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Abstract: Phycobiliproteins of Arthrospira (Spirulina) maxima have attracted attention because
of their potential therapeutic antioxidant properties. The aim of this study was to assess the
possible antiulcerogenic activity of these phycobiliproteins (ExPhy) against ethanol-induced gastric
ulcers in rats. To explore the possible mechanisms of action, we examined antioxidant defense
enzymes (e.g., catalase, superoxide dismutase, and glutathione peroxidase), as well as the level of
lipid peroxidation (MDA) and the histopathological changes in the gastric mucosa. Intragastric
administration of ExPhy (100, 200, and 400 mg/kg body weight) significantly lowered the ulcer index
value compared to the ulcer control group (p < 0.05). The greatest protection was provided by the
concentration of 400 mg/kg. The histological study supported the observed gastroprotective activity
of ExPhy, showing a reduced inflammatory response. Moreover, the alcohol-induced decrease in
stomach antioxidant enzyme activity found in the ulcer control group was prevented by ExPhy
pretreatment. Furthermore, ExPhy reversed the ethanol-induced increase in lipid peroxidation.
In summary, the antiulcerogenic potential of ExPhy may be due, at least in part, to its anti-oxidant
and anti-inflammatory effects.
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1. Introduction

Stomach ulcers, one of the most common gastrointestinal disorders, affect people of all ages
around the world [1]. Under normal conditions, the integrity of the stomach mucosal barrier is
maintained by an equilibrium between irritation and defensive factors [2]. When the gastric mucosa is
continuously exposed to extremely aggressive agents, such as non-steroid anti-inflammatory drugs
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(NSAIDs), nutritional deficiencies, smoking, stress, and excessive ingestion of ethanol, this equilibrium
can be jeopardized and the risk of developing a gastric ulcer increases [3–6].

In the gastrointestinal tract, exposure to alcohol can damage the motility of the esophagus,
stomach, and gut as well as the capacity of gut absorption. It can generate mucosal damage and
even carcinogenesis [7,8]. Ethanol is a harmful agent associated with multiple pathologies and is
applied orally in experimental animals to cause acute gastric lesions and ulcers [9,10]. The mechanism
of ethanol-induced damage is complex and not fully understood. Ethanol produces a disruption
in the integrity of the gastric mucosal barrier through exfoliation of cells, thus increasing mucosal
permeability and in some cases provoking bleeding [3,11]. The extravasation of neutrophils to the site
of injury triggers elevated concentrations of reactive oxygen species (ROS) and other mediators of
inflammation, causing oxidative damage with deleterious effects on cells. Oxidative stress has been
shown to play a role in alcohol-induced gastric mucosal damage [12,13].

Spirulina maxima is a blue-green alga, now given the name Arthrospira maxima (Am). This
cyanobacterium has been used as food since antiquity, with some of the first historical records coming
from the Aztec civilization and the early inhabitants of Central Africa [14,15]. Due to its high content
of proteins (mainly phycocyanin and allophycocyanin), vitamins, amino acids, minerals, and essential
fatty acids, it has been the object of several pharmacological studies [16]. Am has been reported as
having anti-inflammatory, immunostimulatory, antiviral, and antioxidant activity [17–20], as well as
producing anti-hepatotoxic and anti-nephrotoxic effects and improving vascular reactivity [21–23].
These effects have been related to the antioxidant activity of Am, while others are attributed to some of
its active ingredients, such as phycobiliproteins, which decrease oxidative stress [19,24]. Various studies
have shown that extracts of Am rich in phycobiliproteins exhibit relevant pharmacological properties,
including anti-teratogenic and neuroprotective effects, antigenotoxic properties, anti-inflammatory,
and antioxidant activities, and protection against colitis [19,25–28]. However, to our knowledge,
there are no reports on the anti-ulcerative activities of phycobiliproteins from Am.

Hence, the aim of the present study was to assess the gastroprotective effects of an extract of Am
rich in phycobiliproteins (ExPhy) on ethanol-induced gastric ulcers in rats. Accordingly, evaluation
was made of some antioxidant and oxidative markers as well as histopathological damage.

