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Abstract: Magnesium is well known for its diverse actions within the human body. From a
neurological standpoint, magnesium plays an essential role in nerve transmission and neuromuscular
conduction. It also functions in a protective role against excessive excitation that can lead to neuronal
cell death (excitotoxicity), and has been implicated in multiple neurological disorders. Due to these
important functions within the nervous system, magnesium is a mineral of intense interest for the
potential prevention and treatment of neurological disorders. Current literature is reviewed for
migraine, chronic pain, epilepsy, Alzheimer’s, Parkinson’s, and stroke, as well as the commonly
comorbid conditions of anxiety and depression. Previous reviews and meta-analyses are used to set
the scene for magnesium research across neurological conditions, while current research is reviewed
in greater detail to update the literature and demonstrate the progress (or lack thereof) in the field.
There is strong data to suggest a role for magnesium in migraine and depression, and emerging data
to suggest a protective effect of magnesium for chronic pain, anxiety, and stroke. More research is
needed on magnesium as an adjunct treatment in epilepsy, and to further clarify its role in Alzheimer’s
and Parkinson’s. Overall, the mechanistic attributes of magnesium in neurological diseases connote
the macromineral as a potential target for neurological disease prevention and treatment.

Keywords: magnesium; excitotoxicity; glutamate; migraine; chronic pain; epilepsy; Alzheimer’s;
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1. Introduction

Magnesium is a very important macromineral in the diet with a multitude of roles in the human
body, including serving as a cofactor in more than 300 enzymatic reactions. Magnesium is essential
for regulation of muscle contraction (including that of the heart), blood pressure, insulin metabolism,
and is required for the synthesis of DNA, RNA, and proteins [1]. In the nervous system, magnesium
is important for optimal nerve transmission and neuromuscular coordination, as well as serving to
protect against excitotoxicity (excessive excitation leading to cell death) [1,2].

One of the main neurological functions of magnesium is due to magnesium’s interaction with the
N-methyl-D-aspartate (NMDA) receptor. Magnesium serves as a blockade to the calcium channel in
the NMDA receptor (Figure 1), and must be removed for glutamatergic excitatory signaling to occur [3].
Low magnesium levels may theoretically potentiate glutamatergic neurotransmission, leading to a
supportive environment for excitotoxicity, which can lead to oxidative stress and neuronal cell death [4].
Abnormal glutamatergic neurotransmission has been implicated in many neurological and psychiatric
disorders [5] including: migraine, chronic pain, epilepsy, Alzheimer’s, Parkinson’s, and stroke,
in addition to depression and anxiety, which are commonly comorbid with these neurological disorders.
Molecular studies [6] and animal studies [7] have shown neuronal protection from pre-treatment with
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magnesium, making this mineral of intense interest for its potential neuroprotective role in humans.
Thus, magnesium could be an important dietary factor in the prevention and/or treatment of the
above conditions.

Figure 1. Glutamatergic N-methyl-D-aspartate receptor with magnesium block of calcium channel.
Reprinted from [8] with permission from Elsevier.

It has been estimated that approximately half of the US population is consuming inadequate
amounts of magnesium [9]. Due to the wide-ranging functions of magnesium, inadequate intake could
predispose individuals to multiple health issues, including those related to neurological conditions.
This review aims to summarize the recent human literature on what is known about magnesium and
the following neurological disorders: migraine, chronic pain, epilepsy, Alzheimer’s, Parkinson’s,
and stroke, as well as anxiety and depression. Recommendations will also be made for future
research directions.

2. Materials and Methods

A search was completed using PubMed, MEDLINE, PsychINFO, and Wiley-Blackwell Cochrane
Library. Abstracts were pulled for all available literature and were then reviewed by all three authors
and a consensus decision was made about which papers met inclusion criteria. Studies of adult human
populations from any year were included if they were written in English. Papers were reviewed for
every article that met the review criteria, including magnesium levels (e.g., blood serum, cerebrospinal
fluid, etc.) or magnesium treatment in human populations with migraine, chronic pain, anxiety,
depression, epilepsy, Alzheimer’s disease, Parkinson’s disease, and stroke. Search strings included
the neurological or commonly comorbid disorder AND “magnesium”, “intravenous magnesium”,
“oral magnesium”, or “magnesium treatment”. Reviews and meta-analyses were used to gain an
understanding of where the current literature stands in magnesium research across neurological
disorders. The most recent reviews and meta-analyses are discussed in order to reduce duplication
and provide a wide scope of the literature previously reviewed. New studies are described in detail
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to provide an update on the literature. If there was not a review or meta-analysis, like in the case of
Parkinson’s disease, available research was compiled and reviewed. Figure 2 summarizes the search
strategy and demonstrates the disparity in the number of magnesium research studies ranging from
the most studied (i.e., migraine) to the least studied (i.e., Parkinson’s disease).

Figure 2. Flow chart of magnesium in neurological disorders literature. New papers refer to published
research not included in previously-published reviews and meta-analyses. AD = Alzheimer’s Disease;
PD = Parkinson’s Disease.

