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Abstract: The present study evaluated the potential beneficial effect of kefir (KF) against fatigue.
Furthermore, the composition of the gut microbiota is related to health benefits in the host; therefore,
the study also investigated the effect of KF on the gut microbiota composition. Male ICR mice from
four groups (n = 8 per group) were orally administered KF once daily for four weeks at 0, 2.15,
4.31, and 10.76 g/kg/day and were designated as the vehicle, KF-1X, KF-2X, and KF-5X groups,
respectively. The gut microbiota was analyzed using 16S rRNA gene sequencing. The results showed
a significant clustering of cecum after treatment in the vehicle, KF-1X, KF-2X, and KF-5X groups.
The KF-2X and KF-5X groups showed a decreased Firmicutes/Bacteroidetes ratio compared with the
vehicle group. In addition, anti-fatigue activity and exercise performance were evaluated on the basis
of exhaustive swimming time, forelimb grip strength, and levels of serum lactate, ammonia, glucose,
blood urea nitrogen (BUN), and creatine kinase (CK) after a swimming exercise. The exhaustive
swimming time for the KF-1X, KF-2X, and KF-5X groups was significantly longer than that for
the vehicle group, and the forelimb grip strength of the KF-1X, KF-2X, and KF-5X groups was
also significantly higher than that of the vehicle group. KF supplementation also decreased serum
lactate, ammonia, BUN, and CK levels after the swimming test. However, tissue glycogen content,
an important energy source for exercise, increased significantly with KF supplementation. Thus,
KF supplementation can alter the gut microbiota composition, improve performance, and combat
physical fatigue.
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1. Introduction

The health-promoting effect of fermented dairy are the result of the bioactive ingredients present
in native milk and, also, due to their suitably modulated activities produced by the action of
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probiotic bacteria, in the fermented or sour milk products [1]. The health benefits of fermented
dairy materialize either by direct interaction with consumed microorganisms or indirectly due to
the effects of microbial metabolites produced during the fermentation process [1]. Kefir (KF), which
originates from the Caucasus Mountains, is an acidic fermented milk with trace amounts of alcohol [2].
KF is traditionally produced by inoculating milk with a relatively stable and specific KF grain that
contains lactic acid bacteria and yeast. The beverage has become an important functional dairy
product, and in the past decade, research into KF has increased [3]. KF has been used for the
clinical treatment of hypertension, gastrointestinal diseases, allergies, and ischemic heart disease [2,4].
In addition, KF possesses many biological activities, including antibacterial, antifungal, antimutagenic,
antioxidant, antidiabetic, antitumor, and immune-stimulating effects; it is also effective against fatty
liver syndrome [5]. Moreover, KF consumption provides beneficial bacteria, yeast, vitamins, minerals,
fatty, and complete protein. Recent research showed that dairy lipids possess anti-chronic inflammation
bioactivity [6]. In addition, recent research and meta-analyses showed full-fat dairy consumption has
higher bioavailability of high-value nutrients and anti-inflammatory properties [7]. Thus, kefir is a
healthy nutrient-rich food that is beneficial for the anti-inflammation and immune system, and has been
used as a supplement for patients with AIDS, chronic fatigue syndrome (CFS), herpes, and cancer [8].

During exercise, many energy sources (e.g., glucose and glycogen) are exhausted, resulting
in physical fatigue [9]. Some biomarkers including lactate, ammonia, blood urea nitrogen (BUN),
and glucose are widely used to evaluate fatigue [10,11]. Regular exercise can improve body functions,
but strenuous exercise can lead to the accumulation of reactive oxygen species and lipid peroxides,
thereby damaging the organs and causing fatigue [12,13]. Therefore, fatigue is a matter of concern
because it can further lead to various disorders in relation to bio-regulatory, autonomic nervous,
endocrine, and immune system. These disorders related to biological regulation and the immune
system can also lead to reduced exercise intensity and disruption of daily activities [14].

Fatigue is the common physiological reactions and its symptoms are tiredness and lack of energy.
Long-term fatigue is easily causing aging, human immunodeficiency virus (HIV) infection, depression,
Parkinson’s disease, multiple sclerosis, and cancers [15]. Therefore, many researchers are interested in
the use of kefir, herbal medicines, natural compounds, dietary foods, or exercise equipment technology
to delay fatigue and accelerate the elimination of fatigue-related metabolites [16–18]. The fermented
milk product was effective in reducing the impact of exercise-induced immune suppression [19].
O’Brien et al. [18] showed consumption of kefir has the positive health benefits on performance and
recovery after exercise during intensive endurance training. Changes in the gut microbiota composition
have been reported to cause chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME) [20].
Logan et al. [21] reported that low levels of bifidobacteria and gut bacterial overgrowth can lead
to immune dysfunction in ME/CFS patients. Sheedy et al. [22] observed a significant increase in
the proportion of lactic acid produced by Enterococcus and Streptococcus in the fecal samples of
ME/CFS patients. However, relatively few studies directly involve anti-fatigue activity of KF and its
effect on the gut microbiota composition. Therefore, in the current study, we used our established
in vivo platform [23,24] to evaluate anti-fatigue effects and analyze gut microbiota composition after
KF supplementation.

