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Abstract: Tocotrienol-rich vitamin E from palm oil (Tocovid) has been shown to ameliorate
diabetes through its superior antioxidant, antihyperglycemic, and anti-inflammatory properties
in diabetic rats. This study aimed to investigate the effects of Tocovid on diabetic nephropathy in
patients with type 2 diabetes. Baseline parameters of potential subjects such as HbA1c, blood pressure,
Advanced Glycation Endproduct (AGE), soluble receptor for AGE (sRAGE), Nε-Carboxymethyllysine
(Nε-CML), and Cystatin C were assessed for possible correlation with diabetic nephropathy.
Only subjects with diabetic nephropathy or urine microalbuminuria-positive defined as Urine
Albumin to Creatinine Ratio (UACR) >10 mg/mmol were recruited into a prospective, randomized,
double-blinded, placebo-controlled trial. The intervention group (n = 22) received Tocovid
200 mg twice a day while the control group (n = 23) received placebo twice a day for 8 weeks.
Changes in Hemoglobin A1c (HbA1c), blood pressure, serum biomarkers and renal parameters
such as UACR, serum creatinine, and estimated Glomerular Filtration Rate (eGFR) were compared
between the two groups. It was found that serum Nε-CML significantly correlated to the severity
of microalbuminuria. For every 1 ng/mL increase in serum Nε-CML, the odds of diabetic
nephropathy increased by 1.476 times. Tocovid, compared to placebo, significantly reduced serum
creatinine but not eGFR, UACR, HbA1c, blood pressure, and serum biomarkers. In conclusion, serum
Nε-CML is a potential biomarker for diabetic nephropathy. Treatment with Tocovid significantly
reduced serum creatinine; therefore Tocovid may be a useful addition to the current treatment for
diabetic nephropathy.

Keywords: advanced glycation end products; carboxymethyl-lysine; tocotrienol; vitamin E;
antioxidant; diabetes; diabetic nephropathy; oxidative stress

1. Introduction

Diabetes is a major global health crisis of the 21st century. The number of people affected by
diabetes quadrupled from 108 million people in 1980 to a staggering figure of 422 million people
worldwide in 2014 [1]. One of the major complications of diabetes is diabetic nephropathy, the leading
cause of end stage renal failure (ESRF) worldwide. Costly renal replacement therapies, such as
dialysis or kidney transplant, are needed in order for patients with ESRF to survive [2]. ESRF has
affected 2 million people globally, with a rapid growth rate of approximately 5–7% per year [3].
Furthermore, patients with diabetic nephropathy have increased risk of cardiovascular disease (CVD)
events, hospitalizations [4], cognitive dysfunction [5], and poor quality of life [6,7]. Therefore, treatment
to prevent the onset and progression of diabetic nephropathy is vital.

Vitamin E is a potent antioxidant capable of reducing oxidative stress and inflammation,
the key players in the pathogenesis of diabetic complications [8]. The two major constituents
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of vitamin E are tocopherol and tocotrienol. Tocotrienol has been proven to be 40 to 60 times
more potent antioxidant compared to tocopherol with superior antiglycemic, anticholesterolemic,
anti-inflammatory, neuroprotective, and cardioprotective properties [9]. However, the renoprotective
effect of tocotrienol in type 2 diabetes is currently limited, and has not been clinically investigated.
The MICRO-HOPE study reported that 4.5 years of vitamin E at a dose of 400 IU did not have
any significant effect on the risk and progression of diabetic nephropathy in patients with type 2
diabetes [10]. This was further supported in other studies, systemic reviews, and meta-analysis [10].
However, these studies were based on tocopherol-rich vitamin E, and not tocotrienol-rich vitamin E.
Tocotrienol consisted of merely 3% of all research studies on vitamin E in PubMed. Out of 927 clinical
trials on vitamin E, only 25 trials were on tocotrienol, and none of them investigated the effect of
tocotrienol in diabetic nephropathy [9].

Nevertheless, results from preclinical studies on tocotrienol and diabetic nephropathy have
been promising. Tocotrienol-rich fraction attenuated lipid-induced nephropathy in diabetic rats
through its antihyperglycemic, anticholesterolemic, and renoprotective effects. The enhanced renal
function was achieved through downregulation of inflammatory and profibrotic cytokines such as
transforming growth factor beta-1 (TGF-β1), tumor necrosis factor-α (TNF-α), and nuclear factor
kappa-light-chain-enhancer of activated B cells (NF-kB) [11,12]. The current treatment, which is
strict glucose and blood pressure control, does not address these inflammatory pathways [12].
Therefore, tocotrienol-rich vitamin E (Tocovid) was proposed as an addition to the current treatment
for diabetic nephropathy.

Besides that, Tocovid is capable of reducing advanced glycation end product (AGE), a toxic
by-product of glucose, protein, or lipid oxidation [13,14]. AGE, a novel biomarker, can cause oxidative
stress by binding to its receptor (RAGE). Formation of AGE is accelerated under hyperglycemic states,
and can accumulate in the body despite normalization of HbA1c [14,15]. Although reduction of
HbA1c resulted in short-term improvement in diabetic nephropathy [16,17], more recent studies,
such as the follow-up studies of Diabetes Control and Complications Trial/Epidemiology of Diabetes
Interventions and Complications (DCCT/EDIC) study and the United Kingdom Prospective Diabetes
Study (UKPDS), showed that HbA1c did not correlate well with diabetic nephropathy in the long
run [18,19]. This was because HbA1c lasts for only 3 months in the body, whereas AGE lasts
a lifetime. Studies have correlated AGE levels in the serum and tissues to the development of diabetic
nephropathy [20,21]. Therefore, the reduction of AGE, and not HbA1c, may prevent the onset and
progression of diabetic nephropathy in the long run.

