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Abstract: Capsaicin, the major active constituent of chilli, is an agonist on transient receptor potential
vanilloid channel 1 (TRPV1). TRPV1 is present on many metabolically active tissues, making it a
potentially relevant target for metabolic interventions. Insulin resistance and obesity, being the major
components of metabolic syndrome, increase the risk for the development of cardiovascular disease,
type 2 diabetes, and non-alcoholic fatty liver disease. In vitro and pre-clinical studies have established
the effectiveness of low-dose dietary capsaicin in attenuating metabolic disorders. These responses
of capsaicin are mediated through activation of TRPV1, which can then modulate processes such as
browning of adipocytes, and activation of metabolic modulators including AMP-activated protein
kinase (AMPK), peroxisome proliferator-activated receptor α (PPARα), uncoupling protein 1 (UCP1),
and glucagon-like peptide 1 (GLP-1). Modulation of these pathways by capsaicin can increase fat
oxidation, improve insulin sensitivity, decrease body fat, and improve heart and liver function.
Identifying suitable ways of administering capsaicin at an effective dose would warrant its clinical
use through the activation of TRPV1. This review highlights the mechanistic options to improve
metabolic syndrome with capsaicin.

Keywords: capsaicin; metabolic syndrome; transient receptor potential vanilloid channel 1; TRPV1;
obesity; insulin resistance; diabetes; non-alcoholic fatty liver disease

1. Introduction

Capsaicin

Capsaicin was first isolated in 1876 [1], its structure was determined in 1919 [2], and it was
chemically synthesized in 1930 [3]. Capsaicin, dihydrocapsaicin, nordihydrocapsaicin, homocapsaicin,
and homodihydrocapsaicin constitute the capsaicinoids [4] (Figure 1). Capsaicin and dihydrocapsaicin
constitute approximately 90% of the capsaicinoids found in any fruit belonging to the Capsicum
genus, with capsaicin constituting 70–80% [5,6]. Capsaicin is a pungent molecule that can affect
thermoregulation, trigger autonomic reflexes, and is highly absorbed [4,7]. Capsaicin is commercially
available as creams and patches for treatment of pain in neuralgias and neuropathies [8,9]. It is in
the pipeline for phase III clinical trials as a treatment option for rheumatoid arthritis, postoperative
pain, and chronic neuropathic and musculoskeletal pain [7]. Here, we will review the pharmacological
potential of capsaicin to reduce metabolic syndrome.

Capsaicin acts through Transient Receptor Potential Channel Vanilloid type-1 (TRPV1) [10,11],
a transmembrane cation channel that prefers Ca2+ over Na+, with six putative transmembrane
domains and a calcium-permeable pore region [12,13]. The channel can be activated by many
mechanisms, including temperature, low pH, osmotic sensing, taste, pressure, stretch, vibration,
and endogenous and exogenous molecules [12,14–18]. TRPV1 acts as the receptor for capsaicin [19],
and selective silencing of TRPV1 using specific RNA interference reduced the actions of capsaicin

Nutrients 2018, 10, 630; doi:10.3390/nu10050630 www.mdpi.com/journal/nutrients

http://www.mdpi.com/journal/nutrients
http://www.mdpi.com
https://orcid.org/0000-0001-5464-3376
https://orcid.org/0000-0001-7837-991X
http://www.mdpi.com/2072-6643/10/5/630?type=check_update&version=1
http://dx.doi.org/10.3390/nu10050630
http://www.mdpi.com/journal/nutrients


Nutrients 2018, 10, 630 2 of 21

both on calcium influx and inhibition of adipogenesis in 3T3-L1 adipocytes [20]. Although TRPV1
was initially identified on sensory nerve fibers [21], its presence has now been established in many
tissues, with highest expression in trigeminal ganglia, dorsal root ganglia, neurons, urinary bladder,
and testis [22] with expression in other tissues including adipocytes, smooth muscle cells, endothelial
cells, pancreatic β-cells, liver, heart, skeletal muscle, and kidney [23–29].
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Capsaicin binds intracellularly to the vanilloid-binding pocket of TRPV1 and allosterically alters
its properties, thus causing an opening of the pore and permitting Ca2+ influx [7,30]. This influx of Ca2+

