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Abstract: Atherosclerosis is closely related to vascular dysfunction and hypertension. Ojeoksan (OJS),
originally recorded in an ancient Korean medicinal book named “Donguibogam”, is a well-known,
blended herbal formula. This study was carried out to investigate the beneficial effects of OJS on
atherosclerosis in vitro and in vivo. Western-diet-fed apolipoprotein-E gene-deficient mice (ApoE
−/−) were used for this study for 16 weeks, and their vascular dysfunction and inflammation were
analyzed. OJS-treated ApoE−/−mice showed lowered blood pressure and glucose levels. The levels
of metabolic parameters with hyperlipidemia attenuated following OJS administration. Hematoxylin
and eosin (H&E) staining revealed that treatment with OJS reduced atherosclerotic lesions. OJS also
suppressed the expression of adhesion molecules and matrix metalloproteinases (MMPs) compared
to Western-diet-fed ApoE −/− mice and tumor necrosis factor-alpha (TNF-α)-stimulated human
umbilical vein endothelial cells (HUVECs). Expression levels of MicroRNAs (miRNA)-10a, -126
3p were increased in OJS-fed ApoE −/−mice. OJS significantly increased the phosphorylation of
endothelial nitric oxide synthase (eNOS) and protein kinase B (Akt), which are involved in nitric
oxide (NO) production. OJS also regulated eNOS coupling by increasing the expression of endothelial
GTP Cyclohydrolase-1 (GTPCH). Taken together, OJS has a protective effect on vascular inflammation
via eNOS coupling-mediated NO production and might be a potential therapeutic agent for both
early and advanced atherosclerosis.

Keywords: Ojeoksan; atherosclerosis; vascular inflammation; vasodilation; hypertension;
adhesion molecule

1. Introduction

Inflammatory disorder is commonly known to be a major cause of Atherosclerosis [1] and
characterized as a chronic inflammatory disease of the arterial wall [2]. The main reasons of early

Nutrients 2018, 10, 1256; doi:10.3390/nu10091256 www.mdpi.com/journal/nutrients

http://www.mdpi.com/journal/nutrients
http://www.mdpi.com
https://orcid.org/0000-0002-8156-446X
https://orcid.org/0000-0001-7865-3966
https://orcid.org/0000-0002-9347-8606
http://dx.doi.org/10.3390/nu10091256
http://www.mdpi.com/journal/nutrients
http://www.mdpi.com/2072-6643/10/9/1256?type=check_update&version=2


Nutrients 2018, 10, 1256 2 of 24

stage of atherosclerosis are hyperglycemia, high blood serum triglyceride levels, low concentration of
high-density lipoprotein (HDL) cholesterol, high blood pressure, and central obesity [3]. Acetylcholine
(ACh)-induced endothelium-dependent vasorelaxation is mediated by nitric oxide (NO), which acts
via soluble guanylyl cyclase and cyclic Guanosine monophosphate (GMP). Endothelial dysfunction is
a key marker of early stage of atherosclerosis. This process is mainly regulated by the expressions of
cellular adhesion molecules on the endothelium.

The expression of adhesion molecules increases in atherosclerotic lesion sites and can be the
cause for vascular dysfunction and advanced atherosclerosis [4]. Mediated signaling by cytokines,
such as tumor necrosis factor alpha (TNF-α), induce the expression levels of cell adhesion molecules,
which is an important mediator in the pre-inflammatory process [5]. MicroRNAs (miRNAs) are
single-stranded, non-coding, small RNAs that regulate gene expression by destabilizing target
mRNAs and/or inhibiting translation. For example, miR-126 was well known to reduce the
expression of adhesion molecules, such as intracellular adhesion molecule-1 (ICAM-1), vascular
cell adhesion molecule-1 (VCAM-1), and endothelial cell selectin (E-selectin), by directly targeting the
3′ untranslated region (3′UTR) of these genes [6,7]. In addition, micro RNA-10a (MiR-10a) regulated
the expression of Mitogen-Activated Protein Kinase Kinase Kkinase 7 (MAP3K7) and Transforming
growth factor beta-activated kinase 1 (TAK1), and both of which regulate Inhibitor of NF-kappa
B (IκB) degradation [8]. Adhesion molecules such as ICAM-1 and VCAM-1 play key roles in the
process of atherosclerosis. Endothelial dysfunction is thought to be the cause of the development
of atherosclerosis [9]. All vascular cells including endothelial cells and macrophages secrete matrix
metalloproteinases (MMPs), especially MMP-2 and MMP-9, which are synthesized in atheroma plaques,
and are particularly prevalent in rupture-prone shoulder regions [10]. MMPs degrade collagen and
allow for smooth-muscle cell migration within a vessel. Moreover, this begets an accumulation of
other cellular material, resulting in atherosclerosis and ischemic events to tissues [11].

Endothelial NO synthase (eNOS) produces NO, which is a key regulator in the vasodilation
process. NO regulates early stages of inflammatory processes by downregulating nuclear factor Nuclear
factor-kappa B (NF-κB) [12,13]. Cardiovascular disease has a variety of causes, involving uncoupled
eNOS signaling [14]. Studies with endothelial cells and isolated vessels supported the important
role of eNOS coupling, showing that the inhibition of GTP cyclohydrolase-1 (GTPCH) results in
reduced NO synthesis. In vascular disorders such as atherosclerosis, NO activity is decreased, whereas
oxidative stress is upregulated and results in endothelial dysfunction. Enzymatic eNOS coupling by
the cofactor tetrahydrobiopterin (BH4) plays a key role in maintaining endothelial function [15]. In the
case of cardiovascular risk, the availability of BH4 decreased in the vessel wall with subsequent eNOS
dysfunction may be a crucial determinant of impaired NO-mediated endothelial function. Protein
kinase B (Akt) can activate eNOS, which leads to NO production. Additionally, the Phosphoinositide
3-kinase (PI3K)/Akt/eNOS pathway plays a key role in NO production [16,17].