One of the well-characterized types of AGE in humans is Nε-CML. In the DCCT-EDIC study,
Nε-CML in skin collagen was found to predict the risk of future 10-year progression of diabetic
nephropathy [22]. In contrast to RAGE, the soluble form of RAGE (sRAGE) neutralizes the effects and
signals of RAGE, leading to the prevention of oxidative stress [23]. Furthermore, the ratio of serum
AGE to the sRAGE was found to be an independent predictor of endothelial dysfunction [24]. On the
other hand, Cystatin C is a novel marker of renal function shown to be superior to serum creatinine in
eGFR estimation [25].

The present study aimed to establish a correlation between diabetic nephropathy with HbA1c,
blood pressure, AGE, sRAGE, Nε-CML, and Cystatin C. The second aim is to investigate whether
high-dose Tocovid will have an effect on diabetic nephropathy assessed by UACR, serum creatinine,
and eGFR. Then, this effect will be examined for any correlation to changes in HbA1c, blood pressure,
AGE, sRAGE, Nε-CML, and Cystatin C.

2. Materials and Methods

2.1. Participants and Study Enrolment

Participants were recruited from an existing pool of patients who come for regular follow-ups
at the Monash University Clinical Research Center (CRC) in Bandar Sunway and in Johor Bahru.
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The participants were selected to come for screening if they fulfilled the inclusion and exclusion criteria
based on their past records at the research centers. Participants who were interested in the study
were reminded, over the phone, to come in after fasting for at least 8 h, as per any routine diabetes
follow-ups, to avoid strenuous exercise the night before, and to skip their morning dose of anti-diabetic
medications. Premenopausal female participants were reminded to come for screening during their
non-menstrual period. Participants who had fallen ill before their screening visit were allowed to fully
recover before they joined the study.

Informed consent was obtained from all participants before the screening began. The study
was carried out in accordance with the Declaration of Helsinki, and the study protocol was
approved by the Monash University Human Research Ethics Committee (Project number: 12090).
Complete history-taking and physical examination were conducted during screening. Weight and
height were recorded twice without wearing shoes. Waist circumference was also measured by aligning
the bottom edge of the measuring tape with the top of the hip bone and, then, wrapping the tape
measure all the way around the waist. The reading was recorded twice during exhalation.

The participants’ blood pressure was measured three times on the left arm in a sitting position,
and an average of three stable readings was taken. Other screening tests included were fasting blood
glucose, HbA1c, urine dipstick test, UACR, and urine pregnancy test for premenopausal women.
Safety blood tests, such as renal profile, liver function test, lipid profile, and ECG were conducted to
ensure that the participants are fit to participate.

2.2. Preliminary Assessment

Participants must be aged between 18 to 80 years old, and diagnosed with type 2 diabetes with
stable glucose control (not more than 10% change over the last 2 months) in order to participate. If the
participants have hypertension, their blood pressure control must be stable (not more than 10% change
over the last 2 months), and the range should be less than 160/100. A microalbuminuria-positive
result in diabetic patients must be due to diabetic nephropathy alone. Therefore, the exclusion criteria
were the presence of known non-diabetic kidney disease (i.e., kidney stones, minimal change disease,
or idiopathic membranous nephropathy, IgA nephropathy, and acute tubulointerstitial nephritis)
or untreated urinary tract infection or menstrual period during screening. This is crucial because
these presentations can cause a falsely high UACR level that is not due to diabetic nephropathy.
Another exclusion criterion was the presence of acute or severe chronic illnesses, such as acute coronary
syndrome, active tuberculosis, active cancer, liver, or inflammatory diseases. Participants who were
pregnant were also excluded.

Baseline characteristics of participants who met the inclusion and exclusion criteria during the
preliminary assessment were recorded for analysis. Serum AGE, sRAGE, Nε-CML and Cystatin C
from eligible participants were analyzed.

2.3. Randomized Controlled Trial (RCT)

Participants who passed the preliminary assessment were further assessed for eligibility into
a prospective, randomized, double-blinded, placebo-controlled clinical trial. Participants must have
diabetic nephropathy or UACR ≥10 mg/mmol (3–4 times above the upper limit of normal) in order to
join the trial. The normal UACR range for females is ≤3.5 mg/mmol and, for males, is ≤2.5 mg/mmol.
Besides that, participants are excluded if they have consumed water-soluble antioxidants, such as
polyphenols, glutathione, vitamin B or C, during the past 2 weeks, or fat-soluble antioxidants such as
vitamin A, D, E, and K during the past 1 month. This is to ensure that the outcome of the trial is due to
the intervention alone, and not because of other antioxidants.

The intervention group received 200 mg twice a day Tocotrienol-rich vitamin E
(Tocovid SuprabioTM) (Hovid Berhad, Ipoh, Malaysia), while the control group was given placebo
twice a day for eight weeks. The ingredient of the Tocovid SuprabioTM, called EVNol SupraBio was
manufactured by ExcelVite, Malaysia. The high dosage of Tocovid was used because previous clinical
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studies showed that Tocovid at low doses did not yield significant results [26]. The dose selected is
the maximum dose approved by the Food and Drug Administration (FDA). The study duration of
eight weeks was based on previous studies that reported eight weeks of Tocovid had successfully
reduced lipid peroxidation in humans [26] and AGE, HbA1c, and RAGE expression in the liver of rats
with metabolic syndrome [13].