2. Materials and Methods

2.1. KF Preparation

KF was obtained from SYNBIO TECH INC. (Kaohsiung, Taiwan). It was prepared by inoculating
pasteurized 9.2% reconstituted skim milk with powder kefir starter culture and fermented at 37 ◦C for
16 h. The fermented milk was then pasteurized at 100 ◦C for 30 min and freeze dried. The powder
kefir starter culture used for inoculation was composed of defined lactic acid bacteria strains which
contains Lactobacillus fermentum DSM 32784 (LF26), L. helveticus DSM 32787 (LH43), L. paracasei DSM
32785 (LPC12), L. rhamnosus DSM 32786 (LRH10), and Streptococcus thermophilus DSM 32788 (ST30).
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All strains were isolated from traditional kefir. A 100-g portion of KF contains 354.75 calories with
30 g of protein, 0.75 g of fat, and 57 g of carbohydrates. The samples were initially stored in airtight
containers at 4 ◦C until further use.

2.2. Animals and Experiment Design

Male ICR mice (age, six weeks; weight, 25 g) were purchased from BioLASCO (A Charles River
Licensee Corp., Yi-Lan, Taiwan). The mice were given rodent chow 5001 and distilled water ad libitum.
They were housed at room temperature (24 ± 2 ◦C) under a humidity-controlled (65 ± 5%) condition
on a regular 12-h light/dark cycle. Animal protocol was reviewed and approved by the Institutional
Animal Care and Use Committee (IACUC) of National Taiwan Sport University, Taoyuan City, Taiwan
(IACUC-10523).

After a two-week acclimation period, the ICR mice (age, eight weeks) were divided into four
groups based on body weight (n = 8 per group): (1) the vehicle control group (vehicle group);
(2) supplementation with KF-1X group (KF-1X group); (3) supplementation with KF-2X group (KF-2X
group); and (4) supplementation with KF-5X group (KF-5X group). The KF administered to the KF-1X,
KF-2X, and KF-5X groups was 2.15, 4.31, and 10.76 g/kg/day, respectively. The vehicle group was
administered glucose water with the same calorie content as the KF administered to the KF-1X, KF-2X,
and KF-5X groups. The volume of glucose water or supplement administered to all groups was the
same, and the dose was determined according to the body weight of each mouse. The KF preparation
or glucose water was orally administered once daily for 28 days.

2.3. Exhaustive Swimming Test

Results of the exhaustive swimming tests were determined according to the method of
Kan et al. [25]. Results of the exhaustive swimming test were determined 30 min after KF
supplementation on day 29. The swimming time from beginning to exhaustion was used to evaluate
endurance performance.

2.4. Forelimb Grip Strength

A low-force testing system (Model-RX-5, Aikoh Engineering, Nagoya, Japan) was used to measure
the forelimb absolute grip strength, as previously described [16]. Grip strength was measured 30 min
after KF supplementation on day 28.

2.5. Fatigue-Associated Biochemical Indices

On day 31, blood samples were collected after 10 min of the swimming exercise and after 20 min
of rest. Serum was centrifuged for 10 min (1500× g) at 4 ◦C. Lactate, ammonia, and glucose levels
were determined using an autoanalyzer (Hitachi 7060, Hitachi, Tokyo, Japan). After 33 days of the
intervention, the mice were subjected to a 90-min swimming test after 60 min of rest to evaluate
fatigue-associated changes in CK and BUN levels.

2.6. Tissue Glycogen Determination

At the end of the experiments on day 36, the glycogen contents of liver and muscles were analyzed.
The method of the glycogen analysis was assayed according to a previously described method [16].

2.7. Histological Staining of Tissues

Different tissues were collected and fixed in 10% formalin after the mice were sacrificed.
The hematoxylin and eosin staining according to a previously described method by Huang et al. [10].
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2.8. Blood Biochemical Assessments

At the end of the experiments on day 36, all mice were fasted for 8 h, sacrificed using 95% CO2

asphyxiation, and had blood was withdrawn through cardiac puncture. Serum was collected through
centrifugation, and the levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT),
albumin, creatinine, lactate dehydrogenase (LDH), CK, total protein (TP), glucose, total cholesterol (TC),
and triacylglycerol (TG) were assessed using an autoanalyzer (Hitachi 7060, Hitachi, Tokyo, Japan).