causes a change in electrical properties of the cell and allows the release of neurotransmitters, such as
substance P and calcitonin gene-related peptide (CGRP) [31,32]. Further, capsaicin increased GLP-1
and decreased ghrelin secretion, indicating a possible interaction between TRPV1 and GLP-1 [33].
TRPV1 was identified on GLP-1-expressing intestinal cells, which upon activation stimulated GLP-1
release [34]. GLP-1 is an incretin hormone that induces expansion of insulin-secreting β-cell mass;
this change augments glucose-stimulated insulin secretion [35]. Further, GLP-1 improved insulin
sensitivity in humans and rodents [36]. TRPV1 has been identified on pancreatic β-cells, and channel
activation has been associated with improved insulin secretion [37]. Clinically, pain management has
been the most studied therapeutic response to capsaicin through TRPV1 binding due to the involvement
of TRPV1 in pain sensation [28,38,39]. Initially, capsaicin induces pain by sensitization of TRPV1,
ultimately leading to inflammation producing pain [28,40]. Exposure to high or repeated doses of
capsaicin leads to desensitization of TRPV1, producing analgesia [40]. Apart from pain management,
capsaicin may be useful in the treatment of other conditions, such as obesity and cardiovascular
disease [38,39]. Further, capsaicin possesses antipruritic, antiinflammatory, antiapoptotic, anticancer,
antioxidant, and neuroprotective functions [38]. Capsaicin provides these health benefits through
TRPV1 receptors [38].

2. Metabolic Disorders

2.1. Metabolic Syndrome

Metabolic syndrome is a constellation of symptoms that typically occur together, including
central obesity, insulin resistance, hypertension, impaired glucose tolerance, and dyslipidemia [41].
These physiological changes enhance the risk of developing cardiovascular disease, type 2 diabetes,
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and non-alcoholic fatty liver disease [41,42]. Chronic low-grade inflammation and oxidative stress play
important roles in the development of these metabolic complications [43–46]. In obesity, adipose tissue
inflammation increases the production of reactive oxygen species, which then disturbs the production
of adipokines, and can trigger pathology associated with metabolic syndrome [46]. Inflammation and
oxidative stress are the links between the symptoms of metabolic syndrome, as anti-inflammatory
and antioxidant interventions attenuate the changes occurring with metabolic syndrome [47,48].
Obesity and insulin resistance are two major components of metabolic syndrome that predispose
individuals to develop further complications of metabolic syndrome. Thus, this review will focus on
obesity and insulin resistance as the two major components of metabolic syndrome.

2.2. Insulin Resistance and Obesity

Insulin resistance is a reduced response to lowering blood glucose concentrations despite
increased insulin concentrations. Many mechanisms have been proposed for the development of
insulin resistance, including increased lipid deposition in the tissues [49]. Obesity is an excess
deposition of fat in the tissues, especially visceral adipose tissue. Obesity is associated with
insulin resistance through chronic low-grade inflammation [50]. Initially, insulin resistance was
considered as the major component in the development of metabolic syndrome, and hence, it was
called insulin resistance syndrome [51]. This hypothesis was supported by an animal study,
which provided evidence that insulin resistance developed before other components of metabolic
syndrome [52]. This was also reflected in the definition of metabolic syndrome that was provided
by the World Health Organization and European Group for Study of Insulin Resistance [53].
However, the International Diabetes Federation removed the requirement of including insulin
resistance as one of the components for diagnosis of metabolic syndrome, instead emphasizing obesity
as the defining factor of the syndrome [54]. The incidence of obesity has been escalating throughout the
world [55,56]. The increasing incidence of obesity, and therefore, of metabolic syndrome, is primarily
due to increasing physical inactivity and the increased acquisition of energy from energy-dense or junk
foods [57,58]. Over the years, a clear link has been established between the development of obesity,
insulin resistance, and other components of metabolic syndrome [59–63].