2. Materials and Methods

2.1. Preparation of the Phycobiliprotein Extract (ExPhy)

ExPhy was prepared as described by Cruz de Jesús et al. [29], with some modifications.
Three grams of Am powder (AEH Spiral Spring, Mexico City) were suspended in 12 g of phosphate
buffer (20 mM, pH 7) and stirred at room temperature (r.t.) for 5 min. The solution was then subjected
to three cycles of freezing and thawing, being frozen at −70 ◦C and thawed at r.t. Subsequently, the
mixture was shaken for 1 h at r.t., followed by centrifuging the crude extract of phycobiliproteins
at 18,000 rpm for 30 min at 4 ◦ C in a Beckman Coulter Avanti j-30I centrifugue (Beckman Coulter,
Brea, CA, USA). The blue supernatant obtained was separated and again centrifuged at 22,000 rpm,
discarding the green precipitate after each centrifugation step. Finally, the supernatant was lyophilized
and stored (protected from light) at −20 ◦C.

The phycobiliprotein concentration in the supernatant was calculated from absorption
measurements at 562, 620, and 652 nm. Equation (1) was used for estimating C-phycocyanin (C-PC)
and Equation (2) for allophycocyanin (APC) [30]:

C-PC (mg/mL) = [A620 − 0.474 (A652)]/5.34 (1)

APC (mg/mL) = [A652 − 0.208 (A620)]/5.09 (2)

The purity of C-PC and APC extracts was also evaluated, finding C-PC with an A620/A280
absorbance ratio and APC with an A652/A280 ratio [31].
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2.2. LC-MALDI-MS/MS and Data Analysis

Sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE) was performed
according to the Gallagher method [32], with a separating gel of 12% and a stacking gel of 5%
acrylamide. An electrophoresis was run with 50 µg/mL ExPhy at 120 V for 90 min. Resolved
proteins were visualized with Coomassie Brilliant Blue (G250) staining. Four fragments from
SDS-PAGE were enzymatically digested according to the modified protocol of Shevchenko et al. [33].
The resulting tryptic peptides were concentrated at an approximate volume of 10 µL. Then, 9 µL were
loaded into a ChromXP Trap Column C18-CL precolumn (Eksigent, Redwood City, CA, USA), with
350 µm × 0.5 mm, a 120 A◦ pore size and a 3 µm particle size, desalted with 0.1% TFA in H2O at a
flow rate of 5 µL/min for 10 min. Then, peptides were loaded and separated on a Waters BEH130 C18
column (Waters, Milford, MA, USA), with 75 µm × 150 mm, a 130 A◦ pore size and a 1.7 µm particle
size, using an HPLC Ekspert nanoLC 425 (Eksigent, Redwood City, CA, USA). Mobile phase A was
0.1% trifluoroacetic acid (TFA) in H2O and mobile phase B 0.1% TFA in acetonitrile (ACN) at a flow
rate of 300 nL/min, with the following gradient: 0–3 min, 10% B (90% A); 35 min, 60% B (40% A);
36–45 min, 90% B (10% A); 46–120 min, 10% B (90% A). Eluted fractions were automatically mixed with
a solution of 2 mg/mL of α-Cyano-4-hydroxycinnamic acid (CHCA) in 0.1% TFA and 50% ACN as a
matrix, spotted in a stainless-steel plate of 384 spots with a MALDI Ekspot (Eksigent, Redwood City,
CA, USA), with a spotting velocity of 30 s per spot at a matrix flow of 1.6 µL/min. The spots generated
were analyzed by a MALDI-TOF/TOF 4800 Plus mass spectrometer (ABSciex, Framingham, MA,
USA). Each MS spectrum was acquired by accumulating 1000 shots in a range of m/z 850–4000
with a laser intensity of 3100. The 100 most intense ions with a minimum signal-noise (S/N) of 20
were programmed to fragment. The MS/MS spectra were obtained after fragmentation of selected
precursor ions by using collision-induced dissociation (CID), acquired by 3000 shots with a laser
intensity of 3800. The MS/MS spectra were compared to the Am CS-328 database (downloaded from
Uniprot, 5505 protein sequences) with Protein Pilot software v. 2.0.1 (ABSciex, Framingham, MA,
USA) and Paragon algorithm [34]. Search parameters were: carbamidomethylated cysteine, trypsin
as a cut enzyme, all biological modifications and amino acid substitutions set by the algorithm,
and phosphorylation emphasis and gel-based ID as special factors. The detection threshold was
considered at 1.3 to acquire 95% confidence, and the identified proteins observed a local FDR of 5% or
less. These proteins were grouped by the ProGroup algorithm in the software to minimize redundancy.