2.9. Bacterial DNA Extraction and 16S rRNA Sequencing

Cecum samples were collected on day 36. The collected samples were immediately stored at
−80 ◦C for DNA extraction. The bacterial DNA was extracted using the cetyltrimethylammonium
bromide/sodium dodecyl sulfate (CTAB/SDS) method and directly used in polymerase chain reaction
(PCR) assays and 16S rRNA gene sequencing. DNA concentration and purity were monitored
on 1% agarose gels. The extracted DNA was stored at −80 ◦C prior to 16S rRNA sequencing.
The hypervariable V3–V4 region of the bacterial 16S rRNA gene was amplified using PCR with
bar-coded universal primers 341F (F, forward primer; 5′-CCTAYGGGRBGCASCAG-3′) and 806R
(R, reverse primer; 5′-GGACTACNNGGGTATCTAAT-3′). Library construction and sequencing of
amplicon DNA samples were performed using BIOTOOLS Co., Ltd. (New Taipei City, Taiwan).
A pair-end library (insert size of 450–470 bp for each sample) was constructed using the TruSeq DNA
PCR-Free Sample Preparation Kit (Illumina, San Diego, CA, USA), and high-throughput sequencing
was performed on an Illumina HiSeq2500 platform.

2.10. Statistical Analysis

Experimental data are expressed as mean ± SD (n = 8). A one-way analysis of variance (ANOVA)
was employed to calculate the significance differences between multiple groups with Duncan’s test,
and p values of <0.05 were considered significant. The Cochran–Armitage trend test was examined the
dose effect.

3. Results

3.1. Effect of Four-Week KF Supplementation on Tissue Weights, Body Weight, Food Intake, and Water Intake

Table 1 showed body weight, food intake, and water intake. The muscle and brown adipose tissue
(BAT) mass of the mice in the KF-1X, KF-2X, and KF-5X groups was higher than that in the vehicle
group. These results indicated no significant differences in the weights of the liver, kidney, epididymal
fat pad (EFP), heart, and lung tissues, or in the food and water intake among the vehicle, KF-1X, KF-2X,
and KF-5X groups.



Nutrients 2018, 10, 862 5 of 16

Table 1. General characteristics of mice with kefir (KF) supplementation.

Characteristic Vehicle KF-1X KF-2X KF-5X Trend
Analysis

Initial BW (g) 33.4 ± 0.7 33.7 ± 0.7 33.4 ± 0.9 33.6 ± 0.3 0.4631
Final BW (g) 36.2 ± 2.2 36.7 ± 1.1 36.5 ± 1.4 36.0 ± 1.3 0.6215

Food intake (g/mouse/day) 6.2 ± 0.6 6.2 ± 0.3 6.1 ± 0.3 6.0 ± 0.3 0.1216
Water intake

(mL/mouse/day) 9.5 ± 2.0 9.4 ± 2.0 9.5 ± 0.8 9.5 ± 2.5 0.8155

Liver (g) 2.03 ± 0.10 2.00 ± 0.26 2.06 ± 0.13 2.03 ± 0.13 0.7996
Kidney (g) 0.52 ± 0.03 0.53 ± 0.03 0.52 ± 0.05 0.51 ± 0.04 0.4781

EFP (g) 0.37 ± 0.03 0.35 ± 0.06 0.32 ± 0.03 0.32 ± 0.11 0.1673
Heart (g) 0.21 ± 0.02 0.23 ± 0.02 0.21 ± 0.02 0.22 ± 0.02 0.8400
Lung (g) 0.23 ± 0.03 0.22 ± 0.01 0.22 ± 0.02 0.22 ± 0.02 0.2464

Muscle (g) 0.36 ± 0.03 a 0.39 ± 0.02 b 0.39 ± 0.02 b 0.39 ± 0.02 b 0.0871
BAT (g) 0.09 ± 0.02 a 0.12 ± 0.02 b 0.11 ± 0.02 b 0.11 ± 0.01 b 0.1560

Relative liver weight (%) 5.60 ± 0.30 5.45 ± 0.72 5.65 ± 0.45 5.65 ± 0.35 0.3092
Relative kidney weight (%) 1.44 ± 0.09 1.45 ± 0.11 1.42 ± 0.14 1.42 ± 0.11 0.8171