2.3. Mechanisms for the Development of Insulin Resistance and Obesity

Obesity, dyslipidemia, and reduced physical activity have been identified as major causes of
chronic tissue inflammation that contribute to the development of insulin resistance [51]. High-fat
diets or overfeeding have been proposed to decrease muscle glucose uptake and increase hepatic
gluconeogenesis, both conditions resulting as an outcome of insulin resistance. Insulin resistance in
liver and skeletal muscle leads to hyperglycemia, hyperinsulinemia, and then dyslipidemia and fatty
liver [64]. Obesity has been linked to the development of cardiac insulin resistance with inflammation,
oxidative stress, and dyslipidemia playing an important role in its development [65]. Inflammation in
obesity is characterized by increased blood concentrations of inflammatory markers, including tumor
necrosis factor (TNF), C-reactive protein, interleukin (IL) 6, and plasminogen activator inhibitor-1 [50].
It has been suggested that inflammation inhibits insulin signaling in adipocytes and hepatocytes
through several mechanisms involving inhibition of insulin receptor substrate 1 (IRS-1), insulin
receptor, and PPARγ [50]. Although these mechanisms help us to understand how insulin resistance
increases the risk for the development of obesity, type 2 diabetes, and cardiovascular disease [50],
the exact mechanism for the development of insulin resistance is still a subject of debate [64].

3. Capsaicin as a Treatment for Metabolic Syndrome

As mentioned above, TRPV1 is expressed throughout the body in different cells and tissues,
including heart, liver, pancreas, kidney, and adipocytes [66]. The presence of TRPV1 on these
metabolically active tissues makes capsaicin an important element in targeting metabolic syndrome.
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Thus, it can be hypothesized that capsaicin plays a crucial role in alleviating symptoms of metabolic
syndrome through TRPV1 channels [37,67].

3.1. Capsaicin in Insulin Resistance and Glucose Metabolism

Blood glucose regulation is an important homeostatic mechanism for proper cellular
functioning [68]. Insulin, as the only hormone that can reduce blood glucose concentrations, plays
an important role. Any changes in responses or sensitivity to insulin lead to impairment of glucose
tolerance and can result in diabetes.

3.1.1. In Vitro Studies

Capsaicin has been tested in vitro and in vivo for its beneficial effects. Capsaicin increased glucose
uptake in C2C12 muscle cells by activating AMPK without affecting insulin signaling molecules such
as IRS-1 and Akt [69]. Intestinal glucose absorption was inhibited by capsaicin in vitro when it came
in direct contact with mammalian small intestine; the extent of inhibition was dependent on the
concentration of capsaicin and the incubation time [70]. Capsaicin pre-treatment increased energy
metabolism in human intestinal epithelial cell culture by increasing the expression of glycolytic
enzymes triosephosphate isomerase and phosphoglycerate mutase, with increased ATP production in
these cells [71]. Capsaicin stimulated GLP-1 secretion from secretin tumor cells in a calcium-dependent
manner through TRPV1 activation [34].

3.1.2. Animal Studies

Capsicum frutescens extract containing capsaicin reduced blood glucose concentrations and
increased plasma insulin concentrations in dogs [72,73]. Capsaicin treatment (0.015% in food for
10 weeks) in mice fed a high-fat diet for 10 weeks lowered obesity, fasting glucose, insulin, leptin,
inflammatory markers in adipose tissue and liver, and hepatic triglycerides [74]. Treatment increased
adiponectin mRNA/protein in the adipose tissue and PPARα/PGC-1α mRNA in the liver [74].
Thus, improved metabolic and inflammatory status in adipose tissue and liver suggest that dietary
capsaicin may reduce insulin resistance [74]. These effects were associated with its dual action on
PPARα and TRPV-1 expression/activation [74]. In pancreatectomized diabetic rats, capsaicin and
capsiate (nonpungent capsaicin analogue) reduced body weight gain, visceral fat accumulation,
and serum leptin, while improving glucose tolerance without modulating energy intake [75]. Some of
the responses to capsaicin are highlighted in Table 1.

Table 1. A summary of key studies demonstrating the effect of capsaicin on glucose metabolism and
insulin responses in animal models and humans.