2.3. Animals

Male Wistar rats (170–250 g) were supplied from the breeding colony of the Autonomous
University of Hidalgo State (UAEH). The animals were maintained in cages with raised floors
and wide mesh (to prevent coprophagy), in a separate animal room under standard conditions
of temperature (22 ± 1 ◦C) and a 12 h light/dark cycle. They were fed a standard diet, with water
provided ad libitum throughout the experiment. Prior to inducing ulcers, the rats were fasted for
22 h. After each experiment, the animals were euthanized in a carbon dioxide euthanasia chamber.
The current protocol was accepted by the Ethics Committee of the National School of Biological Sciences
(CEI-ENCB-08-2016). All procedures and handling of the animals were in accordance with the Mexican
Official Regulation (NOM ZOO–062-200-1999) entitled “Technical Specifications for Production, Care,
and Use of Laboratory Animals”.

2.4. Drugs and Chemicals

Omeprazole was acquired from Sigma-Aldrich (St. Louis, MO, USA). Thiobarbituric acid (TBA)
and trichloro acetic acid (TCA) were purchased from Merck (Darmstadt, Germany). SOD and GPx
were obtained from Randox, Mexico city. Other reagents and solvents, procured from local sources,
were of analytical grade.
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2.5. Antiulcer Activity and Experimental Design

The assay was carried out with the methodology described by Almasaudi et al. [35], with some
modifications. The animals were randomly divided into six groups (n = 6). All treatments were
administrated by intragastric gavage for eight consecutive days, with the gastric ulcer induced on
the last day with 80% ethanol solution (1 mL/animal). Group I (vehicle control) received the vehicle
only (10 mL/kg body weight (bw) of 1% Tween-80 aqueous solution). For all other groups, an ulcer
was induced on the last day of treatment, one hour after administering the corresponding compound.
Group II (ulcer control) was given the vehicle, group III 40 mg/kg bw omeprazole, group IV, V and VI
the different concentrations of ExPhy (100, 200 and 400 mg/kg bw, respectively).

One hour after inducing an ulcer, animals were sacrificed. The stomachs were excised, filled by
injecting 2.5 mL of a 4% formaldehyde solution, and put in a beaker with formaldehyde. After 10 min,
the stomachs were opened over the greater curvature and rinsed with saline solution (0.9%) to remove
the blood clots. Thereafter, each gastric sample was placed on a slide. The gastric damage area (mm2)
was determined with “Image J” image processing software. The Ulcer Index (UI) for each rat was
calculated with the following formula:

UI = (TAML (mm2) × 100)/(TMA (mm2))

where TMA is the total mucosal area and TAML the total area of mucosal lesion of each rat [36].
The protection percentage (PP) was calculated using the following formula:

UI = (TAML (mm2) × 100)/(TMA (mm2))

PP = (UI control − UI treated)/(UI control) × 100

where UI control is the ulcer index of the ulcer control (group II) and UI treated is the ulcer index of
the treated group (groups III–VI) [37]. From the three concentrations tested for ExPhy, the one with the
least UI was adopted for all other tests.

2.6. Stomach Tissue Preparation

In a second experiment, another series of four groups of rats were formed. After the eight days of
the corresponding treatments, the ulcer was induced and the rats were sacrificed (see previous section).
The stomachs were extracted, cut along the greater curvature, and gently rinsed with cold phosphate
buffer (PBS) (pH 7.4). A portion of each stomach tissue (0.5 g) was cut into small pieces and 4.5 mL
of cold PBS were added. The mixture was homogenized on ice with an Ultra-turrax homogenizer
(T18, IKA, Staufen im Breisgau, Germany) and a Polytron (Newtown, CT, USA) handheld homogenizer,
and then tissue homogenates were centrifuged for 12 min at 12,000 rpm (4 ◦C). The supernatants were
divided into aliquots and conserved at −20 ◦C until the biochemical analysis.