Relative EFP weight (%) 1.01 ± 0.11 0.95 ± 0.16 0.87 ± 0.12 0.89 ± 0.32 0.1797
Relative heart weight (%) 0.59 ± 0.08 0.62 ± 0.07 0.58 ± 0.06 0.62 ± 0.07 0.6835
Relative lung weight (%) 0.62 ± 0.07 0.59 ± 0.03 0.61 ± 0.04 0.61 ± 0.05 0.2464

Relative muscle weight (%) 0.99 ± 0.15 a 1.07 ± 0.04 ab 1.07 ± 0.06 ab 1.09 ± 0.05 b 0.0899
Relative BAT weight (%) 0.24 ± 0.06 a 0.33 ± 0.05 b 0.31 ± 0.05 b 0.30 ± 0.04 b 0.1607

Data are presented as mean ± SD, n = 8 mice/group. Different letters (a, b) in the same row indicate a significant
difference at p < 0.05. Muscle mass includes both gastrocnemius and soleus muscles in the back part of the lower
legs. BW, body weight; BAT, brown adipose tissue; EFP, epididymal fat pad. The mice in the vehicle, KF-1X, KF-2X,
and KF -5X groups were pretreated for four weeks.

3.2. Effect of Four-Week KF Supplementation on the Exhaustive Swimming Test

As shown in Figure 1, the exhaustive swimming time of the KF-1X group was 7.7 ± 1.6 min
(2.10-fold longer than that of the vehicle group; p = 0.0019); the exhaustive swimming time of the
KF-2X group was 7.8 ± 2.5 min (2.12-fold longer than that of the vehicle group; p = 0.0017); and the
exhaustive swimming time of the KF-5X group was 8.9 ± 3.3 min (2.43-fold longer than that of the
vehicle group; p = 0.0001), indicating that the KF-1X, KF-2X, and KF-5X groups exhibited an anti-fatigue
effect. Furthermore, a significant dose-dependent effect on endurance swimming performance was
observed (p < 0.0001).
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groups than in the vehicle group (137 ± 7 g) (p < 0.001) (Figure 2). Thus, the grip strength in the KF-
1X, KF-2X, and KF-5X groups significantly increased by 23%, 25%, and 26%, respectively, compared 
with that in the vehicle group. In addition, a significant dose-dependent effect on the grip strength 
was observed (p < 0.0001). 

3.4. Effect of Four-Week KF Supplementation on Lactate after the 10-Min Swimming Test 

On day 31 of the intervention, the mice were subjected to a 10-min swimming test to evaluate 
lactate levels before and after the swimming exercise and after 20 min of rest (Figure 3a). Before 
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Figure 1. Effects of kefir (KF) supplementation on the exhaustive swimming test. Data are presented as
mean± SD, n = 8. Bars with different letters (a, b) indicate a significant difference at p < 0.05 determined
using one-way ANOVA. Vehicle (glucose water), KF-1X (2.15 g/kg/day KF), KF-2X (4.31 g/kg/day
KF), and KF-5X (10.76 g/kg/day KF).
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3.3. Effect of Four-Week KF Supplementation on the Forelimb Grip Strength

Grip strength was higher in the KF-1X (169 ± 9 g), KF-2X (171 ± 13 g), and KF-5X (173 ± 9 g)
groups than in the vehicle group (137 ± 7 g) (p < 0.001) (Figure 2). Thus, the grip strength in the KF-1X,
KF-2X, and KF-5X groups significantly increased by 23%, 25%, and 26%, respectively, compared with
that in the vehicle group. In addition, a significant dose-dependent effect on the grip strength was
observed (p < 0.0001).
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Figure 2. Effects of kefir (KF) supplementation on the forelimb grip strength. Data are presented as
mean± SD, n = 8. Bars with different letters (a, b) indicate a significant difference at p < 0.05 determined
using one-way ANOVA. Vehicle (glucose water), KF-1X (2.15 g/kg/day KF), KF-2X (4.31 g/kg/day
KF), and KF-5X (10.76 g/kg/day KF).