Animal Model/Human Capsaicin Dose
(Duration) Effects on Glucose Metabolism Mechanism(s) to Improve

Glucose & Insulin Responses

db/db mice and
TRPV1−/− mice [34]

0.01% of diet
(24 weeks)

↑ insulin sensitivity
↓ basal blood glucose

↑ TRPV1 expression
↑ intestinal GLP1 secretion

C57BL/6 mice [74] 0.015% of diet
(10 weeks)

↓ basal blood glucose
↓ glucose intolerance
↓ basal blood insulin

↑ TRPV1 activity
↓ PPARγ activity
↓ NF-κB activity

↓ inflammatory cytokines
↓ IRS-1

↑ GLUT4 expression
↑ adiponectin
↓ leptin

Sprague Dawley rats [75] 0.025% of diet
(8 weeks)

↓ basal blood glucose
↓ basal blood insulin
↓ glucose intolerance
↑ insulin sensitivity
↓ insulin intolerance

↓ leptin
↑ pancreatic β-cell mass

↓ pancreatic islet cell apoptosis
↑ ratio of β:α pancreatic cells
↑ pAkt/PEPCK & pAMPK

signaling post-TRPV1 activation
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Table 1. Cont.

Animal Model/Human Capsaicin Dose
(Duration) Effects on Glucose Metabolism Mechanism(s) to Improve

Glucose & Insulin Responses

KKAy mice [76] 0.015% of diet
(3 weeks)

↓ basal blood insulin
↓ basal blood glucose

↓ inflammatory cytokines
↑ adiponectin

↑ AdipoR2 expression

ob/ob mice [77] 0.01% or 0.02% of
diet (6 weeks)

↓ basal blood insulin
↓ basal blood glucose
↓ glucose intolerance
↑ insulin sensitivity
↓ insulin intolerance

↓ ghrelin
↓ inflammatory cytokines

↑ GLP-1
↑ butyrate

Sprague Dawley rats [78] Chillies equal to
1% of diet (7 weeks)

↓ basal blood insulin
↓ HOMA-IR

↑ insulin sensitivity
↓ insulin intolerance

↑ pancreatic β-cell mass
↓ pancreatic islet cell apoptosis
↓ β-amyloid accumulation

Swiss albino mice [79] 5 mg/kg/day
(8 weeks)

↓ basal blood glucose
↓ HOMA-IR

↑ glucose 6-phosphate
dehydrogenase

↑ glutathione-S-transferases

C57BL/6 mice and
TRPV1−/− mice [80]

0.01% of diet
(24 weeks) ↓ basal blood glucose

↑ hepatic β-oxidation
↑ TRPV1 expression and activity
↑ UCP2 expression and activity

C57BL/6 mice [81]
100 mg of 0.075%

capsaicin cream/day
(7 weeks)

↓ basal blood glucose
↑ insulin sensitivity

↑ adiponectin
↑ PPARα, PPARγ, visfatin, adipsin
↓ inflammatory cytokines

Women with gestational
diabetes mellitus [82] 5 mg/day (4 weeks)

↓ 2 h postprandial blood glucose
↓ 2 h postprandial blood insulin
↓ 2 h postprandial HOMA-IR

↓ calcitonin gene-related peptide

Humans [83] 30 mg/day (4 weeks) ↓ postprandial insulin ↓ postprandial C-peptide
↑ C-peptide/insulin quotient

↑: Increased; ↓: Decreased.

Both capsaicin and capsiate enhanced first and second phase insulin secretion during
hyperglycemic clamp, while only capsiate enhanced hepatic insulin sensitivity during euglycemic
hyperinsulinemic clamp [75]. Improved hepatic insulin sensitivity was also associated with reduced
hepatic glucose output and increased hepatic glycogen storage. These changes were related to enhanced
pAkt/PEPCK and pAMPK signaling pathways [75]. In streptozotocin-induced diabetic rats, capsaicin
treatment (6 mg/kg/day) activated TRPV1 in the liver and pancreas [84]. In the liver, capsaicin
increased expression of TRPV1, liver X receptor (LXR), and pancreatic duodenal homeobox-1 (PDX-1).
LXR and PDX-1 controlled glucose metabolism by regulating expression of glucokinase, GLUT2,
phosphoenolpyruvate carboxykinase, and glucose 6-phosphatase. These changes suggest inhibition
of gluconeogenesis and activation of glycogen synthesis by capsaicin [84]. In KKAy genetically
obese and diabetic mice, capsaicin intervention reduced blood glucose, insulin, and triglyceride
concentrations with a reduction in hepatic triglyceride deposition [76]. Furthermore, inflammation in
adipose tissue and liver were reduced by capsaicin, with no changes in body weight and adiposity [76].
Hepatic AMPK activation, systemic increases in the concentration of adiponectin, and increased
AdipoR2 in liver were suggested as the mechanisms of action of capsaicin in reducing these metabolic
complications [76]. In ovariectomized Wistar rats given a 30% sucrose solution for 28 weeks, topical
application of capsaicin with exercise ameliorated the symptoms of metabolic syndrome induced by
hypoestrogenism by activating AMPK [85].