3. Results

3.1. Migraine

Migraine is the most common neurological disorder in the United Sates with a prevalence
rate of 16.2% [10]. It is classified by recurrent moderate to severe headaches with or without aura,
often lasting between 4 and 27 h with many associated symptoms, including nausea, vomiting,
and sensitivity to various environmental stimuli [11,12]. Although the exact mechanisms are not
yet fully understood, alterations in the excitability of the central nervous system, spontaneous
neuronal depolarization, and abnormal mitochondria functioning have been connected to migraines.
Since glutamate is the most abundant excitatory neurotransmitter, it is often linked to etiological,
prevention, and treatment discussions concerning migraines [13]. Magnesium has been a proposed
treatment option for migraines due to its blockade of the glutamatergic N-methyl-D-aspartate (NMDA)
receptor, a receptor known to be an active contributor to pain transmission and cortical spreading
depression [14]. Magnesium is also known to be a key metabolic factor in mitochondrial functioning
and lowers membrane permeability reducing the possibility of spontaneous neuronal depression
due to hyperexcitability [15]. Past research has shown that significantly lower levels of magnesium
have been reported in serum, saliva, and cerebrospinal fluid of individuals with migraines during,
and between, migraine attacks [12,16–18], along with evidence suggesting lower brain concentrations
of magnesium based on MR spectroscopy [18].
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Oral and intravenous magnesium administration has been proposed as a treatment option for
migraines since the late 1980s and the results have been analyzed by several meta-analyses and reviews
over the past three decades. In 2014, Choi and Parmer completed a meta-analysis using odds ratio
(OR) on 5 randomized controlled trials published between 2000 and 2005 [19–23] and did not find
strong evidence for magnesium as an effective treatment. It was concluded that i.v. magnesium
resulted in a 7% lower relief rate 30 min post administration than the control groups (OR = −0.07),
37% greater side effect response rate (OR = 0.37), and no significant difference between the use of
i.v. magnesium, placebo, or other migraine medications tested. However, 1 study included in the
meta-analysis showed differences between migraines with and without aura; i.v. magnesium was
significantly more effective at migraine relief in individuals with aura than placebo at 60 min post
administration (p < 0.05) [24]. A more recent meta-analysis by Chiu et al. in 2016, reviewed a larger
sample of randomized clinical trials with 11 studies investigating the effects of intravenous magnesium
on acute migraines [19–21,25–30] and 10 studies investigating the effects of oral magnesium on
migraine prophylaxis [16,31–39]. Using odds ratios, it was concluded that i.v. magnesium treatment
for acute migraines resulted in significant relief across 15–45 min (OR = 0.23), 120 min (OR = 0.20),
and 24 h (OR = 0.27) post magnesium administration. Similarly, oral magnesium treatment resulted in
significantly reduced frequency of migraine attacks (OR = 0.20) and intensity of the attacks (OR = 0.27).
Overall, this meta-analysis presents evidence for the usefulness of magnesium in both i.v. or oral forms
on the treatment of migraines [40]. It also expands on the previous meta-analysis since it included
randomized clinical trials published in English and Chinese investigating i.v. magnesium or oral
magnesium treatment. This broadened the scope, sample size, and external validity of their work.

One quasi-experimental study has been published since the most current review comparing 2 g of
i.v. magnesium sulfate compared to 60 mg of caffeine citrate on individuals presenting with a migraine
at two hospitals. While both groups displayed improved pain scores over 1 hour, the magnesium group
had significantly greater improvement when compared to the group receiving caffeine (p < 0.001) [41].

The beneficial use of magnesium in the prevention of migraine and the quality of life improvement
has a Grade C evidence classification, meaning it is possibly an effective treatment based on current
data. This classification is based on finding a reduction in migraine days between 22–43% across
five clinical trials reviewed from 1990–2016. It is suggested that 600 mg of magnesium daily may be a
safe and cost effective component of migraine care [42]. While Grade C evidence is not ideal, evidence
of the effectiveness for the prevention and treatment of migraines using oral or i.v. magnesium
may very well become stronger over time with the publication of more intervention and prospective
cohort studies. Overall, while recent evidence does point towards i.v. and oral magnesium as
potentially effective treatment options, randomized controlled clinical trials with larger sample sizes
and standardized experimental designs need to be conducted in order to have more confidence in the
efficacy of magnesium treatment for migraines, and to better understand how magnesium compares
to current pharmaceuticals used in the prevention and treatment of migraines.

