mg Codex standard
based on 5% bioavailability; however, it was not significant in this analysis. Based on the results
obtained from this analysis (one-sided test), hypothesis 2, which proposed that the nutrient densities of
the five developed complementary foods will meet or exceed/fall below (as appropriate) the standards
in the Codex Alimentarius is not rejected. Although the one-sided t-test for the nutrient density of
the developed recipes showed nutrient inadequacies in some cases, such deficits will be corrected
during the optimization phase of this study, as described in the conceptual framework. Moreover,
the challenges recorded in this study may have narrowed the chances of success. Such challenges
may be associated with the identification and selection of food samples, the formulation approach,
or the processing method adopted. For instance, despite conventional knowledge about fresh foods,
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all food items in this study were dried to extend the shelf life and prevent scarcity when they are
out of season (in the case of fruit and vegetables). This invariably contributed to nutrient depletion,
as seen in the results of this study. Discoveries from this study showed that homemade complementary
foods can fill the nutrient deficits observed in both commercial complementary foods and those that
are locally fabricated, provided that (1) challenges that contribute to nutrient loss during processing
(e.g., drying) can be addressed; (2) fortificants bearing the required/deficient nutrients are added to
the food as micronutrient powders (MNPs) and a small quantity of lipid-based nutrient supplements
(sq-LNS) [58].

The strength of this study lies in its practicability. The researchers did not rely on the available
food/nutrient composition tables, as is common in similar studies promoting food-based strategy of
addressing malnutrition, but painstakingly analyzed all food samples considered in this experimental
study. Although there have been several studies advocating the inclusion of animal-source foods (ASF)
for adequate protein and/or micronutrient provision, this study is the first to create a prototype of
complementary food for infants and young children using dried goat meat. Moreover, the collaborative
nature of this study brought professionals from different fields of study together. For example,
a team from a U.S. institution, comprising the Nutritional Sciences and the Food and Animal Science
departments, and a team from a Malawian institution, partnered to ensure that the best practices were
obtainable at every stage of this study. The use of the Codex Alimentarius guidelines for formulating
complementary foods for infants and young children improved the quality of the five developed
complementary foods and, by extension, counts as a strength of this study. Also, the use of the ESHA
Food Processor constituted a major strength in that it allowed us to achieve results marked by accuracy,
timeliness, and clarity of interpretation during the formulation of the developed complementary foods.

Although the study had many strengths, a number of limitations were also identified. First,
the targeted population for this research study was Malawians. The effect of the geographical/regional
differences in locations where this study was conducted and where the targeted populations are
domiciled cannot be dismissed. For example, some food samples obtained in the USA are fortified,
while that may not be the case among the studied population in Malawi. This contributed to the
variability observed in the nutrient compositions of food samples. Second, the drying method in this
study, involving the use of an electric oven, may not have yielded the best results because studies
have shown that other methods involving extrusion or freeze-drying better preserve the flavor, color,
texture, and nutritional values of food [46,60], while the methods we used might have contributed to
nutrient loss and denaturing. Third, drying a limited number of food samples hindered the probability
of success with a potential nutrient-dense food sample. In other words, drying more food samples will
increase the chances of discovering more nutrient-rich foods. Fourth, the variability in the nutrient
content of the various analyzed food samples shows that we cannot assume that the same nutrient
contents will be present when Malawian ingredients are used. Fifth, the use of adult African sensory
evaluators (consumer panelists) who are residing in the USA might have influenced the outcome of
the sensory analysis because of possible distortions in taste preferences among panelists, as a result of
exposure to other foods. However, further studies will be needed to substantiate this claim.

4. Conclusions

Irrespective of the inadequacies presented by the “problem nutrients,” this study has demonstrated
the possibility of developing affordable, culturally acceptable, and nutrient-rich homemade
complementary foods using locally sourced food materials such as vegetables combined with ASFs
obtained by drying goat meat samples. However, aside from the proposed optimization of the WWF,
to ensure an adequate dietary intake of calcium, iron, and zinc, it may be necessary to consume foods
in their natural/fresh states if such options are available to avoid the nutrient depletion instigated by
factors such processing, handling, or preservation. In addition, there is a need for an intervention
incorporating nutrition education, to teach households about the appropriate dietary approaches and
practices that will translate into effective behavioral changes, thereby optimizing the adequate use
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of locally available food options. Alternatively, other cost-effective approaches to achieving nutrient
adequacy may include the fortification of foods and making supplements affordable and accessible to
a low-income population.

Although this food-based pilot study was targeted at households in low- and middle-income
communities of developing countries like Malawi, the resultant therapeutic effects, as ascertained by a
nutrient density assessment, will immeasurably benefit any private or corporate enterprise willing to
commercialize the product among high-income communities as well. Therefore, Recipe 5, which was
culturally accepted by 65% of the panelists, together with Recipe 3 with a 61% acceptance rate, will be
introduced to Malawians for further intervention studies.
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