2.4. Sample Size

The power calculations were based on the ability to detect a 30% reduction in UACR in the
primary analysis of Tocovid compared to placebo, assuming a 5% SD of effect (α = 0.05 and β-1 = 0.8)
and an anticipated dropout rate of 4%. To fulfill these specifications, 52 subjects were required.

2.5. Randomization

Randomization was conducted in a 1:1 ratio by an independent consultant who provided the
computer-generated random allocation sequence with permuted blocks of size 4, stratified according
to age, gender, and duration of diabetes. Treatment allocation was concealed using sequentially
numbered opaque sealed envelopes. Participants and principal investigators were blinded to the
allocation into study groups. The capsules of both placebo and Tocovid were similar in size, shape,
and excipients. The identity of the study drugs was kept confidential by ExcelVite and they were
labeled as Drug A and Drug B.

2.6. Follow-Up Visits

Monthly follow-ups were carried out to monitor for adverse drug events and compliance to
treatment. Participants were asked to return their drug bottles for capsule count in every follow-up to
ensure compliance. Anthropometric measurements, blood pressure, finger-prick test, and urine
dipstick were routinely carried out in every visit for monitoring purposes. In the final visit,
the participants’ HbA1c, serum creatinine, eGFR, UACR, and serum biomarkers were repeated.
Safety blood tests were also repeated and compared to baseline to ensure that the study drugs had no
adverse effects on the vital organs such as liver, kidneys, and heart.

The identity of the study drugs were revealed by ExcelVite at the end of the study. Drug A was
Tocovid while drug B was placebo. The overall study design is as shown in Figure 1.

Figure 1. Overall study design.
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2.7. Assessment of Outcomes

The primary outcome variables of this study were HbA1c, blood pressure, AGE, sRAGE, Nε-CML,
and Cystatin C. The secondary outcome variables were the renal parameters; UACR, serum creatinine,
and eGFR.

2.8. HbA1c

Determination of HbA1c is a useful test to measure glycemic control over the past three months.
Only 1.5 µL of capillary blood sample was required to run the test. The HbA1c kit (Alere Afinion,
Waltham, MA, USA) has a measuring range of 4–15% with coefficient variances (CV) of less than 3%.

2.9. BUSE Creatinine, Lipid Profile, and Liver Function Test

During the screening and final visit, 18 mL of fasting blood samples were taken and collected
into two serum-separating tubes (SST) from each participant. To separate the serum, the blood
samples were centrifuged (Eppendorf Centrifuge 5702R, Hamburg, Germany) at 3600 rpm for 15 min.
Subsequently, the serum samples were extracted and transferred into 1 mL Eppendorf tubes. Some of
the serum samples were sent to a national certified pathology lab to be tested for serum creatinine,
blood urea nitrogen (BUN), lipid profile, and liver function test (Abbott diagnostic ARCHITECT,
Abbott Park, IL, USA) on the same working day. The coefficient variances for these tests were generally
less than 6%.

2.10. AGE, sRAGE, Nε-CML, and Cystatin C

Serum samples for AGE, sRAGE, Nε-CML, and Cystatin C were stored in a −80 ◦C fridge.
Processing of the biomarkers was done at the end of study, on a batch-to-batch basis, to minimize
inter-assay variation. Serum AGE, sRAGE, Nε-CML, and Cystatin C concentrations were measured in
duplicates and quantified by calorimetric method using Enzyme-linked Immunosorbent Assay (ELISA)
(TECAN Infinite 200 PRO, Männedorf, Zürich, Switzerland). The ELISA kit for AGE (Cell Biolabs STA-317,
San Diego, CA, USA), Nε-CML (Cell Biolabs STA-816, San Diego, CA, USA), sRAGE (Elabscience
E-EL-H0295, Houston, TX, USA), and Cystatin C (Elabscience E-EL-H0055, Houston, TX, USA) had
intra-assay coefficient variances of 4% and inter-assay coefficient variances of 8%.

2.11. UACR

The urine samples were sent to the national pathology lab on the same working day to test
for UACR. The UACR kit (Abbott diagnostic ARCHITECT, Abbott Park, IL, USA) had coefficient
variances of ≤6% for microalbuminuria and ≤5% for urine creatinine. Two UACR readings were
taken on two different days (screening visit and visit 1) to obtain the average UACR level at baseline.
Both readings must be ≥10 mg/mmol in each subject. UACR is a very accurate test of proteinuria
because it is unaffected by the variation of urine concentration, unlike a urine dipstick test. The UACR
readings were classified into several grades (0–29, 30–149, 150–299, and ≥300 mg/mmol) to reflect the
severity of microalbuminuria in patients with type 2 diabetes.

2.12. Statistical Analysis

All statistical analyses were conducted using Statistical Package for Social Sciences (SPSS)
version 25 (IBM SPSS Inc, Chicago, IL, USA). Baseline characteristics of study participants were
presented using chi-square test for categorical variables and independent t-test for numerical variables.

During the preliminary assessment, baseline parameters such as HbA1c, blood pressure,
and serum biomarkers were compared between several UACR grades using analysis of covariance
(ANCOVA) with post hoc Bonferroni test for pairwise comparisons. A partial correlation test was
applied to correlate baseline parameters with serum creatinine and eGFR while controlling for
confounding factors. Univariate and multivariate logistic regression were conducted to determine
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the odds of diabetic nephropathy assessed by UACR in relation to the baseline parameters. Model fit
assessment was done using Hosmer–Lemeshow test, classification table, and area under receiver
operating characteristics (ROC) curve.