3.2. Chronic Pain

Pain is a universal sensation that can be presented in several different forms, ranging from acute to
chronic. Chronic pain is broadly defined as persistent pain lasting at least three months often spurred
on by central pain amplification, although the exact mechanism of pain can vary (e.g., nociceptive,
neuropathic, central, etc.) or is sometimes unidentified [43]. It is estimated that chronic regional pain
may be present in 20–25% of the population and chronic widespread pain may be present in 10% of
the population [44]. As discussed earlier, magnesium blocks the NMDA receptor channels limiting
the influx of calcium. Therefore, moderate doses of magnesium may be able to reduce the risk of
excitotoxicity [45]. It is proposed that the pain relieving effects of magnesium may be dependent on the
blockade of NMDA receptors in the spinal cord [46]. Magnesium is thought to produce antinociceptive
and analgesic effects in patients with chronic pain and has been studied as a treatment target for
chronic pain in several forms [45].
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Research exploring the analgesic use of magnesium in chronic pain disorders is limited by the type
and severity of chronic pain evaluated. A review on the use of magnesium as an alternative treatment
for chronic pain was recently published [47]. Chronic pain was defined as pain lasting more than three
months in any body part, including chronic complex regional pain syndrome, chronic low back pain,
fibromyalgia, neuropathy, or pain of vascular origin. Two double-blind randomized clinical trials on
complex regional pain syndrome (CRPS) [48,49] and 1 double-blind randomized clinical trial on chronic
low back pain [50] were reviewed. The studies used intravenous, intradermal, and oral magnesium
administration compared to placebo. The 2 CRPS randomized clinical trials had conflicting results;
Fischer et al. reported no differences in CRPS pain between patients who received i.v. magnesium and
those who received a placebo using several outcome measures [48]. However, van de Plas reported
significant differences between intramuscular magnesium administration and a placebo on the numeric
rating scale (NRS) pain assessment scores, but not on the McGill Pain Questionnaire [49]. Both studies
reported more adverse effects in the groups receiving magnesium than placebo. Yousef and Al-deeb
investigated the use of i.v. magnesium followed by oral magnesium compared to a placebo on chronic
lower back pain over six months using NRS pain assessment scores. Beginning at two weeks, and
continuing throughout the six months of follow up, the group receiving magnesium treatment had
significantly improved scores from baseline measurements. Furthermore, the magnesium group had
significantly lower pain scores than the placebo group at six months [50]. Based on the review of these
studies, magnesium may be a viable treatment option for some types of chronic pain. A protocol was
published in 2015 describing a clinical trial that is currently investigating the effects of oral magnesium
administration in patients with peripheral arterial occlusive disease [51]. This trial will add much
needed evidence on the potential validity of using oral magnesium as a treatment for chronic pain.

Fibromyalgia was initially considered a rheumatic disorder, but is now known to be a neurological
condition, with intense widespread pain and tenderness coupled with other unpleasant symptoms,
such as severe fatigue, cognitive dysfunction, memory loss, headache, and sleep problems [52,53].
As with other chronic widespread pain conditions, it is thought that pain neurotransmission occurs
through glutamate’s action on the NMDA receptor [54]; thus, magnesium is likely to play a protective
role. It has also been proposed that fibromyalgia may be a result of insufficient levels of substances
necessary for ATP synthesis, such as oxygen, magnesium, ADP, and inorganic phosphate. Magnesium
is a key component within this process as it is needed for both aerobic and anaerobic glycolysis. It also
aids in maintaining low cytosolic calcium in order to limit the inhibition of ATP synthesis within the
mitochondria, ultimately reducing the chances of cell death caused by mitochondrial calcification [55].
Due to the overlap in symptomatology and the mechanistic actions of magnesium, researchers have
studied magnesium levels in individuals with fibromyalgia, resulting in conflicting findings between
modes of magnesium detection. Erythrocyte [56–59] and intracellular muscle magnesium levels [60] are
decreased in fibromyalgia patients while there has been evidence that plasma and serum levels remain
in normal ranges [57–59,61]. However, other studies have shown significantly decreased magnesium
serum levels in fibromyalgia patients, as compared to controls [53,62,63]. Based on these findings,
a recent study examined the effects of 300 mg magnesium citrate and 10 mg of amitriptyline, alone and
in combination, in 60 women with fibromyalgia and 20 age- and sex-matched controls over eight
weeks. Both erythrocyte and serum magnesium levels were significantly lower in the fibromyalgia
group. Furthermore, the group receiving the combination of magnesium and amitriptyline reported
significantly decreased pain across various pain and tenderness index scores, while magnesium alone
resulted in an improvement in the number of tender points and the intensity of fibromyalgia pain [53].
Another study reported improved scores on the Fibromyalgia Impact Questionnaire-Revised (FIQR)
after 8 weeks of transdermal magnesium chloride solution use [64].

It is too early to conclude whether or not magnesium is a viable treatment option for general
or specific forms of chronic pain. However, the preliminary data concerning varying levels of
systemic magnesium and supplementation of magnesium orally, transdermally, and intravenously for
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fibromyalgia and other forms of chronic pain, suggest the potential for magnesium to be an important
player in the treatment and prevention of chronic pain.

3.3. Anxiety and Depression

Anxiety and depression are both common comorbid conditions with neurological illness [65]
especially with chronic pain conditions [66], including migraine [67]. Anxiety and depression
are also similarly mediated by altered glutamatergic neurotransmission, which may account
for this comorbidity [68,69]. Since magnesium has the ability to modulate glutamatergic
neurotransmission through its action at the N-methyl-D-asparate (NMDA) receptor [70], it may be
possible for hypomagnesaemia to contribute to both the neurological symptoms, as well as the
psychiatric symptoms.