2.7. Biochemical Analysis

Gastric activity of glutathione peroxidase (GPx) was determined with a commercial kit Ransel
RS504 (Crumlim, Country Antrim, UK), based on the method developed by Plagia and Valentine [38].
GPx catalyzes the oxidation of glutathione by cumene hydroperoxide. In the presence of glutathione
reductase (GR) and NADPH, the oxidized glutathione is immediately converted to the reduced form
with concomitant oxidation of NADPH to NADP+. The decrease in absorbance was measured after 1
and 2 min at 340 nm, with enzyme activity being directly proportional to the rate of change.

Superoxide dismutase activity (SOD) was assessed according to the method of McCord and
Fridovich [39] with a Ransod SD125 Kit (Crumlim, Country Antrim, UK). The method employs
xanthine and xanthine oxidase to generate superoxide radicals, which react with 2-(4-iodophenyl)-3-
(4-nitrophenol)-5-phenyltetrazolium chloride (INT) to form a red formazan dye. SOD inhibits the
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reaction by converting the superoxide radical to oxygen. The SOD activity was determined as the
degree of inhibition of this reaction, measured by absorbance at 505 nm.

Catalase activity (CAT) in gastric tissue was evaluated by tracking the rate of decomposition of
H2O2 in the presence of CAT at 240 nm [40].

The protein concentration in supernatants was established by the Bradford method [41], using
bovine serum albumin as a standard. This assay involves the binding of Coomassie Brilliant Blue
G-250 dye to proteins at r.t. When the dye binds to the protein, it is converted from an unstable form
(red in color) to a stable unprotonated form (turning blue). The blue protein dye is detected at 595 nm.

Lipoperoxidation Assessment

The content of malondialdehyde (MDA) was determined in each of the supernatants by the
thiobarbituric acid reactive substances (TBARS) assay, as described by Esterbauer and Cheeseman [42].
To 0.5 mL of gastric mucosal homogenates were added 1.0 mL of reactive mixture containing 0.375%
of TBA and 15% of trichloroacetic acid (TCA) in 0.20 N HCl. After incubation for 15 min in boiling
water, the samples were cooled and centrifuged at 1000 rpm for 10 min at 4 ◦C. The absorbance of the
supernatant was measured at 532 nm and the concentration of MDA was calculated with an extinction
coefficient of 156,000 M−1 cm−1.

2.8. Histopathological Examination

After determination of the UI, the stomachs of each group were fixed in 10% formalin solution
for 24 h. Subsequently, they were dehydrated by immersing them in ascending concentrations of
alcohol solutions (70–100%) and in paraffin. Slides of stomach slices of 4–5 µm thickness were
prepared and stained with hematoxylin and eosin (H&E) and then analyzed under light microscope
at 20× and 40× for pathological changes, including necrosis, edema, vasocongestion, eosinophilic
infiltration, and glandular damage. All slides were photographed with Zeiss Axiophot microscopy
(Thornwood, NY, USA).

2.9. Statistical Analysis

Statistical analysis was carried out with SigmaPlot version 12.0 (Systat Software, San Jose, CA,
USA). All data are expressed as the mean ± standard error of the mean (SEM). One-way analysis of
variance (ANOVA) and Dunnett’s post hoc test were applied, comparing the treated groups with the
ulcer control group; statistical significance was attributed at p < 0.05.

3. Results

3.1. Evaluation of Phycobiliprotein Content and Purity of ExPhy

The phycobiliprotein (C-PC and APC) content and purity of ExPhy were evaluated (Table 1).
C-PC purity was found to be 0.86 and APC purity 0.81. The content of C-PC was 0.40 mg/mL and of
APC 0.56 mg/mL.

3.2. LC-MALDI-MS/MS Analysis

Liquid chromatography (HPLC) along with mass analysis by MALDI-MS/MS was carried out
to identify and characterize the protein components of ExPhy, isolated from Arthrospira maxima.
Nine different proteins were identified that belong to phycobilisomes, which is a light-harvesting
macromolecular complex (Table 2). The spot number (band of gel), accession number, protein name,
unused, % coverture (% Cov), and molecular weight are reported. Other proteins were also detected
(their specific data are summarized in Table S1).
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Table 1. Concentration and purity ratio of ExPhy.