In the RCT, assessment of analytes at baseline between placebo and Tocovid group was conducted
using an independent t-test. Treatment changes at the end of the study were compared between both
groups using ANCOVA, adjusting for the respective baseline values. p-values < 0.05 were deemed
statistically significant.

3. Results

A total of 118 type 2 diabetic patients were screened over 2 months. Of these, 59 subjects did not
meet the inclusion criteria and were excluded. Another three male subjects were excluded because of
kidney stones that caused hematuria. Three female subjects had microalbuminuria but tested positive
for urinary tract infection (UTI). They were treated with cefuroxime 250 mg BD for 1 week, and then
returned for a repeat screening visit. Dipstick test for all three women showed no UTI after treatment,
but their microalbuminuria remained positive, thus, they were included in the study. None of the
premenopausal women had their menstrual period during the screening. In total, 66 patients were
eligible after the preliminary assessment, and their baseline parameters were recorded.

In the RCT, 21 of the 66 patients were excluded because they did not have diabetic nephropathy
or were microalbuminuria-positive (UACR >10 mg/mmol). Five subjects were on antioxidants during
screening, and they were asked to stop their antioxidant intake for at least two weeks (if water-soluble
antioxidant) or four weeks (if fat-soluble antioxidant) before returning for the randomization visit.
A total of 45 patients were included into the RCT; 22 in the intervention group and 23 in the
placebo group. There were no adverse events and none were lost upon follow-up. The summary of the
patient recruitment flowchart is shown in Figure 2.

Figure 2. Summary of patient flow diagram. n: number of participants.
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3.1. Preliminary Assessment

The baseline characteristics of the 66 participants who passed the preliminary assessment are
shown in Table 1. The participants were predominantly males and of Malay ethnicity. The mean age
was 61.6 years, and the mean duration of diabetes was 18.5 years. The average HbA1c reading was
8.9%, while the average systolic blood pressure (SBP) and diastolic blood pressure (DBP) readings
were 136.7 mmHg and 77.2 mmHg, respectively. The mean Body Mass Index (BMI) was 29 kg/m2,
which is considered as overweight or pre-obese by World Health Organization (WHO) [27].

Table 1. Baseline characteristics of 66 patients with type 2 diabetes.

Baseline Characteristics Participants (N = 66)

Gender, n (%)
Male 48 (72.7)

Female 18 (27.3)

Race, n (%)
Malay 34 (51.5)

Chinese 14 (21.2)
Indian 18 (27.3)

Age (years) * 61.6 ± 9.5

Duration of DM (years) * 18.5 ± 8.9

HbA1c (%) * 8.9 ± 1.7

SBP (mmHg) * 136.7 ± 15.3

DBP (mmHg) * 77.2 ± 9.1

BMI (kg/m2) * 29 ± 4.8

* Data presented as means ± standard deviations. N: Number of participants, DM: diabetes mellitus,
HbA1c: Hemoglobin A1c, SBP: Systolic Blood Pressure, DBP: Diastolic Blood Pressure, BMI: Body Mass Index.

3.1.1. Correlations with UACR Grades

There was a significant difference in Nε-CML between the UACR grades, despite controlling
for potential confounding factors such as HbA1c, SBP, DBP, age, and duration of diabetes (Table 2).
Post hoc Bonferroni test showed that the mean Nε-CML in UACR grade 30–149 mg/mmol was
significantly higher than the mean Nε-CML in UACR grade 0–29 mg/mmol (p = 0.049). This showed
that serum Nε-CML was significantly raised in subjects with diabetic nephropathy compared to
those without.

Table 2. Comparison of serum biomarkers between urine microalbuminuria (UACR) grades.

UACR Grade
(mg/mmol) N (%) AGE (µg/mL) sRAGE (pg/mL) Nε-CML *,†

(ng/mL)
Cystatin C

(ng/mL)

0–29 29 (43.9) 61.4 ± 95.8 956.5 ± 467.8 1.46 ± 0.36 2235.1 ± 956.7
30–149 29 (43.9) 159.3 ± 191.6 1131.9 ± 395.4 2.85 ± 0.36 1933.2 ± 906.8

150–299 5 (7.6) 90.9 ± 65.3 1301.9 ± 643.8 1.92 ± 0.90 1767.7 ± 1114.9
≥300 3 (4.5) 12.7 ± 9.9 1020.6 ± 443.4 3.41 ± 1.10 2043.8 ± 928.2

All values are presented as means ± standard errors of the mean. † Post hoc Bonferroni test applied. * Significant at
p < 0.05. UACR: Urine Albumin to Creatinine Ratio, N: Number of participants, AGE: Advanced Glycation
Endproduct, sRAGE: soluble Receptor for AGE, Nε-CML: Nε-Carboxymethyllysine.

However, there were no significant differences in AGE, sRAGE, and Cystatin C between the UACR
grades (Table 2). Similarly, there was no significant difference in HbA1c, systolic blood pressure (SBP),
diastolic blood pressure (DBP), age, and duration of diabetes between the UACR grades, as shown
in Table 3.
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Table 3. Comparison of HbA1c, systolic blood pressure, diastolic blood pressure, age, and duration of
diabetes between urine microalbuminuria (UACR) grades.