With a lifetime prevalence rate of 15% in the general population, anxiety is considered the most
pervasive psychiatric affective disorder [71]. Magnesium is involved in several physiological processes
in the psychoneuroendrocrine system and modulates the hypothalamic pituitary adrenal (HPA) axis,
along with blocking the calcium influx of NMDA glutamatergic receptors, all of which help prevent
feelings of stress and anxiety [72]. While the data on serum and cerebrospinal fluid levels of magnesium
are limited, these concentrations have been shown to be modified by exposing individuals to various
types of stress, resulting in a reduction in serum magnesium due to excretion by the kidneys [73],
and increasing serum levels when magnesium is administered resulting in anxiolytic-like effects [74].
Dietary intake of magnesium was also found to have a slight inverse relationship with subjective
anxiety scores in a large community-based sample [75]. However, one study found no difference
between the serum magnesium concentrations in patients with Generalized Anxiety Disorders when
compared to controls [76].

In 2017, Boyle and Dye published a review on the available studies investigating the effects
of magnesium, alone or in combination, on the experience of subjective anxiety or stress (i.e., mild
anxiety, premenstrual syndrome, postpartum status, and hypertension) in adult populations [72].
Eight studies were reviewed which focused on the treatment of mild anxiety with magnesium
alone [77], magnesium in combination with vitamin B6 [78–81], magnesium with fermented cow’s drink
with protein hydrolysate [82], or magnesium in combination with Hawthorn extract and California
poppy [83]. Modest evidence of the beneficial use of various forms of magnesium for treatment of
mild to moderate anxiety was found. However, limitations were present including the occurrence of
significant placebo effects and the inability to know the exact effects of magnesium when studying
multiple combined compounds. Of the 7 studies which were reviewed for anxiety associated with PMS,
5 investigated the effects of oral or i.v. magnesium administration alone [84–87] and 2 investigated
the effects of magnesium in combination with vitamin B6 [88,89]. Despite methodological and sample
selection issues presented by Boyle and Dye, the authors concluded that there is a potential positive
effect of magnesium alone, and even more so in combination with vitamin B6 on PMS. One study was
reviewed for the effects of 64.4 mg of oral magnesium on anxiety related to postpartum depression with
no significant effects reported [90]. Overall, the summarized findings allow for marginal support of
magnesium as a treatment for mild anxiety and anxiety with PMS, with several of the studies reviewed
reporting positive outcomes when administering magnesium as the sole or adjunct treatment.

An earlier review by Lakhan and Vieira in 2010 had a similar conclusion: magnesium
administration may have a positive impact on the treatment of multiple anxiety disorders. The authors
also note that many studies and clinical trials conducted do not look at the effects of magnesium alone,
a comment that holds true today [91]. To our knowledge, no new magnesium studies examining
the effects of magnesium on anxiety disorders have been published since the 2017 review. There is
currently a strong need for methodologically sound clinical trials exploring this treatment option, as it
could improve the lives of those with anxiety disorders while eliminating the negative side effects
from current medications to treat anxiety.
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Depression is a psychiatric disorder that affects hundreds of millions of people around the
world, with major depressive disorder (MDD) accounting for 40% of the neuropsychiatric disorders
in the United States [92]. Depression is linked to poor quality of life with severe impairments and,
as mentioned earlier, often presents with other comorbid disorders. While there are some beneficial
biomedical and clinical therapies for depression, dietary magnesium intake could be an important
adjunct treatment [93,94].

Restoring the balance of magnesium within patients with depression has been proposed to have
anti-depressive effects by protecting brain structures associated with depression by reducing the
cascade of cell death caused by excitotoxicity [95–97]. Magnesium may also impact depressive
symptoms by interacting with the HPA system, as discussed with anxiety disorders [97,98].
As seen in several other neurological disorders, lower magnesium levels have been associated
with depression. One recent study reported a negative correlation between dietary intake of
magnesium and depression [93]. Studies have also observed lower cerebrospinal fluid (CSF) and
serum magnesium levels in individuals diagnosed with depression as compared to controls [94] along
with moderately lower levels of erythrocyte magnesium levels in patients with major depression [99].
Moreover, plasma levels of magnesium were observed to be significantly lower among those with
depression, as compared to healthy controls, while also being correlated with treatment response
success [100] and the severity of depressive symptoms [101,102]. However, another study reported
no differences in CSF, blood, and serum magnesium levels between groups [103]. This latter finding
could have been due to inaccurate assessment technique, since 99% of magnesium within the human
body is located intracellularly [103].