Ojeoksan (OJS; Wuji-san in Chinese, Goshaku-san in Japanese) is composed of 17 herbal medicines
(Table 1). OJS has been documented in a traditional Korean medical book named “Donguibogam” and
in a traditional Chinese medical book named “Tae-Pyung-Hye-Min-Hwa-Je-Guk-Bang”. According to
records, OJS has been used as a pain-relieving agent and used to manage rash caused by circulation
disadvantage of qi (氣) and blood (血), food (食), cold (寒), and congestion (痰). This study focused
on the effects of OJS on blood (血) circulation disorders. In Korea, OJS is ranked first in terms of
oriental health treatment medicated days and medical expenses, as it is included in 56 prescription
drugs [18]. A previous study has determined whether OJS can alleviate liver inflammation induced
by liver toxicity [19]. However, there are no reports regarding the protective effects of OJS against
cardiovascular disease. Apolipoprotein-E gene-deficient mice (ApoE −/−mice) have been shown to
develop hyperlipidemia and atherosclerosis as well as hypertension and endothelial dysfunctions [20].
Therefore, the present study was carried out to investigate whether OJS has a protective role in vascular
inflammation and suppresses atherosclerotic lesions in ApoE −/−mice.



Nutrients 2018, 10, 1256 3 of 24

Table 1. Decoction of Ojeoksan (OJS).

Latin Name Scientific Name Amount (g) Origin

Atractylodis Rhizoma Atractylodes lancea DC 7.5 China
Ephedrae Herba Ephedra sinica Stapf 3.7 China

Citri unshii Percarpium Citrus reticulata Blanco 3.7 Jeju, Korea

Magnoliae Cortex Magnolia officinalis Rehder &
E.H. Wilson 3.0 China

Platycodi Radix Platycodon grandiflorus (Jacq.) A. DC 3.0 Yeongcheon, Korea
Aurantii Fructus

Immaturus Citrus aurantium L 3.0 China

Angelicae Gigantis Radix Angelica gigas Nakai 3.0 Pyeongchang, Korea
Zingiberis Rhizoma Zingiber officinale Roscoe 3.0 Yeongcheon, Korea

Paeoniae Radix Paeonia lactiflora Pall 3.0 Hwasun, Korea
Poria Sclerotium Wolfiporia extensa 3.0 Yeongcheon, Korea

Angelicae Dahuricae Radix Angelica dahurica (Hoffm.) Benth. &
Hook.f. ex Franch. & Sav 2.6 Yeongcheon, Korea

Cnidii Rhizoma Ligusticum officinale (Makino) Kitag 2.6 Yeongcheon, Korea
Pinelliae Tuber Pinellia ternata (Thunb.) Ten. ex Breitenb 2.6 China

Cinnamomi Cortex Cinnamomum cassia (L.) J. Presl 2.6 Vietnam
Glycyrrhizae Radix

et Rhizoma Glycyrrhiza uralensis Fisch 2.2 China

Zingiberis Rhizoma recens Zingiber officinale Roscoe 3.7 Hanam, Korea
Allii Fistulosi Bulbus Allium fistulosum L 3.7 Hanam, Korea

2. Material and Methods

2.1. High-Performance Liquid Chromatography (HPLC) Analysis of OJS

Chemical marker compounds in an OJS sample were analyzed using a Shimadzu Prominence
LC-20A series (Shimadzu Co., Kyoto, Japan) equipped with a solvent delivery unit (LC-20AT),
an online degasser (DGU-20A3), a column oven (CTO-20A), an auto sample injector (SIL-20AC),
and a photodiode array (PDA) detector (SPD-M20A). The chromatographic data were acquired and
processed using LC solution software (Version 1.24, SP1, Kyoto, Japan). All marker compounds were
separated on a Phenomenex (Phenomenex, Torrance, CA, USA) Gemini C18 (250 × 4.6 mm, 5 µm),
and the column oven was maintained at 40 ◦C. The mobile phases consisted of distilled water (A) and
acetonitrile (J.T. Baker, Phillipsburg, NJ, USA) (B), both with 1.0% (v/v) acetic acid (Sigma-Aldrich,
St. Louis, MO, USA). The gradient elution conditions were as follows: 15–25% B (0–20 min), 25–55% B
(20–40 min), 55–100% B (40–45 min), 100% B (45–50 min), and 10–15% B (50–55 min). The re-equilibrium
time was 15 min. The flow rate was maintained at 1.0 mL/min, and the injection volume was 10 mL.