3.4. Effect of Four-Week KF Supplementation on Lactate after the 10-Min Swimming Test

On day 31 of the intervention, the mice were subjected to a 10-min swimming test to
evaluate lactate levels before and after the swimming exercise and after 20 min of rest (Figure 3a).
Before swimming, no significant differences were observed in blood lactate levels among the
vehicle (3.0 ± 0.2 mmol/L), KF-1X (2.9 ± 0.3 mmol/L), KF-2X (2.9 ± 0.1 mmol/L), and KF-5X
(3.0 ± 0.2 mmol/L) groups. After swimming, the blood lactate levels in the KF-1X (6.6 ± 0.5 mmol/L),
KF-2X (6.4 ± 0.5 mmol/L), and KF-5X (6.8 ± 0.8 mmol/L) groups were significantly lower (50.5%,
p < 0.0001; 52.4%, p < 0.0001; and 49.0%, p < 0.0001, respectively) compared with that in the vehicle
group (13.4 ± 2.0 mmol/L). In addition, a significant dose-dependent effect on blood lactate levels was
observed (p = 0.0037) after the 10-min swimming test. During the 20-min rest period, the blood lactate
levels in the KF-1X (5.9 ± 0.7 mmol/L), KF-2X (4.3 ± 0.5 mmol/L), and KF-5X (4.5 ± 0.9 mmol/L)
groups were significantly lower (43.6%, p < 0.0001; 59.4%, p < 0.0001; and 57.1%, p < 0.0001, respectively)
than that in the vehicle group (10.5 ± 1.7 mmol/L) (Figure 3b). A significant dose-dependent effect on
blood lactate levels was also noted (p < 0.0001) after the 10-min swimming test and 20-min rest period.
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Figure 3. Effects of kefir (KF) supplementation on the serum levels of (a,b) lactate, (c,d) ammonia,
and (e,f) glucose after a 10-min swimming test (a,c,e) and after a 20-min resting period (b,d,f). Data
are presented as mean ± SD, n = 8. Bars with different letters (a, b) indicate a significant difference
at p < 0.05 determined using one-way ANOVA. Vehicle (glucose water), KF-1X (2.15 g/kg/day KF),
KF-2X (4.31 g/kg/day KF), and KF-5X (10.76 g/kg/day KF).

3.5. Effect of Four-Week KF Supplementation on Ammonia and Glucose after the 10-Min Swimming Test

After 31 days of the KF supplementation, the serum ammonia levels in the KF-1X
(123 ± 12 µmol/L), KF-2X (113 ± 12 µmol/L), and KF-5X (111 ± 16 µmol/L) groups were 19.0%
(p = 0.0016), 25.7% (p < 0.0001), and 27.3% (p < 0.0001), respectively, lower than that in the vehicle
group (152 ± 23 µmol/L) after the swimming test (Figure 3c). Moreover, a significant dose-dependent
effect on blood ammonia levels was observed (p < 0.0001) after the 10-min swimming test. During the
20-min rest period, the blood ammonia levels in the KF-1X (97 ± 17 µmol/L), KF-2X (88 ± 13 µmol/L),
and KF-5X (87 ± 23 µmol/L) groups were significantly lower (26.0%, p = 0.0019; 33.0%, p = 0.0002;
and 33.9%, p = 0.0001, respectively) than that in the vehicle group (131 ± 25 µmol/L) (Figure 3d).
Moreover, a significant dose-dependent effect on blood ammonia levels (p < 0.0001) was also noted
after the 10-min swimming test and 20-min rest period.

3.6. Effect of Four-Week KF Supplementation on BUN and CK after the 90-Min Swimming Test and 60-Min
Rest Period

The BUN levels in the KF-1X (20.6 ± 3.7 mg/dL), KF-2X (20.0 ± 2.2 mg/dL), and KF-5X
(20.3 ± 2.5 mg/dL) groups were significantly lower (16.1%, p = 0.0170; 18.3%, p = 0.0074; and 17.3%,
p = 0.0110, respectively) than that in the vehicle group (24.5 ± 3.8 mg/dL) (Figure 3a). Moreover,
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a significant dose-dependent effect on the BUN levels was observed (p = 0.0301). As shown in Figure 4b,
the serum CK levels in the KF-1X (339 ± 78 U/L), KF-2X (268 ± 66 U/L), and KF-5X (265 ± 103 U/L)
groups were significantly lower (23.8%, p = 0.0297; 39.7%, p = 0.0007; and 40.5%, p = 0.0006, respectively)
compared with that in the vehicle group (445 ± 115 U/L). In addition, a significant dose-dependent
effect on the CK levels was observed (p < 0.0001).
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Figure 4. Effects of kefir (KF) supplementation on the serum levels of (a) blood urea nitrogen (BUN)
and (b) creatine kinase (CK) after a 90-min swimming test and a 60-min resting period. Data are
presented as mean ± SD, n = 8. Bars with different letters (a, b) indicate a significant difference at
p < 0.05 determined using one-way ANOVA. Vehicle (glucose water), KF-1X (2.15 g/kg/day KF), KF-2X
(4.31 g/kg/day KF), and KF-5X (10.76 g/kg/day KF).