Phycobiliprotein Concentration (mg/mL) Purity Ratio A620/A280 (C-PC) A652/A280 (APC)

C-PC 0.40 0.86
APC 0.56 0.81

C-PC, Phycocyanin C; APC, Allophycocyanin; ExPhy, extract rich in phycobiliproteins.

Table 2. Results of different protein spots identified by MALDI-MS/MS.

No. Spot No. Accession Protein Unused % Cov MW (Da)

1 1, 2, 3, 4 tr|Q8VRJ2 Phycocyanin alpha chain 16 69.75309 17,600
2 1, 2, 3, 4 tr|Q7BA94 Phycocyanin beta chain 10.44 78.48837 18,094
3 1, 2, 3, 4 tr|B5VUA2 Allophycocyanin, beta subunit 8 82.60869 17,330
4 1, 3, 4 tr|B5W3K3 Allophycocyanin, beta subunit 4.85 56.80473 18,442
5 1, 2, 3, 4 tr|B5W789 Phycobilisome linker polypeptide 2.8 52.7559 29,427
6 1, 2, 3 tr|B5VV49 Phycobilisome linker polypeptide 2.75 30.90278 32,509
7 2 tr|B5VV50 Phycobilisome linker polypeptide 3.67 59.77859 30,834
8 3, 4 tr|B5W2H7 Phycobilisome protein 8.72 55.90062 18,002
9 1, 2, 3, 4 tr|B5VUA1 Phycobilisome protein 9.49 80.12422 17,392

No, number; % Cov, % coverture; MW (Da), molecular weight (daltons); MALDI-MS/MS, matrix-assisted laser
desorption/ionization mass spectrometry.

3.3. Effect of ExPhy on Ethanol-Induced Gastric Lesions

The gastroprotective effect of pretreatment with ExPhy on ethanol-induced gastric lesions was
determined (Table 3). In the vehicle control group, no macroscopic lesions were found (Figure 1A).
In the ulcer control group, severe gastric lesions were observed in the mucosa layer, such as gastric
hyperemia and thick linear hemorrhages (Figure 1B), with a UI of 13.73 ± 1.50. Pretreatment with
ExPhy (at 100, 200, and 400 mg/kg) and omeprazole (at 40 mg/kg) (Figure 1C–F, respectively)
significantly reduced the ulcer index of lesions compared to the ulcer control group, with values of
8.91 ± 0.87, 6.61 ± 1.10, 5.13 ± 0.94, and 1.32 ± 0.96, respectively. The decrease in the ulcer index was
also expressed as a percentage of protection, being 35.10%, 51.87%, 62.62%, and 90.36%, respectively.
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3.4. Histopathology

The microscopic study of the vehicle control group (Figure 2A,a) shows typical gastric
histoarchitecture with intact epithelium and glands. The ulcer control group, on the other hand,
displayed several changes in the integrity of the gastric mucosa (Figure 2B,b), such as severe
desquamation and loss of surface epithelial (mucous) cell, necrosis, vacuolization, edema and dilated
gastric glands along with infiltration of inflammatory cells (neutrophils and eosinophils). Pretreatment
with omeprazole decreased the gastric lesions compared to the ulcer control. The gastric mucosa
exhibited focal loss of superficial gastric epithelium. The gastric glands were almost normal in
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appearance. There was mild edema with limited eosinophilic infiltration and minimal hemorrhage
(Figure 2C,c). Pretreatment with ExPhy resulted in gastric lesions, characterized by focal areas of
disruption in one-third of the mucosa, without a mucus layer in this zone. Nevertheless, the rest of the
mucosa showed almost normal gastric glands, with mild edema and limited eosinophilic infiltration
(Figure 2D,d) compared to the ulcer control.

Table 3. Effect of ExPhy and omeprazole on ulcer parameters in rats with ethanol-induced ulcers.