There is neurobiological evidence to support magnesium supplementation as a treatment for
depression, however, the results from the limited number of randomized controlled trials (RCTs) is
not clear cut. In 2016, Rechenberg reviewed RCTs examining the use of magnesium in depressed
populations. However, only three studies, with limited insight into the potential use of magnesium
as a treatment, are discussed due to the lack of literature on the subject [94]. Bhudi and colleagues
compared the use of magnesium to a placebo over three months as a neuroprotective agent for
patients undergoing cardiac surgery. Depressive symptoms were reported at baseline and three
months postsurgery as one of the outcomes measured. While depressive symptoms decreased,
no significant differences were noted between the magnesium and placebo groups [104]. An RCT was
conducted in 2007 to study the utility of oral magnesium as a treatment for newly-depressed elderly
individuals with type 2 diabetes. After establishing the presence of hypomagnesemia, individuals were
randomized to either the magnesium or imipramine treatment group for twelve weeks of treatment
administration. At follow-up, there was no significant difference between the magnesium treatment
group or the imipramine treatment group, with similar improvements in both arms of the clinical trial.
Thus, magnesium performed as well as imipramine, an anti-depressant drug [101]. Lastly, Walker et al.
showed no significant differences in reported depressive symptoms when administering 200 mg of
magnesium or placebo daily, for two menstrual cycles, in a double-blind placebo-controlled crossover
study, among individuals who typically report monthly depressive symptoms with PMS [85].

A meta-analysis of 11 studies was recently published examining the relationship between
dietary magnesium intake and the risk of depression. Using pooled measurements of relative
risk (RR) and a dose-response analysis, the authors concluded that over half of the reviewed
studies supported significant effects of dietary magnesium intake in relation to a decreased risk
of depression (pooled RR = 0.81) with a distinct nonlinear relationship (p = 0.0038) between the two
factors. Furthermore, the largest risk reduction was observed with 320 mg/day of magnesium [93].
This meta-analysis adds more evidence to the theory that magnesium supplementation, either through
dietary intake or other routes of administration, should be continued to be researched as a potential
target for the treatment of depression.

Three newly-published studies were found since the review by Rechenberg [94] and the
meta-analysis by Li et al. [93]. One clinical trial studied the use of intravenous magnesium combined
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with dextrose in adults with treatment-resistant depression as compared to dextrose alone in a crossover
study. The authors observed significant differences in serum magnesium levels measured at two time
points: baseline compared to day 8 (the last day of administration) and day 2 compared to day 8.
However, depression rating scale results were not as substantial as the only difference seen was a
reduction on the Patient Health Questionnaire-9 from baseline to day 7 [105]. This study was limited
by its short duration of treatment. Tarleton and colleagues performed an open-label randomized
trial with 126 adults comparing 248 mg of magnesium to a placebo over six weeks, resulting in the
significant improvement of depression scores within the magnesium group. In fact, improvement
was noted within the first two weeks of treatment [106]. Lastly, a study of 60 patients with depression
and lab-confirmed hypomagnesaemia were randomized to receive either 250 mg of magnesium or a
placebo for eight weeks. Using the Beck Depression Inventory-II as an outcome measure, magnesium
levels and Beck scores significantly improved in the magnesium group, as compared to the placebo
group [107]. It is important to note that the amount of magnesium supplemented in these latter studies
was less than the recommended dietary allowance (RDA) for adults of 310–420 mg/day.

Unfortunately, the current research implementing magnesium as a treatment option for depression
has not shown consistently significant results, although this does not mean it is not an effective
treatment option [103,108]. There is a need for more well-designed randomized clinical trials and
prospective studies of longer duration with adequately powered sample sizes to fully understand the
effects of magnesium on depression.

3.4. Epilepsy

Epilepsy is a disease classified by seizure occurrence that is believed to affect 50 million people
worldwide [109–111]. The widespread and debilitating effects of this disorder have resulted in
the investigation of treatments that fall outside the classic treatment with anti-epileptic drugs
(AEDs), especially when research suggests that new AEDs are no better at significantly reducing
seizures or improving prognosis than older AEDs [112–114]. The search for alternative treatment
possibilities has directed some attention towards magnesium. Magnesium is an essential element
involved in many bodily processes and, as mentioned earlier, has been found to be deficient in the
modern Western diet [114–116]. Moreover, seizure activity has been strongly linked to excessive
glutamatergic neurotransmission, thus, magnesium could potentially modulate the excitotoxicity
connected to epilepsy [117]. Extracellular magnesium has been reported to reduce spontaneous spikes
in seizure activity via the NMDA receptor, while also decreasing the hyperexcitability of the neuronal
surface [114,118,119]. In fact, it is well known that hypomagnesaemia, itself, can cause seizure activity
with more severe deficiency [120].

Two recent reviews [114,121] have examined the literature on magnesium and epilepsy.
Both reviews stress the lack of large-scale, randomized controlled trials that are essential to gaining
insight into the potential role of magnesium as a treatment for epilepsy, in general, as well as more
specifically, refractory epilepsy. Refractory epilepsy is of particular interest due to its lack of response
to AEDs, usually resulting in the seizures and other symptoms going untreated.