3.7. Effect of Four-Week KF Supplementation on Liver and Muscular Glycogen

As shown in Figure 5a, liver glycogen contents in the KF-1X (28.44 ± 3.25 mg/g liver), KF-2X
(29.00 ± 6.06 mg/g liver), and KF-5X (29.54 ± 7.38 mg/g liver) groups were significantly higher
(1.53-fold, p = 0.0006; 1.56-fold, p = 0.0003; and 1.59-fold, p = 0.0002, respectively) than that in the vehicle
group (18.58 ± 1.53 mg/g liver). In addition, a significant dose-dependent effect on liver glycogen
content was observed (p = 0.0004). However, muscular glycogen levels in the KF-1X (1.25 ± 0.31 mg/g
muscle), KF-2X (1.37 ± 0.22 mg/g muscle), and KF-5X (1.75 ± 0.25 mg/g muscle) groups were higher
(1.25-fold, p = 0.0489; 1.37-fold, p = 0.0051; and 1.74-fold, p < 0.0001, respectively) than those in the
vehicle group (1.00 ± 0.18 mg/g muscle) (Figure 5b). Moreover, a significant dose-dependent effect on
muscle glycogen content was observed (p < 0.0001).Nutrients 2018, 8, x FOR PEER REVIEW 8 of 14 
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Figure 5. Effects of kefir (KF) supplementation on (a) liver glycogen and (b) muscular glycogen. Data
are presented as mean ± SD, n = 8. Bars with different letters (a, b, c) indicate a significant difference
at p < 0.05 determined using one-way ANOVA. Vehicle (glucose water), KF-1X (2.15 g/kg/day KF),
KF-2X (4.31 g/kg/day KF), and KF-5X (10.76 g/kg/day KF).



Nutrients 2018, 10, 862 9 of 16

3.8. Effect of Four-Week KF Supplementation on Histopathology of Tissues and Biochemical Variables at the
End of the Experiment

The pathological histology of the major organs, including the liver, muscle, heart, kidney, and lung
tissues, is shown in Figure 6. The histological observations of the liver, muscle, heart, kidney, lungs,
EFP, and BAT of the mice in the KF-1X, KF-2X, and KF-5X groups did not differ from those in the
vehicle group. No clinical signs of organ-specific toxicity were observed after KF treatments. The ALT
and CK levels of the mice in the KF-1X, KF-2X, and KF-5X groups were lower than those in the mice
from the vehicle group. Other biochemical indices, including AST, ALT, albumin, creatinine, LDH, CK,
TP, glucose, TC, and TG, did not differ among the four groups (Table 2). Therefore, the doses of KF
supplementation used in the present study were safe.
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Figure 6. Effects of kefir (KF) supplementation on (a) liver; (b) muscle; (c) heart; (d) kidney; (e) lungs;
(f) epididymal fat pad (EFP); and (g) brown adipose tissue (BAT). Specimens were observed using a light
microscopy. Hematoxylin and eosin stain, magnification: ×200 (a–e) and ×100 (f,g). Vehicle (glucose
water), KF-1X (2.15 g/kg/day KF), KF-2X (4.31 g/kg/day KF), and KF-5X (10.76 g/kg/day KF).
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Table 2. Biochemical analysis with kefir (KF) supplementation at the end of the experiment.

Parameter Vehicle KF-1X KF-2X KF-5X Trend Analysis

AST (U/L) 62 ± 13 53 ± 13 52 ± 10 52 ± 13 0.1562
ALT (U/L) 45 ± 19 b 37 ± 12 ab 30 ± 6 a 30 ± 8 a 0.0290

Albumin (g/dL) 3.3 ± 0.1 3.3 ± 0.1 3.3 ± 0.1 3.4 ± 0.1 0.0437
Creatinine (mg/dL) 0.36 ± 0.07 0.35 ± 0.03 0.33 ± 0.02 0.34 ± 0.03 0.9029

LDH (mg/dL) 268 ± 95 250 ± 78 246 ± 20 244 ± 75 0.6979
CK (U/L) 392 ± 106 b 298 ± 73 a 271 ± 54 a 276 ± 88 a 0.0063
TP (g/dL) 4.41 ± 0.17 4.45 ± 0.05 4.51 ± 0.06 4.50 ± 0.09 0.0914

Glucose (mg/dL) 79 ± 14 80 ± 4 75 ± 7 80 ± 8 0.5622
TC (mg/dL) 134 ± 16 134 ± 10 121 ± 8 122 ± 13 0.0228
TG (mg/dL) 168 ± 23 163 ± 20 160 ± 23 162 ± 34 0.8584

Data are presented as mean ± SD, n = 8 mice/group. Different letters (a, b) in the same row indicate a significant
difference at p < 0.05 determined through one-way ANOVA. Vehicle (glucose water), KF-1X (2.15 g/kg/day KF),
KF-2X (4.31 g/kg/day KF), and KF-5X (10.76 g/kg/day KF). AST, aspartate aminotransferase; ALT, alanine
aminotransferase; LDH, lactate dehydrogenase; CK, creatine kinase; TP, total protein; TC, total cholesterol;
TG, triacylglycerol.