UACR Grade
(mg/mmol) N (%) HbA1c (%) SBP

(mmHg)
DBP

(mmHg) Age (years) Duration of
Diabetes (years)

0–29 29 (43.9) 8.7 ± 1.6 136 ± 11 76 ± 8 62.5 ± 7.8 17.8 ± 9.4
30–149 29 (43.9) 8.9 ± 1.9 136 ± 18 79 ± 10 61.7 ± 10.4 18.8 ± 8.6
150–299 5 (7.6) 10.2 ± 2.2 140 ± 23 75 ± 8 54.6 ± 14.8 20 ± 11.2
≥300 3 (4.5) 8.9 ± 0.4 143 ± 8 81 ± 10 62.3 ± 2.1 20.3 ± 5.7

All values are presented as means ± standard errors of the mean. Data was not significant at p > 0.05. N: Number of
participants, HbA1c: Hemoglobin A1c, SBP: Systolic Blood Pressure, DBP: Diastolic Blood Pressure.

3.1.2. Correlations with Serum Creatinine and eGFR

Based on Table 4, serum Nε-CML showed a significant correlation with serum creatinine and
eGFR despite controlling for HbA1c, SBP, DBP, and age. Nε-CML had a low positive correlation with
serum creatinine and a low negative correlation with eGFR. There were no significant correlations in
the rest of the parameters, even after controlling for confounding factors.

Table 4. Correlation between serum biomarkers HbA1c, SBP, and DBP with serum creatinine and eGFR.

Baseline Parameters
Serum Creatinine (mmHg) eGFR (mL/min/1.73 m2)

Correlation, r p-Value Correlation, r p-Value

AGE (µg/mL) 0.140 0.287 −0.145 0.269
sRAGE (pg/mL) −0.199 0.121 0.185 0.151

Nε-CML (ng/mL) 0.31 0.015 * −0.30 0.032 *
Cystatin C (ng/mL) −0.238 0.061 0.164 0.199

HbA1c (%) † 0.116 0.369 −0.049 0.704
SBP (mmHg) ‡ 0.182 0.153 −0.126 0.325
DBP (mmHg) ‡ 0.086 0.504 −0.017 0.893

Data controlled for HbA1c, SBP, DBP, and age. † Data controlled for SBP, DBP, age, and Nε-CML. ‡ Data controlled
for HbA1c, age, and Nε-CML. * Significant at p < 0.05. AGE: Advanced Glycation Endproduct, sRAGE: soluble
Receptor for AGE, Nε-CML: Nε-Carboxymethyllysine, HbA1c: Hemoglobin A1c, SBP: Systolic Blood Pressure,
DBP: Diastolic Blood Pressure.

3.1.3. Correlations with Nε-CML

Nε-CML had a significant moderate positive correlation with AGE after controlling for HbA1c
and age, as shown in Table 5. There were no significant correlations between Nε-CML and the other
serum biomarkers, HbA1c, age, and duration of diabetes.

Table 5. Correlation between baseline parameters and Nε-CML.

Baseline Parameters
Nε-CML (ng/mL)

Correlation, r p-Value

HbA1c (%) −0.08 0.522
Age (years) −0.20 0.107

Duration of diabetes (years) 0.06 0.625
AGE (µg/mL) ‡ 0.500 0.000 *

sRAGE (pg/mL) ‡ −0.094 0.476
Cystatin C (ng/mL) ‡ −0.180 0.169

‡ Data controlled for HbA1c and age. * Significant at p < 0.05. AGE: Advanced Glycation Endproduct, sRAGE: soluble
Receptor for AGE, Nε-CML: Nε-Carboxymethyllysine, HbA1c: Hemoglobin A1c.

3.1.4. Univariate and Multivariate Analysis

Binary logistic regression was used to determine the odds of diabetic nephropathy in relation
to the HbA1c, SBP, DBP, AGE, sRAGE, Nε-CML, and Cystatin C levels. Upon univariate analysis,
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there was a significant relationship between diabetic nephropathy and DBP, AGE, sRAGE, Nε-CML,
and Cystatin C (p < 0.250), as shown in Table 6.

Table 6. Simple and multiple logistic regression.

Baseline Parameters
Simple Logistic Regression Multiple Logistic Regression a

B Crude OR
(95% CI) p-Value B Adjusted OR ‡

(95% CI)
p-Value

HbA1c (%) 0.132 1.141 (0.852, 1.527) 0.377
SBP (mmHg) 0.006 0.730 (0.974, 1.039) 0.730
DBP (mmHg) 0.033 1.033 (0.978, 1.092) 0.246 *
AGE (µg/mL) 0.004 1.004 (1.000, 1.009) 0.049 *

sRAGE (pg/mL) 0.001 1.001 (1.000, 1.002) 0.099 *
Nε-CML (ng/mL) 0.357 1.429 (1.106, 1.845) 0.006 * 0.389 1.476 (1.112, 1.996) 0.008 **

Cystatin C (ng/mL) 0.000 1.000 (0.999, 1.000) 0.143 *

* Significant at p < 0.250 on univariate analysis. ** Significant at p < 0.005 on multivariate analysis. a Forward Wald
multiple logistic regression method applied. ‡ Adjusted for sRAGE. HbA1c: Hemoglobin A1c, SBP: Systolic Blood
Pressure, DBP: Diastolic Blood Pressure, AGE: Advanced Glycation Endproduct, sRAGE: soluble Receptor for AGE,
Nε-CML: Nε-Carboxymethyllysine.

On multivariate analysis, only serum Nε-CML showed statistical significance with diabetic
nephropathy (p < 0.05). For every 1 ng/mL increase in serum Nε-CML, the odds of diabetic
nephropathy increased by 1.476 times (p = 0.008).