2.2. Experimental Animals

Six-week-old male apolipoprotein-E gene-deficient mice (ApoE −/−) and normal C57BL6 mice
were obtained from Saeronbio. Inc. (Uiwang, Korea) and then housed in cages with automatic
temperature, humidity (22 ± 2 ◦C, 50–60%), and lighting (12 h light/dark cycle) conditions. They were
fed a pelletized commercial chow diet for acclimatization for 2 weeks on arrival. After acclimatization,
the animals were randomly divided into five groups: (1) the control (C57BL6 mice + regular diet +
Distilled Water (DW), n = 15); (2) ApoE −/− (ApoE −/− + Western diet + DW, n = 13); (3) telmisartan
(ApoE −/− + Western diet + telmisartan 1 mg/kg/day, n = 13); (4) OJS low (ApoE −/− + Western
diet + OJS 50 mg/kg/day, n = 14); and (5) OJS high groups (ApoE −/− + Western diet + OJS
200 mg/kg/day, n = 14). The angiotensin receptor blocker, telmisartan, an anti-atherosclerotic agent,
was chosen as a positive control [21]. A Western diet was also carried out for 16 weeks to sufficiently
induce atherosclerosis in the experimental animals [22]. The control group received a regular diet (RD)
(D12450B) and ApoE −/− groups received a Western diet (WTD) (D12079B) (Table 2), respectively,
for 16 weeks by oral intake. The RD and WTD were purchased from Saeronbio. Inc. (Uiwang, Korea).
At the end of the experimental period, all mice were sacrificed after 12 h fasting, and blood samples
were collected into 1 mg/mL ethylendiaminetetraacetic acid (EDTA)-coated tube after pulled out the
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eyeball. All procedures were approved by the animal Ethics Committee (WKU12-15) and conformed
to the guidelines specified by the country.

Table 2. Diagrams of concerning composition in regular diets (RD) and Western diets (WTD) for
experimental mice.

Product D12450B D12079B

gm % kcal % gm % kcal %

Protein 19.2 20 20 17
Carbohydrate 67.3 70 50 43

Fat 4.3 10 21 40
Total 100 100

kcal/gm 3.85 4.7

Ingredient gm kcal gm kcal

Casein, 80 Mesh 200 195
DL-Methionine 3

L-Cystine 3
Corn Starch 315 50

Maltodextrin 10 35 100
Sucrose 350 341
cellulose 50 50

Milk Fat, Anhydrous 200
Corn oil 10

Soybean oil 25
Lard 20

Mineral Mix S10026 10 35
Dicalcium Phosphate 13
Calcium Carbonate 5.5 4

Potassium Citrate, 1 H2O 16.5
Vitamin Mix V10001 10 10

Choline Bitartrate 2 2
Cholesterol, USP 0.05 1.5

FD&C Yellow Dye #5

Total 1055.05 4057 1001.54 4686

Unitied Statees Pharmacopeia (USP); Federal Food, Drug, and Cosmetic Act (FD&C).

2.3. Cell Cultures

Human Umbilical Vein Endothelial Cells (HUVECs) were purchased from American Type
Culture Collection (ATCC) (CRL-2873; Manassas, VA, USA). HUVECs were cultured at a density
of 5 × 105 cells/mL in Roswell Park Memorial Institute (RPMI) supplemented with 10% fetal bovine
serum and 100 U/mL penicillin G and were then incubated at 37 ◦C in a humidified atmosphere
containing 5% CO2 and 95% air.

2.4. Measurement of Systolic Blood Pressure

Systolic blood pressure (SBP) was measured by using the noninvasive tail-cuff plethysmography
method and was recorded by using an automatic sphygmomanometer (MK2000; Muromachi Kikai,
Tokyo, Japan). The systolic blood pressure (SBP) was measured at Weeks 4, 8, 12, and 16. The blood
pressure of 7 mice per group was measured. At least five measurements were obtained at every session,
and the mean of the five values within 5 mmHg was taken as the SBP level. Values are presented as
the mean ± SEM of five measurements.

2.5. Plasma Biochemical Analysis

Blood glucose was measured from tail vein samples of whole blood using the One-touch
ultra-blood glucose meter and a test strip (Life Scan Inc., Milpitas, CA, USA) at every 4 weeks.
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Approximately 500 µL of blood samples were collected from the periorbital vein for biochemical
analysis per each mouse. Plasma glucose levels were measured using a commercial mouse ELISA
kit (Abcam., Cambridge, MA, USA). Total cholesterol (T-cho), low-density lipoprotein-cholesterol
(LDL-cho), very low-density lipoprotein-cholesterol (VLDL-cho), and high-density lipoprotein
cholesterol (HDL-cho) levels in plasma were measured using commercially available kits (Abcam.,
Cambridge, MA, USA). Triglyceride (TG) level was measured using a commercial kit (AM157S-K,
Asanpharm. Yeongcheon, Korea). The atherogenic index was calculated as follows: (Total cholesterol
− HDL cholesterol)/HDL cholesterol [23].

2.6. Preparation of Carotid Artery Samples and Measurement of Vascular Reactivity

The carotid arteries of the mice were rapidly and carefully isolated and placed in cold Kreb’s
solution of the following composition (mM): NaCl 118, KCl 4.7, MgSO4 1.1, KH2PO4 1.2, CaCl2 1.5,
NaHCO3 25, glucose 10, and pH 7.4 (Sigma-aldrich, Saint Louis, MO, USA). The carotid arteries were
removed from connective tissue and fat and cut into rings of 3 mm lengths. The carotid artery rings
were suspended by means of two L-shaped stainless-steel wires inserted into the lumen in a tissue
bath containing Kreb’s solution at 37 ◦C and aerated with 95% O2 and 5% CO2. The isometric forces of
the rings were measured using a Grass FT 03 force displacement transducer connected to a Model 7E
polygraph recording system (Grass Technologies, Quincy, MA, USA). In the carotid artery rings of
mice, a passive stretch of 1 g was determined to be the optimal tension for maximal responsiveness
to phenylephrine (10−6 M) (Sigma-aldrich, Saint Louis, MO, USA). The preparations were allowed
to equilibrate for approximately 1 h with replacement of Kreb’s solution every 10 min. The relaxant
effects of acetylcholine (ACh, 10−10–10−6 M) and sodium nitroprusside (SNP, 10−11–10−7 M) were
studied in carotid artery rings constricted with phenylephrine (PE, 10−7 M).