These effects of capsaicin are suggested to be mediated by the agonist action of capsaicin on
TRPV1. However, desensitization of sensory nerves through capsaicin in Zucker rats improved fasting
blood glucose concentrations and oral glucose tolerance [86]. These beneficial responses were not
accompanied by changes in plasma insulin concentrations, or the liver and muscle contents of glycogen
and triglycerides, suggesting no improvement in insulin resistance [86]. On the contrary, insulin
secretion was improved following resiniferatoxin (capsaicin analogue) intervention in diabetic rats
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through desensitization of sensory nerves accompanied by a reduction in plasma dipeptidyl peptidase
IV [87]. This response of resiniferatoxin suggests increased GLP-1 and GIP in the blood, and hence,
improved insulin secretion and insulin sensitivity. TRPV1-expressing sensory nerve fibers in pancreatic
islets play an important role in insulin secretion [88]. Capsaicin administration through injection to
Zucker Diabetic Fatty rats prevented increased glucose-induced insulin secretion and improved glucose
metabolism. These changes were supported by the loss of TRPV1- and CGRP-co-expressing nerve fibers
in the pancreas [88]. Acute capsaicin treatment increased GLP-1 and insulin secretion in wild-type mice
in a TRPV1-dependent manner [34]. Chronic dietary capsaicin increased plasma GLP-1 and insulin
concentrations, with improved glucose tolerance in wild-type mice; these responses were not seen in
TRPV1−/− mice [34]. In db/db mice, TRPV1 activation by capsaicin improved glucose homeostasis,
increased GLP-1 production in distal ileum, and increased plasma GLP-1 concentrations [34].

Capsaicin administration 2 h before exercise in rats increased endurance performance time
and plasma concentrations of epinephrine, norepinephrine, glucagon, free fatty acids, and glucose,
while decreasing plasma insulin concentrations [89]. Glycogen contents in liver and gastrocnemius
muscle in exercising rats treated with capsaicin were higher, suggesting glycogen-sparing effects [89].
In contrast, a capsaicin-supplemented diet in rats did not change glycogen content in the liver and
soleus muscle, or the serum glucose, lactate, free fatty acids and glycerol concentrations, at rest and
during exercise [90]. However, the weight of epididymal adipose tissue was lower in rats fed a
capsaicin-containing diet [90]. Capsaicin was suggested to increase glycogen turnover instead of changing
glycogen contents in the liver and soleus muscle in this study [90]. Both capsinoids and capsaicin in
mice enhanced energy expenditure and fat oxidation by activating sensory nerves that express TRPV1 in
small intestine, and also by enhancing thermogenesis [91]. Capsaicin supplementation in mice improved
physical activities, including grip strength and endurance performance, by increasing liver glycogen
content [92]. Furthermore, capsaicin decreased exercise-induced fatigue-related parameters, including
increased lactate, ammonia, glucose, blood urea nitrogen, and creatine kinase, in a dose-dependent
manner [92]. Dihydrocapsaicin decreased body weight gain, and food efficiency, but did not change
white and brown adipose tissue (BAT), nor increase plasma concentrations of glucose, free fatty acids,
and glycerol [93]. Capsaicin-sensitive sensory nerves were crucial in controlling glucose metabolism
and insulin responses following increased glucose load [94–100]. TRPV1 knockout mice that were fed a
high-fat diet became more obese and were more insulin- and leptin-resistant than the wild-type mice fed
a high-fat diet [101]. This study indicates that TRPV1 plays an important role played in the development
of obesity and insulin resistance associated with high-fat diet and aging. Thus, TRPV1 agonists such as
capsaicin may prove highly effective in attenuating metabolic complications [101].