Model fit assessment was conducted for the multiple logistic regression model using
three methods: Hosmer–Lemeshow test, classification table, and area under receiver operating
characteristics (ROC) curve. In the Hosmer–Lemeshow test, the p-value was above 0.05 (p = 0.40),
indicating a good model fit to data. In the classification table, the percentage which is correctly
classified is expected to be more than 70% for a good model fit. In this model, 72.1% of the subjects
were correctly classified by the model. The area under ROC curve (AUC) is an acceptable fit if >0.7.
In this model, the AUC was 72.1% (95% CI: 0.595, 0.828).

3.2. Randomized Controlled Trial

General characteristics of the participants included in the trial are presented in Table 7. There were
no significant differences in sociodemographic characteristics and baseline analytes, such as HbA1c,
SBP, DBP, weight, BMI, renal parameters, lipid profile, and serum biomarkers between the placebo and
Tocovid group. For the liver function test, the intervention group had a significantly higher aspartate
aminotransferase (AST) and alanine aminotransferase (ALT) levels compared to the placebo group,
but they were within the normal range.

Table 7. General characteristics and blood chemistry between placebo and Tocovid group.

General Characteristics Placebo Group
(N = 23)

Tocovid Group
(N = 22) p-Value

Gender
0.586Male (%) 15 (65.2) 16 (72.7)

Female (%) 8 (34.8) 6 (27.30

Race

0.895
Malay (%) 14 (60.9) 12 (54.5)

Chinese (%) 5 (21.7) 6 (27.3)
Indian (%) 4 (17.4) 4 (18.2)

Age (years) 63.3 ± 10.42 59.9 ± 10.24 0.283

Duration of DM (years) 17.9 ± 7.65 18.2 ± 10 0.893

HbA1c (%) 8.7 ± 1.5 9.0 ± 2 0.611
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Table 7. Cont.

General Characteristics Placebo Group
(N = 23)

Tocovid Group
(N = 22) p-Value

SBP (mmHg) 138.8 ± 15 136.2 ± 18.4 0.601

DBP (mmHg) 78.5 ± 9.4 77.0 ± 10.2 0.617

Weight (kg) 78.3 ± 12.8 78.2 ± 16.5 0.983

BMI (kg/m2) 29.3 ± 4.7 29.4 ± 5.4 0.978

Renal Parameters:
UACR (mg/mmol) 128.7 ± 164.7 66.4 ± 61.8 0.101

Serum Creatinine (umol/L) 125.5 ± 56.6 120.2 ± 57.9 0.761
eGFR (mL/min/1.73 m2) 57.5 ± 25.1 63.1 ± 24.1 0.445

Biomarkers:
AGE (µg/mL) 112.2 ± 149.5 136.1 ± 188.4 0.646

sRAGE (pg/mL) 1060.9 ± 438.8 1099.9 ± 408 0.759
Nε-CML (ng/mL) 2.4 ± 2.2 2.7 ± 2.5 0.695

Cystatin C (ng/mL) 1947.5 ± 1078 1941.3 ± 837 0.983

Safety Tests:
Urea (mmol/L) 8.4 ± 4.7 6.3 ± 3.5 0.095

Total chol (mmol/L) 4.2 ± 0.9 4.6 ± 0.9 0.192
HDL (mmol/L) 1.1 ± 0.3 1.2 ± 0.2 0.728

AST (UI/L) 19.2 ± 6.9 25.4 ± 9.1 0.013 *
ALT (UI/L) 19.3 ± 11 29 ± 15.7 0.020 *

All values are presented as means ± standard deviations. * Data is significant (p < 0.05). N: Number
of participants, HbA1c: Hemoglobin A1c, SBP: Systolic blood pressure, DBP: Diastolic blood pressure,
BMI: Body mass index, DM: Diabetes mellitus, UACR: Urine albumin to creatinine ratio, eGFR: estimated
Glomerular Filtration Rate, AGE: Advanced Glycation Endproduct, sRAGE: soluble Receptor for AGE,
Nε-CML: Nε-Carboxymethyllysine, Total chol: Total cholesterol, HDL: High density lipoprotein, AST: Aspartate
Aminotransferase, ALT: Alanine aminotransferase.

Table 8 compared the treatment changes between the placebo and Tocovid group at the end of
eight weeks. Tocovid significantly reduced serum creatinine compared to placebo (−11.28 umol/L ± 4.31,
p = 0.014) despite adjustment for baseline value of serum creatinine, HbA1c, SBP, DBP, age, weight,
AGE, CML, sRAGE, and Cystatin C. The result suggests that Tocovid prevented the progression of renal
impairment by stabilizing serum creatinine when compared to placebo. There were no significant changes
in the rest of the analytes, even after adjustment for their baseline values respectively. The compliance rate
was 97% in the placebo group and 98% in the Tocovid group.

Table 8. Adjusted changes in metabolic, renal and biomarker parameters between placebo and
Tocovid group.