Groups Pretreatment Ulcer Index (mm2) Protection Percentage (%)

I Vehicle control 0 * 0
II Ulcer control 13.73 ± 1.50 0
III Omeprazole (40 mg/kg) 1.32 ± 0.96 * 90.36
IV ExPhy (100 mg/kg) 8.91 ± 0.87 * 35.10
V ExPhy (200 mg/kg) 6.61 ± 1.10 * 51.87
VI ExPhy (400 mg/kg) 5.13 ± 0.94 * 62.62

Data are expressed as the mean ± SEM; n = 6 rats per group; * indicates p < 0.05 compared to the ulcer control
group; ExPhy = extract rich in phycobiliproteins.
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3.5. MDA and Antioxidant Enzyme Determination

After ethanol administration, an evaluation was made of the effect of ExPhy on the activity of
antioxidant enzymes (SOD, CAT, and GPx) and the level of MDA (as a lipoperoxidation index) in
gastric tissue (Figure 3). The SOD enzyme activity in the ulcer control significantly decreased compared
to the vehicle control. Pretreatment of rats with ExPhy (400 mg/kg) and omeprazole (40 mg/kg)
significantly restored SOD activity in relation to the ulcer control. CAT activity in the stomach of
the ulcer control was significantly lower than that of the vehicle control. In the groups treated with
ExPhy (400 mg/kg) and omeprazole (40 mg/kg), CAT activity was significantly greater than in the
ulcer control. The depletion of GPx activity observed in ulcer control was significantly reversed in rats
pretreated with ExPhy (400 mg/kg) and omeprazole (40 mg/kg). Regarding gastric MDA, there was
a significantly higher level in the ulcer control versus the vehicle control. Pretreatment with ExPhy
(400 mg/kg) and omeprazole (40 mg/kg) protected against the damage found in the ulcer control and
led to decreased concentrations of MDA.
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Figure 3. ExPhy and omeprazole pretreatments, followed by ethanol-induced gastric ulcers, produced
protective effects on the gastric mucosal activity of GPx, SOD and CAT, as well as lowering the levels
of MDA compared to the ulcer control. * Indicates p < 0.05. Data are expressed as the mean ± SEM.
ExPhy, extract rich in phycobiliproteins.

4. Discussion

Considering the frequency of gastric ulcers in humans and the side effects and cost of some
available synthetic drugs, the use of natural products represents an important alternative for
many [43,44]. In this sense, Spirulina maxima and ExPhy have proven to be advantageous in the
treatment of various ailments in lab animals and patients. Moreover, their absence of toxicity has been
demonstrated by short- and long-term studies [45].
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The current investigation evaluated the antiulcerogenic activity of ExPhy of Am on an
ethanol-induced gastric ulcer model. A determination was made of the effects of ExPhy in relation
to some antioxidant and oxidative markers, along with protection against histopathological damage.
C-PC and APC in ExPhy were identified and characterized by standard analytical methods (UV–VIS
spectroscopy and MALDI-MS/MS).

Phycobilisomes are supramolecular complexes on the stromal surface of the thylakoid membrane
in cyanobacteria (e.g., Am). These complexes, which participate in trapping light energy and
transferring it within the cell, can make up to 60% of the total protein [46,47]. The antioxidant potential
reported for Am may be attributed to this major class of proteins. Phycobilisomes are constituted
mainly by individual protein components denominated phycobiliproteins and linker polypeptides [48].
Phycobiliproteins consist of two different polypeptides (the α and β chains) that are covalently linked
to bilin chromophores [49]. In this study, MALDI-MS/MS analysis corroborated that the protein bands
excised from SDS-PAGE belonged to α and β subunits of C-PC and APC, the main photosynthetic
accessory pigments present in cyanobacteria [47]. On the other hand, the values of purity achieved
for C-PC and APC from ExPhy (Table 1) can be considered good, since a purity of 0.7 is accepted as
food grade [50]. Interestingly, the analysis by mass spectrometry showed the presence of other cellular
proteins (see the Supplementary Materials) that probably influenced the purity of phycobiliproteins in
a minor way.

Phycobiliproteins have attracted attention due to their special structure and potential therapeutic
properties, either in a pure state or in protein extract. C-PC and APC are known to exert several
beneficial activities, including antioxidant (shown in vitro and in vivo) [19,51,52], anti-inflammatory,
and immune-stimulatory [27,53–56]. The antioxidant mechanism of phycobiliproteins has been
associated with various activities: (1) ROS scavenging [25,51,52]; (2) chelating [25]; (3) neutralizing free
radicals through the sulfur atom of cysteine and methionine of apophycocyanin, which can transfer
hydrogen atoms or electrons to free radicals [51,57]; and (4) influencing the activity of antioxidant
enzymes [58–60].