2.7. Histopathological Staining of Aorta

Aortic tissues were fixed by using 10% (v/v) formalin (Junsei Chemical, Tokyo, Japan) in 0.01 M
phosphate-buffered saline (PBS) (Gibco, Carlsbad, CA, USA) for 2 days with change of formalin
solution every day to remove traces of blood from tissue. The tissue samples were dehydrated
and embedded in paraffin (Leica, Wetzlar, Germany), and thin sections (6 µm) of the aortic arch
from each group were then cut and stained with hematoxylin and eosin (H&E) (Sigma-Aldrich,
St. Louis, MO, USA). For quantitative histopathological comparisons, each section was evaluated by
Axiovision 4 Imaging/Archiving software (Axiovision 4, Carl Zeiss, Jena, Germany). Images were
analyzed using the ImageJ (NIH, Bethesda, MD, USA) program to select and quantify H&E-stained
areas as a fold of the total area of each image.

2.8. Measurement of Atherosclerotic Lesions by Oil Red O Staining

The thoracic/abdominal aorta were stained with Oil Red O to visualize neutral lipid (cholesteryl
ester and triglycerides) accumulation. The inner aortic surface was stained with Oil Red O After
rinsing with 60% isopropyl alcohol (Amresco, Solon, OH, USA) and distilled water, and images of
Oil Red O-stained aortas were obtained with Axiovision 4 Imaging/Archiving software (Axiovision
4, Carl Zeiss, Jena, Germany). Images were analyzed using the ImageJ (NIH, Bethesda, MD, USA)
program to select and quantify H&E-stained areas as a fold of the total area of each image.

2.9. Immunofluorescence

Frozen sections for immunofluorescence staining were placed on poly-L-lysine-coated slides
(Fisher scientific, Pittsburgh, PA, USA). The slides were incubated with primary antibodies for ICAM-1,
VCAM-1, and E-selectin (1:500; Santa Cruz, CA, USA) in humidified chambers for 1 h at room
temperature in PBS followed by heat-induced (pressure cooker) sodium citrate antigen retrieval and
then exposure to a 1:500 dilution of Alexa Fluor 594 secondary antibody (Life technology, Carlsbad, CA,
USA). Finally, the slides were washed three times with PBS and cover slips were mounted with Dako
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fluorescent mounting medium onto glass slides that were examined under a fluorescence microscope
(Nikon Eclipse Ti, Tokyo, Japan).

2.10. Western Blot Analysis

Aortic tissue and cell homogenates (protein of 30–50 µg) were separated using 10%
SDS-polyacrylamide gel electrophoresis (PAGE) and transferred onto nitrocellulose membranes.
Blots were then blocked by 5% Bovine Serum Albumin (BSA) (GenDEPOT, Katy, TX, USA) powder
in Tris-bufferd saline (TBS) for 1 h, and incubated with the antibodies against ICAM-1, VCAM-1,
E-selectin, MMP-2, MMP-9, eNOS, p-eNOS, Akt, p-AKT, and GTPCH (Santa Cruz Biotechnology, INC,
Dallas, TX, USA) (1:1000 dilution in 0.05%TBS-T (Tween 20)). Subsequently, the membrane was then
incubated with a secondary antibody of goat anti rabbit IgG or goat anti mouse IgG conjugated to
horseradish peroxidase (Enzo Life Sciences, Farmingdale, NY, USA) (1:5000 dilution in 0.05%TBS-T),
and the bands were detected with EzWestLumi plus solution (Cat. no. WSE-7120, Atto Corporation)
using a ChemiDoc (Bio-Rad Laboratories, Hercules, CA, USA). Densitometry analysis of protein bands
was conducted with the ImageJ (NIH, Bethesda, MD, USA) program.

2.11. RNA Preparation and Quantitative Real-Time Reverse Transcription-PCR (Real-Time RT-qPCR)

Total RNA was extracted from the aorta using Ribozol reagent (Amresco, Solon, OH, USA)
according to the manufacturer’s instruction. The RNA quality was assessed by measuring
the ratio of 260/280 nm light with a UV-spectrophotometer (Biophotometer plus, Eppendorf,
Hambrug, Germany). The cDNA was synthesized from 500 ng mRNA via a 20 µL reverse
transcription reaction incubated in the SimpliAmp Thermal Cycler (Life technology, Carlsbad,
CA, USA). The sequences of primers and probes were as follows: ICAM-1 (forward:
5′-CTCACCCGTGTACTGGACTC-3′, reverse: 5′-CGCCGGAAAGCTGTAGATGG-3′), VCAM-1
(forward: 5′-ATGCCTGGGAAGATGGTCGTGA-3′, reverse: 5′-TGGAGCTGGTAGACCCTCGCTG-3′),
E-selectin (forward: 5′-ATCATCCTGCAACTTCACC-3′, reverse: 5′-ACACCTCACCAAACCCTTC-3′),
and Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) (forward:
5′-CAAGGCTGAGAATGGGAAGC-3′, reverse: 5′-AGCATGTGGGAACTCAGATC-3′). The real-time
RT-qPCR was carried out with an SYBR Green PCR Master Mix (Enzynomics, Inc., Daejeon, Korea)
and performed at an initial denaturation step at 95 ◦C for 10 min, followed by 40 cycles at 95 ◦C for
15 s, and finally 60 ◦C for 60 s in the Step-One™ Real-Time PCR System (Applied Biosystems, Foster
City, CA, USA). miR-10a and miR-126 3p were measured by using a hsa-mir-10a Real-Time RT-PCR
detection kit (CPK1014) and a hsa-mir-126 3p Real-Time RT-PCR detection kit (CPK1083) (Cohesion
Biosciences., London, UK).