3.9. Effect of Four-Week KF Supplementation on the Gut Microbiota

We analyzed the gut microbiota composition using the 16S rRNA genes in the KF-1X-, KF-2X-,
and KF-5X-treated mice and observed dramatic changes in the microbial ecology when treated
with KF for 36 days. A principal coordinate analysis showed that mice clustered into relatively
distinct groups based on different treatments (Figure 7a), thus suggesting that KF significantly
altered the gut microbial populations. Figure 7b indicates that, at the phylum level, the overall
composition of the gut microbiome in the vehicle, KF-1X, KF-2X, and KF-5X groups was dominated
by the phyla Firmicutes (65% for the vehicle group, 69% for the KF-1X group, 51% for the KF-2X
group, and 57% for the KF-5X group) and Bacteroidetes (28% for the vehicle group, 25% for the
KF-1X group, 43% for the KF-2X group, and 39% for the KF-5X group). The gut microbiotas of the
mice were dominated by Firmicutes and Bacteroidetes (together accounting for approximately 90%).
However, KF-2X- and KF-5X-treated mice had a reduced proportion of Firmicutes and an increased
proportion of Bacteroidetes. The Firmicutes/Bacteroidetes (F/B) ratios in the KF-5X and KF-2X groups
were 1.46 and 1.19, respectively, which were lower than those in the KF-1X (2.76) and vehicle (2.32)
groups. The distinct gut microbiota compositions in the vehicle group were compared with those
of the KF-1X (Figure 7c), KF-2X (Figure 7d), and KF-5X (Figure 7e) groups. As shown in Figure 7c,
the linear discriminant analysis effect size (LEfSe) indicated that number of bacteria from the family
Ruminococcaceae was higher in the KF-1X group than in the vehicle group. Figure 7d shows that the
proportion of Bacteroidales and Bacteroidia was higher in the KF-2X group than in the vehicle group,
whereas the proportion of Clostridiales and Clostridia was higher in the vehicle group than in the
KF-2X group. Figure 7e shows that the KF-5X-treated mice had higher proportions of Rikenellaceae,
Bacteroidales, and Bacteroidia than did the mice from the vehicle group. However, mice from the vehicle
group had higher proportions of Clostridia than did the KF-5X-treated mice.
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Figure 7. (a) Effects of kefir (KF) supplementation on principal coordinate analysis (PCoA) of the
gut microbiota composition in mice based on the Bray–Curtis distance measure of samples in the
relative abundance profiles of an operational taxonomic unit; (b) Effects of KF supplementation on
the phylum-level gut microbiota composition of mice. Only phyla with top 10 average abundances
were included, with other phyla collapsed into “Others”; the effects of KF supplementation on the
phylum-level gut microbiota composition of mice in the (c) KF-1X and vehicle groups; (d) KF-2X
and vehicle groups, and (e) KF-5X and vehicle groups. The cladogram was generated from the
linear discriminant analysis effect size (LEfSe) analysis, showing the most differentially abundant taxa
enriched in the microbiota of mice in (c) the KF-1X (red) and vehicle (green) groups, (d) the KF-2X (red)
and vehicle (green) groups, and (e) the KF-5X (red) and vehicle (green) groups. Significant differential
abundances in LEfSe comparisons are sorted by p values in ascending order: vehicle (glucose water),
KF-1X (2.15 g/kg/day KF), KF-2X (4.31 g/kg/day KF), and KF-5X (10.76 g/kg/day KF).
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4. Discussion

Probiotics naturally occur in fermented foods such as yogurt, sauerkraut, cabbage kimchee,
and soy miso and natto [26]. Probiotics can have a positive effect on athletic performance by enhancing
fatigue recovery, improving immune function, and maintaining healthy gastrointestinal function [26].
In addition, certain probiotics, such as Bacillus coagulans, have been shown to increase nutrient
absorption. They are especially effective in protein absorption, particularly the absorption of leucine
from whey protein [27]. In this study, we found KF may improve endurance performance without
training by increasing probiotics or protein utilization.