In humans, magnesium deficiency has been found to result in seizures, as well as lower levels
of magnesium being observed in epileptic patients when compared to healthy controls [114,121–128].
A recent meta-analysis that included 60 studies (40 on epilepsy and 25 on febrile seizures) found
that magnesium levels were not significantly different in patients with epilepsy versus controls,
or in patients with febrile seizures versus controls. Yet, that same study found that hair magnesium
concentrations were significantly lower in both non-treated and treated epilepsy patients versus
controls [129]. Another study reported lower magnesium levels in more severe cases of epilepsy and
status epilepticus as compared to moderate and mild cases [124]. The relationship between disease
severity and magnesium concentration is not an area that has been explored at length and could result
in valuable information if more work focused on this potential association.
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In regards to magnesium as a treatment, magnesium supplementation has been found to be
beneficial for hypomagnesaemia, a known risk factor for seizures in both infants and adults [130,131].
Other conditions associated with symptomatic seizures, such as pre-eclampsia and eclampsia,
have demonstrated an improvement as a result of magnesium supplementation, as well [132–134].
Additionally, studies that have examined subjects with a TRPM6 gene mutation [135–137], juvenile
onset Alpers syndrome [138], and a case of refractory status epilepticus in a subject with a
normal MRI, have also reported therapeutic benefit from the administration of magnesium
supplementation [114,121,139].

Despite the supporting evidence from these research studies, only one randomized controlled
trial has been conducted on magnesium treatment for epilepsy, which focused on infantile spasms.
The study found that intravenous administration of adrenocorticotropic hormone (ACTH) with
magnesium supplementation for a three week period resulted in a significant reduction in seizures
compared to receiving ACTH on its own. At eight weeks post administration, the group that received
the magnesium supplementation had a 79% seizure-free rate compared to only a 53% seizure-free rate
of the ACTH only group [140]. While this study offers promising results, there have been no other
randomized controlled studies completed since the last review in 2015. A recent study investigated the
interictal total serum magnesium concentrations along with serum ionized magnesium concentrations
in 104 drug-resistant epileptic individuals. Data was collected at baseline and 14 years later, with results
demonstrating that 60.6% (OR = 29.19) of the sample had low interictal ionized magnesium and total
serum magnesium ratio [141].

More randomized controlled trials are needed to better understand the potential of magnesium
as a treatment option for epilepsy. Such trials, with more accurate measuring of magnesium levels,
would provide greater and more specific insight into the potential role of magnesium as a treatment
(or adjunct treatment) for various types of epilepsy.

3.5. Parkinson’s Disease

Parkinson’s disease (PD) is a neurological disorder with symptoms such as loss of balance, muscle
tension, slowed body movements, resting limb tremors, and cognitive impairment [142] caused by a
selective loss of dopamine in the basal ganglia. Other factors that impact PD include mitochondrial
dysfunction, oxidative stress, and protein dysfunction [143]. It has been suggested that excitotoxicity
caused by excessive glutamatergic neurotransmission may mediate the dopaminergic cell loss seen in
Parkinson’s disease, making modulators of excitotoxicity an area of growing research interest [144].
Human research that investigates the potential role of magnesium in PD is scarce [145]. To our
knowledge, no in-depth review articles focusing on magnesium and PD in humans exist. The most
recently-published study was a multicenter hospital-based case-control study in Japan that examined
dietary intake of metals in patients who were found to be within six years of onset for PD. The results
of the study found that higher magnesium concentrations were associated with a reduced risk of
PD [146].

Research examining magnesium levels in PD patients have yielded mixed results. Older research
from the 1960s reported no differences in serum magnesium levels in PD patients compared to
controls [147]; however, this research was likely limited by the types of magnesium testing available
at that time. A more recent study found similar results, with no significant differences noted in
hair magnesium levels between those with and without PD. Furthermore, no association between
magnesium levels and disease duration or severity was observed [142]. In contrast, a study examining
cerebrospinal fluid (CSF), blood, serum, urine, and hair magnesium levels of 18 controls and 91
PD patients found that CSF magnesium levels were inversely associated with disease duration and
severity. The same study also concluded that PD patients with less than a year of the disease had higher
magnesium levels than PD patients with more than eight years of the disease [148]. Finally, older
studies comparing magnesium levels in brain areas of PD patients versus controls found that PD
patients had lower magnesium levels in the cortex, white matter, basal ganglia, caudate nucleus, and
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brain stem as compared to controls [149,150]. It is essential to note that these studies utilized different
methods to measure magnesium concentrations, which could be a factor in the contradictory results.
Future research examining the role of magnesium in PD should include measurements of magnesium
concentrations in the cerebral spinal fluid (CSF) (as a measure of magnesium in the central nervous
system), rather than solely in the periphery. This measurement technique may be of use in other
neurological disorders as well.

In short, human research of magnesium concentrations in PD is severely lacking, despite growing
evidence implicating magnesium in animal studies. There is a need for more studies in PD patients
focusing on magnesium concentrations in order to get a better consensus on the relationship between
magnesium and PD. These few studies have provided a small window of insight into the possible role
of magnesium as a treatment for PD; however, many more studies are needed before any conclusions
can be drawn.