2.12. Measurement of NO Production Using Griess Reagent System

NO production in the culture supernatant was spectrophotometrically evaluated by measuring
nitrite content, an oxidative product of NO. Nitrite levels was determined with the Griess Reagent
solution (Promega, Madison, WI, USA) and proceeded according to the description of the manufacturer.
The fluorescent intensity was then measured using a spectrofluorometer (Infinite F200 pro, Tecan,
Switzerland) at an excitation and emission wavelength of 485 and 535 nm.

2.13. Fluorescence Microscopy

To examine intracellular NO generation, the Diaminofluorescein-2 Diacetate (DAF-2DA) (Merck
Biosciences, Schwalbach, Germany) was used. In brief, HUVECs were cultured at 6-well plate. The cells
were serum-starved for 8 h before incubation with treatments OJS. The HUVECs were then incubated
with OJS for 30 min. DAF-2DA was added for the final 30 min of incubation. Reactions were stopped
and fixed the cells by using 2% paraformaldehyde for 30 min at room temperature. Coverslips were
examined with a fluorescence microscope equipped with an excitation filter (485–535 nm).
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2.14. Statistical Analysis

All experiments were repeated at least three times. Statistical analyses were performed using
t-tests. The results are expressed as mean ± standard error (S.E.), and the data were analyzed using
one-way analysis of variance followed by a Student’s t-test to determine any significant differences.
p < 0.05 indicated statistical significance.

3. Results

3.1. HPLC Analysis of OJS

The optimized HPLC–PDA method was applied for the simultaneous analysis of 11 marker
ingredients in OJS. The 11 marker components were separated within 45 min. A representative
three-dimensional HPLC chromatogram is shown in Figure 1. The retention times of albiflorin,
paeoniflorin, liquiritin, ferulic acid, nodakenin, naringin, hesperidin, neohesperidin, cinnamaldehyde,
glycyrrhizin, and 6-gingerol were 9.31, 10.65, 14.17, 14.96, 16.64, 18.86, 20.02, 21.74, 33.25, 41.42,
and 42.34 min, respectively. The correlation coefficient of the calibration curves for the 11 compounds
showed good linearity, ≥0.9997. The concentrations of the 11 compounds in lyophilized OJS sample
were between 0.15 and 4.52 mg/g. Among these components, hesperidin, a marker compound of Citri
unshii Pericarpium, was found to be the main compound in the OJS sample.
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Figure 1. Three-dimensional chromatogram of OJS obtained using a high-performance liquid
chromatography-photodiode array (HPLC-PDA).

3.2. The Effect of OJS on Food Intake and Body Weight

There was no significant change in food intake each group. Body weight was significantly
increased in the ApoE −/− mice group compared with the control group. The OJS group showed
significantly increased body weight compared with the ApoE −/−mice group (Table 3).

3.3. The Effect of OJS on Lipid Parameters in ApoE −/−Mice

ApoE −/− mice group fed a Western diet showed increased levels in plasma triglyceride,
total cholesterol, LDL/VLDL-cholesterol levels, and atherogenic index. However, these levels were
significantly suppressed by treatment of OJS. The plasma levels of HDL-cholesterol levels also increased
compared to those in the disease group by OJS (Table 3).
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Table 3. Effect of OJS treatment on plasma biomarker levels in Apolipoprotein-E gene knockout (ApoE −/−) mice.

Food Intake (g) Body Weight (g) T-Cho (mg/dL) TG (mg/dL) LDL/VLDL-Cho (mg/dL) HDL-Cho (mg/dL) Atherogenic Index

Control 3.90 ± 0.12 29.26 ± 0.92 64.69 ± 2.89 78.71 ± 1.25 27.51 ± 3.31 46.91 ± 1.04 0.38 ± 0.06
ApoE −/− 3.82 ± 0.42 33.62 ± 1.32 ** 271.78 ± 9.79 ** 122.30 ± 1.90 ** 128.58 ± 5.03 ** 20.02 ± 1.10 ** 12.69 ± 1.12 **
Telmisartan 4.14 ± 0.46 35.68 ± 0.86 100.52 ± 1.12 ## 90.28 ± 1.38 ## 87.20 ± 1.26 ## 32.96 ± 1.82 ## 2.07 ± 1.12 ##

OJS low 3.97 ± 0.07 37.14 ± 0.41 179.55 ± 2.42 ## 104.28 ± 0.76 ## 107.20 ± 0.82 # 22.62 ± 1.70 7.01 ± 0.54 ##

OJS high 3.72 ± 0.23 35.48 ± 1.25 # 122.73 ± 4.84 ## 90.06 ± 1.46 ## 79.43 ± 2.88 ## 30.21 ± 2.23 # 3.11 ± 0.33 ##

The control group (C57BL6 mice + regular diet + Distilled Water (DW)), ApoE −/− group (ApoE −/− + Western diet + DW), telmisartan group (ApoE −/− + Western diet + telmisartan
1 mg/kg/day), OJS low group (ApoE −/− + Western diet + OJS 50 mg/kg/day), OJS high group (ApoE −/− + Western diet + OJS 200 mg/kg/day). ApoE −/−, apolipoprotein E
knockout; T-Cho, total cholesterol; TG, triglyceride; LDL/VLDL-Cho, low-density lipoprotein/very low-density lipoprotein-cholesterol; HDL-Cho, high-density lipoprotein-cholesterol.
Data are mean ± S.E. values (n = 12). (** p < 0.01 vs. control and # p < 0.05, ## p < 0.01 vs. ApoE −/−).
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3.4. Effect of OJS on Vascular Dysfunction in ApoE −/−Mice