Excessive ethanol consumption is considered one of the risk factors for gastric ulcers in
humans [61,62]. Its use in experimental animals allows for the evaluation of cytoprotective activity of
potentially active products [63]. Different mechanisms of gastric cytoprotection have been suggested,
including increased gastric mucosal blood flow, free radical scavenging, and stimulation of cell growth
and repair [64]. In the current study, consistent with previous findings, administration of 80% ethanol
solution by intragastric gavage produced marked damage in the gastric mucosa of rats, characterized
mainly by elongated macroscopic lesions with intense hemorrhaging and hyperemia, as well as loss of
mucus [35,65,66]. Pre-treatment of rats for eight days with ExPhy markedly attenuated gastric damage
and promoted healing of gastric mucosa lesions induced by ethanol, although to a lesser extent than
the standard drug, omeprazole. ExPhy provided the best protection at the highest concentration tested.
These results indicate that ExPhy may have a protective effect against the ulcerative lesions induced
by ethanol on gastric mucosa.

Additionally, though it was not explored presently, direct contact of phycocyanin with injured
gastric mucosa possibly contributes to the healing process. There is evidence that both Spirulina and
C-phycocyanin are capable of stimulating cell growth and viability, both in human keratinocytes and in
a rat model [67]. These properties underlie the use of Spirulina in the development of new biomaterials
for the construction of scaffolds for cell growth in the field of tissue engineering [68].

After demonstrating that ExPhy provided a protective effect against the development of
ethanol-induced ulcers, the next step was to confirm these findings through a histopathological
analysis of gastric tissue. In accordance with previous studies, the ulcer control group showed typical
histological damage 1 h after ethanol administration. This damage was characterized by vascular
congestion, submucosal edema formation, loss of gastric mucosa integrity, and necrotic tissue injury,
as well as an inflammatory response characterized by neutrophil and eosinophil infiltration [65,69,70].
The aggregation of neutrophils plays a fundamental role in the process of injury and inflammation
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in the gastric mucosa due to their release of tissue-disruptive substances like proteases, leukotrienes
B4 (LTB4), and reactive oxygen species [71,72]. Via NADPH oxidase, neutrophils release superoxide
anions, and these in turn are metabolized into the hydroxyl radical. The latter can mediate lipid
peroxidation of polyunsaturated fatty acids and cause damage to cell membranes, leading to an
alteration in the structural integrity and biochemical function of membranes [73,74].

Interestingly, the microscopic study revealed a lesser extent of inflammatory infiltrate in the
group of rats treated with ExPhy. Moreover, the histopathological changes triggered by ethanol
were significantly diminished. The gastric mucosa showed a more regular architecture and less
hemorrhaging and submucosal edema. Previous reports have confirmed the anti-inflammatory
properties of phycobiliproteins. In rats with colitis treated with phycocyanin, Gonzales et al. [27]
described a substantial reduction in neutrophil infiltration in colonic mucosal injury. Remirez et al. [28]
evaluated the protective effect of the phycocyanin extract in the zymosan-induced arthritis model in
mice, finding that treatment with phycocyanin displayed an inhibition of cellular infiltration. Further
studies carried out by Romay et al. [75,76] demonstrated that phycocyanin is able to inhibit the
inflammatory response and edema triggered by 12-O tetradecanoyl phorbol 13-acetate in mice, as well
as reduce the LTB4 levels in arachidonic acid-induced mouse ear edema. Inhibitors of cyclooxygenase
(COX) and lipooxygenase (LOX) enzymes have proven to be active in this model [77], suggesting
that the mechanism of action of ExPhy for diminishing inflammatory infiltrate and edema could be
linked, at least in part, to their antioxidant properties (as previously described), an inhibitory effect on
cyclooxygenase-2 (COX-2), and/or the biosynthesis of LTB4.