3.1.3. Human Studies

In long-distance male runners (~18–23 years), a single meal with 10g of hot red pepper powder
increased respiratory quotient without changes in energy expenditure [102]. Further, results from
this study suggested that red pepper ingestion promoted carbohydrate catabolism by increasing
plasma epinephrine concentrations [102]. In healthy human subjects, capsaicin increased glucose
absorption from the gut, and increased the release of glucagon during glucose loading tests [103].
Intervention with capsaicin-containing chilies for 4 weeks in women with gestational diabetes
mellitus reduced postprandial hyperglycemia and hyperinsulinemia, with improved fasting lipid
metabolic disorders [82]. These responses further reduced the incidence of large-for-gestational
age-newborns. These effects of capsaicin were associated with an increased release of CGRP [82].
In healthy individuals, 5 g capsicum capsules containing 26.6 mg capsaicin lowered plasma glucose
concentrations and increased plasma insulin concentrations [104]. In a randomized, double-blind,
placebo-controlled, 8 week trial with a combination of nutrients including capsaicin, decreased insulin
resistance and inflammatory adipokines were observed, suggesting improved metabolic status [105].
Although studies have identified capsaicin or capsaicinoids responses to insulin secretion or insulin
sensitivity in individuals without insulin resistance or hyperinsulinemia [106,107], studies in insulin
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resistant or hyperinsulinemic individuals would provide suitable evidence for the effects of capsaicin
in these individuals.

3.2. Capsaicin in Obesity and Dyslipidemia

A meta-analysis of human studies suggested that capsaicin and capsiate can help in weight
management [108]. This response of capsaicin has been linked with its capacity to induce thermogenesis
and the browning effect in white adipose tissue [109]. Capsaicin administration induced increased
UCP1, PPARα, PPARγ, SIRT1, and PRDM-16 expression in adipocytes from mice [110], which indicates
browning and thermogenesis.

3.2.1. In Vitro Studies

In 3T3-L1 preadipocytes and adipocytes, low-dose capsaicin lowered PPAR-γ, C/EBP-α,
and leptin expression, while inducing apoptosis and anti-adipogenic genes, inhibiting adipogenesis,
and promoting brite phenotype in a TRPV1-dependent mechanism [111,112]. At higher doses,
capsaicin promoted adipogenesis associated with decreased expression of anti-adipogenic and
BAT-specific genes [112]. Capsaicin reduced fatty acid uptake in differentiated Caco-2 cells without
activating TRPV1, and increased acetyl-coenzyme A synthetase, suggesting the possibility of inhibiting
fatty acid absorption in the intestine with capsaicin [113].

3.2.2. Animal Studies

In high-fat diet-fed rats, capsaicin reduced weight of perirenal adipose tissue and serum
triglyceride concentrations [114], and topical capsaicin application reduced body weight and fat gain,
as well as reducing fat mass in mesenteric and epididymal adipose tissues [81]. Capsaicin−chitosan
microspheres in high-fat diet-fed obese rats reduced obesity more effectively than capsaicin,
while decreasing the proportion of body fat. It was proposed that these changes were caused by
increases in mRNA and protein expression of PPARα, UCP2, and adiponectin genes, along with
downregulating expression of leptin [115]. Capsaicin desensitization of capsaicin-sensitive nerves
prevented aging-induced obesity in rats one year after desensitization, indicating a longer-term role
for capsaicin in obesity prevention and treatment [116]. Capsaicin in high-fat diet-fed rats decreased
serum ALT and AST, along with decreases in serum glucose and HOMA-IR [79]. In high-fat diet-fed
mice, combinations of eicosapentaenoic acid and capsaicin reduced body weight, fat tissue weights,
serum total cholesterol concentration, and serum activities of AST and ALT, while improving insulin
sensitivity [117]. These responses were greater than the response of eicosapentaenoic acid alone in
high-fat diet-fed mice [117]. Rats fed high-fat diets were treated with a combination of corn gluten
hydrolysate and capsaicin [118]. This combination reduced body weight, fasting plasma glucose,
insulin, HOMA-IR, and leptin, while increasing plasma adiponectin [118]. Plasma triglyceride, total
cholesterol, HDL-cholesterol, and LDL-cholesterol concentrations were not changed by the combination
of corn gluten hydrolysate and capsaicin treatment, whereas hepatic total lipids, triglycerides and total
cholesterol concentrations were decreased [118]. It has been suggested that BAT activation, activation
of the adreno-sympathetic nervous system for catecholamine production, and increased energy
expenditure are responsible for capsaicin’s thermogenic activity [40,109,119]. Capsaicin intervention
in high-fat diet-fed rats reduced body weight and adiposity, together with decreases in expression
of glyoxalase 1, dihydrolipoamide acetyltransferase, and heat shock protein 27 in skeletal muscle,
whereas ATP synthase β subunit, glycogen phosphorylase, and protein phosphatase 1β expression
were increased in skeletal muscle [120].