The levels of SBP from all experimental groups were approximately 85–95 mmHg at the starting
point of study. After four weeks, systolic blood pressure in the ApoE −/− group was significantly
increased relative to that of the control (p < 0.05). After 8 weeks, systolic blood pressure in the
ApoE −/− group was further increased (p < 0.01). However, in the OJS group, blood pressure was
significantly decreased relative to that of the ApoE −/− group (Figure 2A). Vascular responses to
ACh, an endothelium-dependent vasodilator (10−10–10−6 M), and SNP, an endothelium-independent
vasodilator (SNP, 10−11–10−7 M), were measured in the carotid artery. Responses to ACh-induced
relaxation of carotid artery rings were significantly decreased in the disease group compared to that in
the control group. However, the impairment in vasorelaxation was remarkably decreased by treatment
with OJS. (Figure 2B).
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Figure 2. Effect of OJS on vasodilation in Apolipoprotein-E gene knockout (ApoE−/−) mice. The effect
of OJS on systolic blood pressure in ApoE −/−mice (A). Cumulative concentration–response curves
to acetylcholine (ACh) and the endothelium-dependent vasodilator, sodiumnitroprusside (SNP), in the
arteries from experiment mice (B). PC, positive control; Values are expressed as mean ± S.E. (Standard
Error) (n = 5). * p < 0.05, ** p < 0.01 vs. control group; # p < 0.05, ## p < 0.01, ### p < 0.001 vs. the ApoE
−/− group.
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3.5. Effect of OJS on Atherosclerotic Lesions in ApoE −/−Mice

To investigate the effect of OJS on the morphology of the aorta, histological changes were observed
by staining with H&E. Morphological staining showed that aortas of the ApoE −/− group increased
in layer thickness, plaques, and inflammatory lesions compared to those of the control group (400×)
(Figure 3A). However, OJS decreased the intima-media thickness in aortic sections and the plaque area.
In addition, to confirm the inhibitory effects of OJS on lipid accumulation, Oil Red O staining was
performed. In the control group, no atherosclerotic lesion in the aorta was detected. In the disease
group, most of the lesions, identified as areas that stained red, were found at the aortic sinus; Oil
Red O staining analysis demonstrated that aortic atherosclerotic lesions significantly increased in the
ApoE −/− group compared with the control group. However, consistent with the change in the lipid
profile, treatment with positive control (telmisartan) and OJS significantly inhibited the development
of atherosclerosis (Figure 3B).
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Figure 3. Effect of OJS on atherosclerotic lesion in ApoE −/−mice. Microscopic photographs of the
aorta stained with hematoxylin and eosin (H&E) (A). Lipid lesion area staining in the aorta (100×).
Thoracic and abdominal aorta from the indicated genotype were cut open with the luminal surface
facing upward, and the inner aortic surface was stained with Oil Red O (B). Data are presented as
means ± S.E. ** p < 0.01 vs. control group; ## p < 0.01 vs. ApoE −/− group.
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3.6. Effect of OJS on Vascular Inflammation in ApoE −/−Mice

Immunofluorescence was performed to determine the direct expression of adhesion molecules in
the aortic wall. Expression of adhesion molecules such as ICAM-1, VCAM-1, and E-selectin increased in
the disease group compared to that of the control. However, treatment with OJS significantly decreased
the expression levels of ICAM-1, VCAM-1, and E-selectin (Figure 4A). The OJS group had significantly
decreased levels of ICAM-1, VCAM-1, and E-selectin proteins compared to those of the ApoE −/−
group (Figure 4B). The expression of MMP-2/-9 was increased in the ApoE −/− group (Figure 5A).
Treatment with OJS also significantly decreased the expression levels of MMPs. Protein levels of
MMP2/9 were increased in the disease group compared to those in the control group. Treatment
with OJS significantly decreased the expression levels of MMP proteins compared to those in the
disease group (Figure 5B). In Figure 6A, mRNA expression levels of ICAM-1, VCAM-1, and E-selectin
were increased in the ApoE −/− group compared to the control group. OJS significantly suppressed
mRNA expression levels. To confirm the effect of OJS on the mRNA expression of adhesion molecules
in greater detail, miR10a and miR126-3p expression levels were determined. These microRNAs are
known to regulate adhesion molecule expression and the IκB pathway. The expression levels for the
miRNAs decreased in the disease group. However, treatment with OJS significantly increased the
expression levels of these miRNAs (Figure 6B).
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Figure 4. Effects of OJS on intracellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and endothelial cell selectin (E-selectin) expression in 
the aortas of ApoE −/− mice (A). ICAM-1, VCAM-1, and E-selectin immunofluorescence in the aortas of ApoE -/ mice. Immunofluorescence staining of adhesion molecules 
in the aortas from the control, ApoE −/−, ApoE −/− mice treated with telmisartan groups, and ApoE −/− mice treated with OJS at low or high concentrations. Protein levels 
of the adhesion molecules determined by Western blot analysis (B). Data are presented as means ± S.E. ** p < 0.01 vs. control group; ## p < 0.01 vs. ApoE −/− group.