Analytes Placebo Group Tocovid Group Mean Difference p-Value †

HbA1c (%) 8.61 ± 0.17 8.45 ± 0.17 −0.16 ± 0.24 0.518

SBP (mmHg) 137.09 ± 2.81 130.48 ± 2.88 −6.62 ± 4.03 0.108

DBP (mmHg) 77.61 ± 1.78 77.91 ± 1.82 0.297 ± 2.57 0.909

Weight (kg) 78.22 ± 0.84 79.47 ± 0.86 1.24 ± 1.20 0.308

Renal parameters:
UACR (mg/mmol) 66.93 ± 8.93 85.43 ± 9.14 18.45 ± 12.97 0.161

Sr Creatinine (µmol/L) 131.04 ± 2.92 119.76 ± 2.92 −11.28 ± 4.31 * 0.014 ‡

eGFR (mL/min/1.73 m2) 74.89 ± 11.51 63.57 ± 11.77 −11.31 ± 16.51 0.497

Serum biomarkers:
AGE (µg/mL) 83.66 ± 27.20 89.82 ± 27.20 6.16 ± 38.50 0.874

sRAGE (pg/mL) 1088.32 ± 111.65 1246.36 ± 114.16 158.05 ± 159.77 0.328
Nε-CML (ng/mL) 2.56 ± 0.48 2.59 ± 0.49 0.28 ± 0.69 0.967

Cystatin C (ng/mL) 2172.45 ± 181.56 2031.99 ± 185.64 −140.46 ± 259.66 0.591
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Table 8. Cont.

Analytes Placebo Group Tocovid Group Mean Difference p-Value †

Safety tests:
Urea (mmol/L) 7.33 ± 0.37 7.26 ± 0.38 −0.07 ± 0.54 0.896

Total chol (mmol/L) 4.52 ± 0.12 4.67 ± 0.12 0.15 ± 0.17 0.384
HDL (mmol/L) 1.17 ± 0.03 1.18 ± 0.03 0.01 ± 0.04 0.772

AST (IU/L) 21.21 ± 0.91 19.41 ± 0.93 −1.80 ± 1.35 0.190
ALT (IU/L) 26.45 ± 1.67 22.17 ± 1.71 −4.28 ± 2.46 0.089

All values are presented as means ± standard errors of the mean. † Data adjusted for baseline values
and age. ‡ Data adjusted for baseline value, age, weight, HbA1c, SBP, DBP, age, weight, AGE, CML, sRAGE,
and Cystatin C. * Significant at p < 0.05. HbA1c: Hemoglobin A1c, SBP: Systolic blood pressure, DBP: Diastolic
blood pressure, BMI: Body mass index, DM: Diabetes mellitus, UACR: Urine albumin to creatinine ratio, eGFR:
estimated Glomerular Filtration Rate, AGE: Advanced Glycation Endproduct, sRAGE: soluble Receptor for AGE,
Nε-CML: Nε-Carboxymethyllysine, Total chol: Total cholesterol, HDL: High density lipoprotein, AST: Aspartate
Aminotransferase, ALT: Alanine aminotransferase.

4. Discussion

This study showed that diabetic nephropathy was significantly associated with serum Nε-CML
and not the conventional risk factors, such as hyperglycemia, assessed by HbA1c and blood pressure.
This is a new finding, as there are no other studies that have demonstrated a significant correlation
between serum Nε-CML and diabetic nephropathy that is independent of HbA1c, blood pressure, age,
and duration of diabetes. In fact, serum Nε-CML was significantly correlated to diabetic nephropathy
in patients with type 1 diabetes, but not type 2 diabetes [28–30]. Although the pathophysiology of
type 1 and type 2 diabetes are inherently different, the development of diabetic complications in
type 1 and type 2 diabetes are due to same root cause, which is increased oxidative stress causing
excessive production of AGEs, such as Nε-CML [29,31]. Therefore, Nε-CML should correlate with the
progression of diabetic nephropathy in both type 1 and type 2 diabetes.

Nε-CML is a type of AGE that accumulates in protein tissues and increases with age, but in
diabetes, it increases at an accelerated rate. This similarity in origin explains the strong correlation
between Nε-CML and AGE in this study (Table 5). Nε-CML was initially thought to be a by-product
of non-enzymatic glycation of plasma proteins leading to formation of toxic Amadori products on
protein. However, studies have now shown that Nε-CML is also derived from polyunsaturated fatty
acid (PUFA) during lipid peroxidation, independent of the presence of Amadori products on protein.
In fact, lipid peroxidation was found to be the main source of Nε-CML because PUFAs generally
undergo autoxidation more easily compared to carbohydrates, even during a chronic hyperglycemia
state, where the concentrations of glucose and Amadori products on protein are elevated.

In this study, the AGE conjugate used for ELISA assay is a pure protein-based advanced glycation
end product, because it is derived from albumin only. On the other hand, Nε-CML is a by-product
of both protein glycation as well as lipid peroxidation, causing it to be a more complex and toxic
oxidative product compared to albumin-based AGE [32]. Since diabetic nephropathy was strongly
associated with Nε-CML and not albumin-based AGE, the pathogenesis of diabetic nephropathy may
be predominantly related to lipid peroxidation, rather the protein glycation.

This study also showed that Nε-CML was significantly correlated to renal function assessed by
serum creatinine and eGFR levels, despite controlling for HbA1c, blood pressure, and age (Table 4).
This result was in agreement with other studies reporting that serum Nε-CML had a direct correlation
with serum creatinine in diabetic patients with reduced eGFR. This is because the onset of renal
impairment impairs the function of the kidneys to remove serum creatinine and Nε-CML through
urinary excretion. This was shown in patients with end-stage renal failure who had extremely high
levels of serum Nε-CML (increased three to fourfold compare to healthy subjects) [28]. Hence, Nε-CML
was associated with all renal parameters of diabetic nephropathy in this study.