3.6. Alzheimer’s Disease

Alzheimer’s disease (AD) is a degenerative neurological disorder that is characterized by
synaptic loss and cognitive impairments that include deterioration in learning and memory [1].
AD presents with accumulations of beta-amyloid and tau tangles, along with inflammation and
atrophy [151]. Excitotoxicity, neuroinflammation, and mitochondrial dysfunction have all been
implicated in Alzheimer’s disease [152], thus, hypomagnesaemia could further impair neuronal
function. Factors related to lower magnesium availability, such as malnutrition and poor nutrient
intake, are also present in AD patients [153,154], making magnesium deficiency more likely. Research
suggests that ionized magnesium [155], cerebral spinal fluid (CSF) magnesium, hair magnesium,
plasma magnesium, and red blood cell magnesium concentrations are significantly reduced in AD
patients compared to healthy and medical controls [154]. Additionally, postmortem brain examinations
of AD brains have found decreased magnesium levels compared to healthy controls [154,156,157].
Magnesium depletion has been found in the hippocampus in patients with AD, providing more
evidence that magnesium may be a target of treatment [156].

A systematic review analyzed 13 cross-sectional studies that included AD patients and healthy
controls and/or medical controls [154]. The results demonstrated that AD patients had significantly
lower magnesium concentrations in CSF [158,159] and in hair samples [160,161], but no such differences
were found in serum [161–164], plasma [158,165,166], or ionized/ blood cell magnesium levels [165]
compared to controls. Compared to medical controls, AD patients had reduced plasma [167] and
ionized blood cell magnesium concentrations [168], but no differences in serum [155,169], or CSF
concentrations [168]. Meanwhile, other research has found no differences between hair and serum
magnesium levels in patients with AD compared to controls [170]. Hence, current research has found
contradictory results on magnesium concentration levels and, thus, requires further investigation
and standardized ways to measure magnesium levels. One specific study worth noting reported
that ionized magnesium levels were significantly associated with cognitive function, but not with
physical function, when comparing AD patients to age-matched controls [155]. Similar to Parkinson’s
disease, future AD research should include a greater focus on CNS magnesium concentrations from
CSF measurements, as well as using magnetic resonance spectroscopy. The above findings suggest
that AD patients may be commonly deficient in magnesium.

While previous reviews have demonstrated a link between magnesium deficiency and AD in
humans, there is a distinct lack of research that looks at magnesium as a treatment for AD in humans.
Research to date has focused mainly on dementia, as opposed to AD specifically, and has had mixed
findings. One study observed low magnesium levels in patients with mild cognitive impairment
and AD patients as compared to controls [171]. Yet, another study found that both low and high
magnesium concentration levels were associated with a greater risk of all-cause dementia [172]. This is
the only study that provides evidence for both high and low magnesium levels being related to the risk
of dementia development. As the study insists, the replication of findings from large population-based
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research is essential for a better understanding of these findings. For dementia, focusing on magnesium
treatment through diet has been shown to improve memory [173]. The PATH through Life Project
found that higher magnesium intake was related to a reduced risk of developing mild cognitive
impairment and mild cognitive disorders [173]. Similarly, one study in Japan found that the greater
the magnesium intake, the lower the rates of all-cause dementia and vascular dementia. However, the
same relationship was absent for AD patients [174]. It is important to remember that dementia has
multiple causes, including that stemming from vascular origin. Magnesium is unique for its ability
to affect vascular function in addition to neuronal function [1]. Thus, magnesium may be affecting
cognitive function in multiple distinct ways. Future clinical trial research is needed in this area to
add to the literature in examining whether magnesium should be an adjunct treatment option in AD
and/or in other types of dementia.

3.7. Stroke

Stroke is a cerebrovascular accident that presents itself with symptoms such as slurred speech,
paralysis/numbness, and difficulty walking. Stroke can be broken down into two types, ischemic
(where blood flow is impeded, usually by a clot) and hemorrhagic (where a blood vessel ruptures,
causing impaired blood flow in the brain) [175]. The induced hypoxia causes excitotoxicity and
resultant cell death [176]. Magnesium’s dual role in its ability to affect vascular function [177], as well as
its ability to protect against excitotoxicity mediated by NMDA receptors [176], has made it an element
of interest within the stroke research community. Studies examining risk of stroke and magnesium
levels have yielded mixed results. Research has found no relationship between serum ionized
magnesium levels and stroke risk, when based on ischemic stroke cases over a 16 years follow-up [178].
Similarly, another study reported that plasma magnesium levels were not associated with the risk
of ischemic stroke in women, yet those with low ionized magnesium levels (<0.82 mmol/L) had a
57% higher risk of ischemic stroke, after controlling for potential confounds [179]. Yet, more recent
studies have found that higher serum magnesium concentrations at the time of hospital admission
were independently related to lower hematoma volume and lower intracerebral hemorrhage scores in
patients with acute spontaneous intracerebral hemorrhage [180]. In a more general study of adults in
the United States, very low serum magnesium concentrations were significantly related to increased
risk of stroke mortality [181]. While magnesium levels and stroke risk have resulted in contradictory
results, there is a clear suggestion of magnesium being protective against stroke.