Figure 4. Effects of OJS on intracellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and endothelial cell selectin (E-selectin)
expression in the aortas of ApoE −/− mice (A). ICAM-1, VCAM-1, and E-selectin immunofluorescence in the aortas of ApoE −/− mice. Immunofluorescence
staining of adhesion molecules in the aortas from the control, ApoE −/−, ApoE −/−mice treated with telmisartan groups, and ApoE −/−mice treated with OJS
at low or high concentrations. Protein levels of the adhesion molecules determined by Western blot analysis (B). Data are presented as means ± S.E. ** p < 0.01 vs.
control group; ## p < 0.01 vs. ApoE −/− group.
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Figure 5. Effects of OJS on matrix metalloproteinases (MMP)-2/-9 expression in the aorta of ApoE −/− mice. MMP2, and MMP-9 immunofluorescence in the aorta of ApoE 
−/− mice (A). Immunofluorescence staining of MMP-2/-9 in the aorta from the control, ApoE −/−, and ApoE −/− mice treated with telmisartan groups and ApoE −/− mice 
treated with OJS at low or high concentrations. Protein levels of MMPs determined by Western blot analysis (B). Data are presented as means ± S.E. ** p < 0.01 vs. control 
group; ## p < 0.01 vs. ApoE −/− group. 

Figure 5. Effects of OJS on matrix metalloproteinases (MMP)-2/-9 expression in the aorta of ApoE −/− mice. MMP2, and MMP-9 immunofluorescence in the aorta of
ApoE −/− mice (A). Immunofluorescence staining of MMP-2/-9 in the aorta from the control, ApoE −/−, and ApoE −/− mice treated with telmisartan groups and
ApoE −/− mice treated with OJS at low or high concentrations. Protein levels of MMPs determined by Western blot analysis (B). Data are presented as means ± S.E.
** p < 0.01 vs. control group; ## p < 0.01 vs. ApoE −/− group.
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Figure 6. Effects of OJS on miR-10a and miR-126 3p expression in the aorta of ApoE −/−
mice. mRNA expression of adhesion molecules determined by real-time Reverse Transcription-PCR
(RT-qPCR) analysis (A). Levels of miRNA determined by real-time RT-qPCR (B). Data are presented as
means ± S.E. ** p < 0.01 vs. control group; # p < 0.05, ## p < 0.01 vs. ApoE −/− group.

3.7. Effects of OJS on TNF-α-Induced Adhesion Molecules and MMPs Expression in HUVECs

Treatment of OJS significantly inhibited the TNF-α-induced expression of ICAM-1, VCAM-1,
and E-selectin (p < 0.05) (Figure 7A). Western blot analysis of cell lysates was used to confirm the
effect of OJS on the expression of MMP-2/9 proteins in HUVECs. Pretreatment with OJS inhibited
TNF-α-induced MMP2/9 protein expression (Figure 7B).
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Figure 7. Effects of OJS on TNF-α-induced protein expressions of cell adhesion molecule and MMPs
expression. Western blot analysis of ICAM-1, VCAM-1, and E-selectin expression. The blots are
representative of three independent experiments and densitometric quantification of ICAM-1, VCAM-1,
and E-selectin (A). Western blot analysis of MMP-2/-9 whole protein (B). Data are presented as means
± S.E. ** p < 0.01 vs. control; ## p < 0.01 vs. TNF-α alone.



Nutrients 2018, 10, 1256 17 of 24

3.8. OJS Regulates the Akt/eNOS-NO Pathway in HUVECs

Endothelial cells were treated with different doses of OJS for 30 min, and the degree of
phosphorylation of eNOS and Akt was determined by Western blot analysis. As shown in Figure 8A,
phosphorylation of eNOS and Akt increased following treatment with OJS in a dose-dependent manner.
There were no significant differences in eNOS and Akt expression. OJS also increased the expression
of GTPCH. These results suggest that OJS stimulates eNOS and Akt phosphorylation in HUVECs and
regulates the eNOS coupling pathway by increasing the expression of GTPCH. Figure 8B shows that
OJS treatment increased the production of NO in HUVECs in a dose-dependent manner. In addition,
L-NAME (N(ω)-nitro-L-arginine methyl ester) and wortmannin as inhibitors of eNOS and Akt each
inhibited OJS-induced production of NO (Figure 8C).
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Figure 8. Effects of OJS on nitrite production. Protein expression of phosphorylated endothelial nitric oxide synthase (eNOS), phosphorylated protein kinase B (Akt), and 
GTP cyclohydrolase-1 (GTPCH) were analyzed by Western blotting (A). NO production was examined via fluorescence microscopy (original magnification ×100) (B). The 
effect of OJS on NO production was assayed as its stable reaction product nitrite by using the Griess reaction (C). Data are presented as means ± S.E. ** p < 0.01 vs. control, 
## p < 0.01 vs. OJS treatment. L-NAME, N(G)-nitro-L-arginine methyl ester.  
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Overall, the ApoE −/− groups (WTD-fed group) were found to weigh more than the control group (RD-fed group). However, it is confirmed that there is no change 
in the body weight of OJS-treated group. The endothelium can sense changes or abnormalities in blood flow and pressure. The vascular endothelium also plays an 
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Figure 8. Effects of OJS on nitrite production. Protein expression of phosphorylated endothelial nitric oxide synthase (eNOS), phosphorylated protein kinase B (Akt),
and GTP cyclohydrolase-1 (GTPCH) were analyzed by Western blotting (A). NO production was examined via fluorescence microscopy (original magnification
×100) (B). The effect of OJS on NO production was assayed as its stable reaction product nitrite by using the Griess reaction (C). Data are presented as means ± S.E.
** p < 0.01 vs. control, ## p < 0.01 vs. OJS treatment. L-NAME, N(G)-nitro-L-arginine methyl ester.
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4. Discussion

OJS has been used to treat circulation disadvantage of qi (氣), blood (血), food (食), cold (寒),
and congestion (痰). However, there are no reports regarding the protective effect of OJS against
blood circulation disorders such as cardiovascular diseases. Here, we are the first to provide evidence
indicating that OJS has an anti-atherogenic effect, improving vascular dysfunction in endothelial cells
and Western-diet-fed ApoE −/−mice.