Besides that, serum Nε-CML may be a better marker than UACR because it is directly related to
oxidative stress in the pathogenesis of diabetic nephropathy, whereas UACR can be falsely high due to
numerous confounding factors, such as kidney stones, menstrual period, or urinary tract infection.



Nutrients 2018, 10, 1315 12 of 15

Furthermore, Nε-CML could be used in the prevention of diabetic nephropathy given its ability to
detect the odds of diabetic nephropathy at an early stage. Nε-CML could also be used to monitor for
response to therapy in patients with diabetic nephropathy. Therefore, the clinical relevance of Nε-CML
is very high and potentially rewarding. Nevertheless, future studies are needed to determine the
accuracy of serum Nε-CML in reflecting the odds and progression of diabetic nephropathy.

In the randomized controlled clinical trial, high-dose Tocovid for 8 weeks did not decrease HbA1c,
blood pressure, serum AGE, RAGE, Nε-CML, and Cystatin C compared to placebo. These findings
were contrary to previous studies that showed 8 weeks of Tocovid significantly reduced HbA1c, blood
pressure, AGE, and RAGE expression in the liver of rats with metabolic syndrome [13]. The lack of
significant effects may be attributed to the long duration of diabetes among the study participants,
causing a long-term accumulation of AGE and Nε-CML that persisted in the body despite receiving
Tocovid at a high dose. Studies have shown that AGE-modified collagens are hard to degrade, and can
remain in diabetic vessels, kidneys, and the heart for a prolonged period of time [14]. The mean
duration of diabetes in this study was about 18 years.

Similarly, the participants with long-standing type 2 diabetes in the Veterans Affairs Diabetes
Trial (VADT), Action to Control Cardiovascular Risk in Diabetes (ACCORD), and Action in Diabetes
and Vascular Disease: Preterax and Diamicron Modified Release Controlled Evaluation (ADVANCE)
studies had no significant reduction in the risk of diabetic complications, despite a reduction in
HbA1c through intensive glycemic control [33–35]. In fact, the mortality rate in the treatment group
increased by 22%, causing the ACCORD study to terminate early [34]. The long-term accumulation of
AGE among the participants in these studies may have hindered the reduction in the risk of diabetic
complications, because AGE can persist despite normalization of HbA1c causing damage to the organs
deposited with AGE [14]. The mean duration of diabetes in the ADVANCE, ACCORD, and VADT
trials was about 8, 10, and 12 years, respectively [36].

On the other hand, the UKPDS and DCCT studies showed that newly diagnosed diabetic patients
had a significant reduction in the risk of diabetic nephropathy, retinopathy, and clinical neuropathy
when treated with an intensive glucose control [16,17]. Similarly, in newly induced diabetic rats,
16 weeks of Tocovid had not only reduced hyperglycemia, HbA1c, and lipid peroxidation, but also
reversed lipid-induced nephropathy [11]. The short duration of diabetes in these studies may be the
key factor because the amelioration of hyperglycemia reduces oxidative stress which, in turn, decreases
the formation of AGE. In the long run, this would prevent the accumulation of AGE and the long-term
damage to the tissues and organs in the body, thus preventing the onset of diabetic complications [15].

Nevertheless, Tocovid significantly reduced serum creatinine compared to placebo, indicating
a different pathway was used by Tocovid to reduce serum creatinine. This pathway may implicate
inflammatory biomarkers with shorter half-life, such as interleukin-6, TGF-β, and TNF-α, because
studies have shown that Tocovid reduced serum creatinine and ameliorated diabetic nephropathy
through downregulation of TGF-β and TNF-α in diabetic rats [12]. Future clinical trials are warranted
to investigate this pathway. Previous animal studies showed that 11 weeks of tocotrienol-rich fraction
extracted from palm and rice brain oils significantly improved the creatinine clearance. This effect
persisted until the end of the study at 16 weeks [11]. Perhaps, if this study were to continue for a longer
period of time, there would be a significant improvement in eGFR levels in patients treated with
Tocovid compared to placebo.

One of the main limitations of this study was the small sample size. The ideal sample size for
this clinical trial was 52 participants but only 45 subjects were recruited. As a result, the statistical
power of this study decreased, making it difficult to detect any significant changes or effects of Tocovid
compared to placebo. The next limitation is the short study duration. Considering that AGE, sRAGE,
and Nε-CML are long-lasting biomarkers, eight weeks of Tocovid was probably insufficient to observe
any noticeable reduction in AGE, sRAGE, and Nε-CML, even at a very high dose of 200 mg BD.
In future, a longer study duration with larger sample size is needed. Another limitation of this study is
the lack of newly diagnosed diabetic patients. This was because the study intended to recruit patients
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with diabetic nephropathy. Like any other diabetic complications, diabetic nephropathy takes many
years to develop, thus, it is expected that the duration of diabetes among the participants was long.
Nevertheless, future studies should investigate the potential role of Tocovid in preventing diabetic
complications among patients who are newly diagnosed with type 2 diabetes. Lastly, future studies
should include measuring of serum vitamin E to investigate for confounding effects.

5. Conclusions

In conclusion, diabetic nephropathy was significantly associated with serum Nε-CML,
which highlights the potential clinical use of Nε-CML in assessing the odds of diabetic nephropathy
at an early stage. Eight weeks of high-dose Tocovid did not improve HbA1c, blood pressure, serum
AGE, sRAGE, Nε-CML, and Cystatin C in patients with diabetic nephropathy. Nevertheless, Tocovid
significantly reduced serum creatinine compared to placebo. Therefore, Tocovid may be a useful
addition to the current treatment for diabetic nephropathy.
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