Grip strength must be improved through procedural exercise training [28]. As shown in Figure 3,
the grip strength in the KF-1X, KF-2X, and KF-5X groups significantly increased by 23%, 25%, and 26%,
respectively, compared with that in the vehicle group. Thus, KF increased the grip strength of the
test animals without providing training interventions. Therefore, long-term KF supplementation can
benefit muscle strength even when exercise training is not implemented. Esgalhado et al. [29] and
LeBlanc et al. [30] pointed out that probiotic or prebiotic supplementation could increase intestinal
short-chain fatty acid (SCFA) content. These SCFAs affect lipid, glucose, and cholesterol metabolism
and maintain intestinal integrity [31]. SCFAs, such as n-butyrate, acetate, and propionate, can regulate
host energy balance and increase nutrient availability [32]. On the other hand, KF grains contain
lactic acid bacteria and yeasts [33] and lactic acid bacteria have beneficial effects on the host [20].
Chen et al. [34] reported that L. plantarum TWK10 (LP10) increases muscle mass and grip strength,
enhances exercise performance, and decreases physical fatigue. Lactobacillus spp. may influence
exercise performance by producing lactate. However, lactate-utilizing bacteria can use lactate to
produce butyrate [35]. In addition, a significant amount of blood lactate is produced after acute
exercise [36]. Thus, KF may use lactate to produce SCFAs and then increase nutrient availability
and improve exercise performance. Therefore, KF may be a potential solution for the removal and
utilization of blood lactate and, thus, reduce physical fatigue.

The accumulation of ammonia in the blood and brain during exercise has a negative effect on the
central nervous system and leads to fatigue [37]. Therefore, KF supplementation may play an important
role in the relationship between the central nervous system and fatigue by decreasing the accumulation
of blood ammonia. However, no significant differences were observed in the blood glucose levels
among the vehicle, KF-1X, KF-2X, and KF-5X groups after the 10-min swimming test or after the
10-min swimming test and 20-min rest period (Figure 3e,f). The increased BUN level reflects protein
decomposition, which has an adverse effect on the muscle contraction strength and leads to fatigue.
Therefore, BUN is an important biochemical parameter related to fatigue [38–40]. The result indicated
that KF supplementation can decrease BUN levels, thereby reducing the fatigue induced by acute
exercise. Serum CK levels are important clinical biomarkers for muscle damage, muscular dystrophy,
and severe muscle breakdown [41]. Muscle cell damage leads to the accumulation of metabolites during
exercise, resulting in decreased exercise capacity [42]. Therefore, KF supplementation can decrease
the serum CK level and ameliorate skeletal muscle injury induced by acute exercise. Chen et al. [34]
demonstrated that LP10 supplementation triggers an anti-fatigue effect by lowering serum lactate,
ammonia, and CK levels, thereby enhancing exercise performance in mice. Glucose is stored as
glycogen, which is mainly present in the liver and muscle tissues. Glycogen content is a determining
factor for fatigue [43]. Muscle glycogen content is a limiting factor for prolonged exercise. KF can
increase glycogen levels, which is beneficial for enhancing physical endurance. Therefore, KF-1X,
KF-2X, and KF-5X groups can all increase liver or muscle glycogen contents, which may directly
increase exercise performance and reduce physical fatigue. However, KF-5X can significantly increase
muscle glycogen content than KF-1X and KF-2X.

The F/B ratios in the KF-5X and KF-2X groups were lower than vehicle group. In particular,
Bacteroidetes is associated with increased expression of proteins involved in the catabolism of
branched-chain amino acids and increased production of SCFAs [44]. Although SCFAs are a source
of host calories, their intestinal production is mainly related to reduced inflammation, increased
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satiety, and overall positive metabolic effects [45,46]. Bomhof et al. [47] demonstrated that prebiotics
and probiotics all reduce the F/B ratio. Other phyla of all groups were also detected, including
the Proteobacteria, Deferribacteres, Tenericutes, Cyanobacteria, Actinobacteria, Acidobacteria, Synergistetes,
and TM7. Ruminococcaceae, the most abundant bacterial family from the order Clostridiales, is found in
the mammalian gut environment, and is associated with the maintenance of gut health [48]. The order
Bacteroidales is known to provide beneficial properties to the host [49–51]. These results indicated
that KF can modify the gut microbiota, thereby contributing to the metabolic networks that reduce
physical fatigue.

5. Conclusions

In the present study, we found that four weeks of KF supplementation provided the potential to
modulate the gut microbiota and yielded anti-fatigue activity by lowering plasma lactate, ammonia,
and CK levels, thereby increasing the exercise performance and improving the forelimb grip strength
and the swimming time to exhaustion in mice. In addition, KF may modify gut microbiota, thereby
contributing to the host metabolic phenotype, which improves exercise performance and reduces
physical fatigue. Therefore, KF might be useful in reducing physical fatigue. In the future, the molecular
mechanism and clinical trial of KF involved in anti-fatigue should be investigated.
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