Currently, there is consensus that alcohol intake is noxious to gastric tissue. The generation of ROS
and subsequent oxidative stress is one of the major mechanisms in the pathogenesis of gastric tissue
damage and ulcerogenesis induced by ethanol [71,78]. It has been documented that the administration
of alcohol not only has necrotizing effects but also gives rise to oxidative stress by provoking injury
to the mitochondria. The latter occurs through a decrease in mitochondrial membrane potential,
which leads to a perturbation of the mitochondrial electron transfer system and an overproduction of
O2—[79,80]. Oxidative stress is manifested as an abnormal elevation of reactive oxygen species, leading
to the depletion of the antioxidant defense system (enzymatic and non-enzymatic), thus furthering
damage to cell structures such as carbohydrates, nucleic acids, proteins and lipids (promoting lipid
peroxidation) [12,81]. Potent antioxidants and free radical scavengers have been shown to inhibit
oxidative stress and consequently the progression of lipid peroxidation [82,83]. Molecules with this
capability include flavonoids, phenolic compounds, vitamins (tocopherol), and phycocyanin [53].
The latter is a powerful antioxidant that removes free radicals, including peroxynitrite radicals, nitric
oxide radicals, peroxyl radicals, hydroxyl radicals, superoxide anion, hypochlorous oxygen, hydrogen
peroxide, and synthetic radicals DPPH and ABTS. This action is given by its structure, rich in amino
acids such as methionine, cysteine, and the tetrapyrolic prosthetic group, which can stabilize highly
reactive species such as free radicals [60]. In addition, in vivo and in vitro models have been shown
to exert antioxidant action within the cells [84]. Therefore, the administration of ExPhy in this study
probably improves cellular antioxidant defenses.

In the current study, we corroborated that intragastric administration of ethanol causes severe
oxidative stress in stomach tissue (ulcer control group) by significant inhibition of the activity of
antioxidant enzymes such as CAT, GPx, and SOD compared to the vehicle control group. Additionally,
there was a significant increase in the level of MDA, as previously reported [66,85]. MDA is commonly
measured as a biomarker to assess lipid peroxidation levels in tissues [86]. ExPhy pretreatment
exhibited antioxidant properties by decreasing the levels of MDA, suggesting its potential to
protect against ethanol-induced lipid peroxidation in rats. Furthermore, ExPhy preserved the
antioxidant activity of GPx, CAT, and SOD enzymes after ethanol administration, thus protecting the
gastric mucosa.

Normally, these antioxidant enzymes provide cells with mechanisms for defending themselves
against ROS damage. SOD represents the first line of defense against ROS by catalyzing the
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conversion of O2—to oxygen and H2O2, the latter of which is catalyzed to H2O by CAT or
GPx [83]. The possibility of this protective effect being fostered by ExPhy is consistent with previous
findings that phycobiliproteins engender a significant decrease in oxidative stress by increasing the
antioxidant defense system and reducing the levels of lipid peroxidation in different pathologic
conditions. Fernandez-Rojas et al. [60] reported the protective effect of C-PC against cisplatin-induced
nephrotoxicity in CD-1 mice through the attenuation of oxidative stress and an enhancement of
the activity of antioxidant enzymes. This effect was associated with the ROS-scavenging ability of
C-PC. Additionally, Rodríguez-Sánchez et al. [87] found that phycobiliproteins protect renal cells
against mercury-induced oxidative stress in mice. The mechanism of action suggested involves the
reduction of oxidative markers and the chelating properties of phycobiliproteins. More recently,
Kumari and Anbarusa [59] documented the protective action of C-PC in the rat selenite cataract model,
which might be a consequence of its ability to scavenge the free radicals generated and exert an
anti-apoptotic function.

In conclusion, the current results suggest a significant gastroprotective effect of ExPhy against
ethanol-induced gastric damage. This protection may be related to the antioxidant properties of
ExPhy by activating some enzymatic antioxidant mechanisms (SOD, CAT, and GPx), diminishing lipid
peroxidation, and attenuating the inflammatory response, improving defenses against the erosive
lesion that characterize the development of gastric ulcers produced by ethanol. However, further
detailed studies are needed to clarify the mechanisms underlying the gastroprotective effect shown
by ExPhy.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6643/10/6/763/s1,
Table S1: Additional proteins identified by MALDI-MS/MS.
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