OJS has an effect on plasma HDL-cholesterol levels, which is related to cardiovascular disease.
HDL can remove cholesterol from macrophage foam cells and suppresses atherosclerotic lesions [24].
Triglycerides are an important biomarker of cardiovascular disease. In this study, blood glucose,
systolic blood pressure, and lipid parameter levels were measured, and these levels were increased
in Western-diet-fed ApoE −/− mice. Treatment with OJS significantly reversed these changes.
These findings demonstrate that OJS may elicit a protective role against the initiation and development
of atherosclerosis by improving lipid metabolism. Overall, the ApoE −/− groups (WTD-fed group)
were found to weigh more than the control group (RD-fed group). However, it is confirmed that
there is no change in the body weight of OJS-treated group. The endothelium can sense changes
or abnormalities in blood flow and pressure. The vascular endothelium also plays an important
role in the modulation of vascular tone [25]. From these results, it is clear that the mean SBP was
higher in the ApoE −/− group. However, treatment with telmisartan, both low and high dosages
of OJS, significantly decreased mean SBP. This study also evaluated the effects of OJS on histological
changes by examining the aorta using oil red O and H&E staining. Our results indicate that OJS
administration significantly resolved atherosclerotic plaque formation in the aorta. In addition,
the ApoE −/− group also showed endothelial dysfunction, as evidenced by decreases in ACh-
and SNP-induced vascular tone. These findings suggest that the hypotensive effect of OJS is mediated
by an endothelium-dependent NO/cGMP pathway.

The present study revealed that OJS can regulate the early and advanced stages of atherosclerotic
process, which are linked closely the inflammatory response of blood vessels to injury caused by
atherosclerotic plaques, which can lead to cardiovascular diseases [26]. miR-126 has been reported to
reduce the expression of ICAM-1, VCAM-1, and E-selectin by directly targeting the 3′ untranslated
region (3′UTR) of these genes [6,7]. miR-10a targeted two proteins MAP3K7 (TAK1) that regulate IκB
degradation [8]. Therefore, the expression of miR-10a and miR-126 3p were investigated. The results
showed that the expression levels were decreased in the Western-diet-fed ApoE −/−mice. However,
OJS increased the expression of these miRNAs. Therefore, these results suggest that OJS has an
inhibitory effect on the adhesion molecule pathway and IκB degradation by regulating the expression
of miRNA. MMPs also damage the vascular extracellular matrix, resulting in weakening and dilatation
of the aortic wall, which is a hallmark of vascular inflammation [27]. Therefore, the inhibition of
MMP2/9 could be beneficial in the treatment of atherosclerosis. The results of immunofluorescence
and Western blot analysis revealed that pretreatment with OJS suppressed the expression of MMP2/9.
These results indicate that OJS has an inhibitory effect on MMP-2 and MMP-9 expression levels in
ApoE −/−mice.

Cytokines-induced adhesion molecules such as ICAM-1, VCAM-1, and E-selectin are well known
inflammatory markers [28]. Therefore, the present study was examined whether OJS has an inhibitory
effect on TNF-α-stimulated HUVECs by inhibiting the protein expression of adhesion molecules.
The results suggested that OJS has an inhibitory effect on TNF-α-induced vascular inflammation in
endothelial cells by suppressing the expression of those adhesion molecules. Endothelial dysfunction,
characterized by decreased production of NO, is an early and key mediator that links obesity
and cardiovascular diseases [29]. Akt downstream of PI3K, is also thought to be an important
factor for cell survival. In endothelial cells, Akt activation has been reported to promote cell
survival [14]. Importantly, several clinical studies have demonstrated the beneficial effects of BH4,
which is a required cofactor for the synthesis of NO, in patients with cardiovascular risk factors,
such as hypercholesterolemia, smoking, hypertension, and diabetes or coronary artery disease [30].
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Furthermore, endothelial cell BH4 synthesis by GTPCH is necessary for physiological eNOS
function, and previous studies of BH4 biosynthesis have used systemic pharmacological inhibitors of
GTPCH [31]. Data from the current study indicate that OJS promoted NO production. This study also
examined the role of the PI3K/Akt pathway and phosphorylation of eNOS in the anti-inflammatory
effect of OJS. eNOS and Akt phosphorylation were also increased by OJS. These results provide strong
evidence that OJS elicits an anti-inflammatory effect via the PI3K/Akt-dependent eNOS pathway.
In addition, eNOS coupling is a well-known defense mechanism against vascular disease via regulation
of NO production [32]. The expression of the principal factor that regulates eNOS coupling, GTPCH,
was increased by OJS. This result indicates that OJS plays a protective role in vascular dysfunction
by regulating eNOS coupling. Therefore, further studies on the effect of OJS on expression of BH4
in HUVEC should be performed. There is a previous study to confirm the improvement of OJS in
liver inflammation [19], and the present study similarly confirmed the improvement of atherosclerosis
in OJS by suppressing the expression of atherogenic and inflammatory factors. Therefore, further
studies to determine which of the 17 components in OJS have the effect of relieving atherosclerosis are
also needed.

5. Conclusions

OJS treatment markedly lowered vascular dysfunction and inflammatory processes. OJS treatment
not only ameliorated impairment of vascular dysfunction and metabolic abnormalities but also
markedly lowered blood pressure, as well as vascular inflammatory processes in ApoE KO mice
and HUVECs (Figure 9). To the best of our knowledge, these findings provide the first evidence
to support the therapeutic efficacy of OJS in preventing the development of both early and
advanced atherosclerosis.
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