Most of the research conducted on the association between risk of stroke and magnesium can be
found in American, European, and Asian prospective cohort studies [182,183]. A recent publication on
stroke reviewed multiple meta-analyses and reported a dose-dependent protective effect of magnesium
against stroke [182]. Most of the meta-analyses reviewed found that each 100 mg/day increment of
dietary magnesium intake provided between 2% and 13% protection against total stroke [183–186].
A recently updated meta-analysis by Fang et al. included 40 prospective cohort studies and found 22%
protection against the risk of stroke when comparing people with the highest to the lowest categories
of dietary magnesium intake [183]. These meta-analyses are noted in the review paper as exhibiting
high homogeneity, low publication bias, and were careful to adjust for potential confounds [182].
Hence, these studies are highly reliable and support the notion of an inverse-dose dependent
relationship between dietary magnesium intake and risk for total stroke. These meta-analyses suggest
that increased magnesium intake, as well as higher levels of serum magnesium, appear to be beneficial
in reducing total stroke risk.

It is important to note that there are many types of stroke, and that not all stroke subtypes
have demonstrated a universal relationship with magnesium. For example, one meta-analysis [184]
included 7 prospective studies and found that magnesium intake levels were inversely related
to the risk of ischemic stroke [178,187–189]; however, this inverse relationship was absent for
intracerebral hemorrhage or subarachnoid hemorrhage [184,187,188]. A later study investigating
whether magnesium could reduce the risk of delayed cerebral ischemia in patients with aneurysmal
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subarachnoid hemorrhage, also found that magnesium was not beneficial and did not reduce
the risk [190]. Such evidence suggests the possibility that different types of stroke have different
relationships to magnesium, an important distinction to be made for understanding magnesium’s role
in the risk of stroke development.

Investigations on magnesium levels in stroke patients have suggested an association between
low magnesium levels and poor outcomes post-stroke. A recent study confirms this notion, providing
evidence that low serum magnesium levels at the time of hospital admission were independently
related to in-hospital mortality of patients with acute ischemic stroke [191]. An earlier study reported
that decreased CSF magnesium levels were observed in ischemic stroke patients compared to controls,
and that a positive association existed between low CSF magnesium levels and mortality after
7 days [192]. In addition to ischemic stroke, an observational cohort study involving patients presenting
with intracerebral hemorrhage found that three month post-observation, poor functional outcomes
were associated with low magnesium levels at the time of hospital admission, even after adjusting
for age and measures of disease severity. Furthermore, initial and final hematoma volumes, as well
as hematoma growth, were all independently and inversely correlated with low admission serum
magnesium levels [193]. It is important to address the major issue when studying hypomagnesemia in
stroke patients, which is that the levels are measured post diagnosis, so a causal relationship cannot
be assumed and consequently there is the possibility that the lower magnesium levels are a result of
stroke and not a cause of stroke [182].

Despite what appears to be a protective effect of magnesium levels on stroke, magnesium as
a treatment for stroke has yielded less clear results. A trial investigating acute stroke has found
that intravenous magnesium administration within 12 h of stroke onset does not improve death or
disability outcomes [194]. Similarly, a meta-analysis also reported no beneficial effect of magnesium
on delayed cerebral ischemia when started early after an aneurysmal subarachnoid hemorrhage based
on 5 trials [195–200].

Some studies have found magnesium sulfate to be beneficial for managing post-stroke
outcomes [201,202]. A meta-analysis by Chen and Carter [203] investigated 8 controlled clinical trials,
4 of which provided evidence that magnesium sulfate reduces the risk of poor outcomes 3–6 months
after aneurysmal subarachnoid hemorrhage when compared to controls [198,199,201,204]. The other
studies reported that magnesium sulfate was not beneficial for treating aneurysmal subarachnoid
hemorrhage [199,205,206]. The overall findings of the meta-analysis suggested that magnesium sulfate
may be able to decrease the risk of poor functional outcome in subarachnoid hemorrhage.

In terms of overall stroke, Panahi et al. reviewed studies that demonstrate how magnesium sulfate
has been found to improve scores on different measurement indices [196,201,207], neuroprotective
properties [208,209], hospital stay length [207,210], and recovery outcomes [206,207]. An additional
compound that has been studied as a potential treatment for stroke is an enriched salt that is made up
of a combination of magnesium and potassium. In a double-blind randomized controlled trial study,
the compound was found to improve neurologic deficits following a stroke when administered for a
six month period [211].

In summary, there is research to suggest the use of magnesium to improve outcomes post-stroke.
More research is needed to understand the potential protective role of maintaining adequate
magnesium levels in the prevention of stroke occurrence.

4. Conclusions

In conclusion, the amount of quality data on the association of magnesium with various
neurological disorders differs greatly. There is strong data for the role of magnesium in migraine
and depression. There is also good potential for magnesium to be having an effect in chronic pain
conditions, as well as commonly comorbid psychiatric disorders, such as anxiety and depression.
Much more research is needed in regards to magnesium’s effects on epilepsy, including clinical trials
evaluating the use of magnesium as an adjunct treatment. Neurological disorders, like Parkinson’s and
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Alzheimer’s, would benefit greatly from additional research that include measures of CNS magnesium
levels (via CSF measurements and MRS). Finally, there is some research to suggest a positive effect of
magnesium for improving post-stroke outcomes, and as an important dietary strategy for potentially
preventing stroke, though more prospective studies are needed in this regard.
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