The role of gut microbiota has been well established in metabolic disorders [121,122].
Furthermore, strategies such as prebiotics have been used to successfully modulate gut microbiota,
and hence, improve metabolic health [123]. In high-fat diet-fed mice, capsaicin prevented obesity,
metabolic endotoxemia, and systemic chronic low-grade inflammation by increasing abundance
of butyrate-producing bacteria (Clostridium clusters IV (Ruminococcaceae) and XIVa (Lachnospiraceae,
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including Roseburia spp.)), preventing CB1 upregulation, reducing lipopolysaccharides biosynthesis
gene expression, and lowering gut permeability [124]. In diabetic ob/ob mice, capsaicin modulated
gut microbiota to improve glucose homeostasis, but failed to reduce obesity [125]. The changes
in gut microbiota included increases in Firmicutes/Bacteroidetes ratio and Roseburia abundance,
and decreases in the Bacteroides and Parabacteroides abundances. Furthermore, increases in fecal
butyrate and plasma total GLP-1 concentrations, and decreases in plasma concentrations of total
ghrelin, TNF, IL-1β, and IL-6, were induced by capsaicin intervention [77]. In high-fat diet-fed mice,
capsaicin-induced reduction in body weight and improvements in glucose metabolism were associated
with a modulation of gut microbiota, including increases in the proportion of Bacteroides, Coprococcus,
Prevotella, and Akkermansia, with increases in relative abundance of Akkermansia muciniphila [126].

3.2.3. Human Studies

A combination of green tea, capsaicin, and ginger extracts in overweight women decreased
body weight, body mass index, serum insulin concentrations, and HOMA-IR, and increased plasma
GSH concentrations, but did not affect plasma concentrations of fasting glucose and blood lipid
concentrations or plasma total antioxidant capacity [127]. In a randomized, uniform-balanced,
crossover design in healthy and active men, a single dose of 1.25 mg capsaicin from cayenne pepper
failed to increase thermogenesis and lipid oxidation during rest and exercise [128]. This failure to
produce responses by capsaicin may have resulted from the single lower dose of capsaicin used in this
study. Thus, a chronic supplementation of capsaicin may have the potential to attenuate obesity.

Modulation of satiety may have a role in capsaicin’s action in obesity. In a controlled feeding trial
in healthy subjects, 6 weeks of intervention with capsaicin led to an increased Firmicutes/Bacteroidetes
ratio, abundance of Faecalibacterium, plasma GLP-1 and GIP concentrations, and fecal butyrate
concentrations, while decreasing plasma ghrelin and lipopolysaccharide binding protein concentrations
and fecal Gram-negative bacteria [129]. In this study, these beneficial responses were observed in
Bacteroides enterotype subjects, compared to Prevotella enterotype [129]. It was observed that 2.56 mg
of capsaicin with every meal in Caucasian subjects increased feelings of satiety and fullness in energy
balance, and decreased ad libitum intake of food [130]. It was also noted that 1.03 g of red chili pepper
containing 2.56 mg capsaicin increased feelings of satiety and fullness, and prevented overeating
in Caucasians [130]. In healthy subjects, the consumption of an appetizer with 0.9 g red pepper
(0.25% capsaicin) before each meal decreased energy intake over 2 subsequent days [131]. In another
study by this group, a red pepper-containing single meal in the postprandial phase did not change
feelings of satiety, diet-induced thermogenesis, substrate oxidation, or plasma PYY responses for 3 h.
However, this single meal with capsaicin increased plasma GLP-1 concentrations and decreased plasma
ghrelin concentrations within 15 min [33]. An intraduodenal infusion of 1.5 mg capsaicin induced
satiety in healthy subjects [132]. However, this capsaicin-induced satiety was not associated with
changes in plasma concentrations of GLP-1 or PYY, but was associated with general gastrointestinal
stress, including pain and nausea [132]. These outcomes suggest that capsaicin may have benefits in
inducing satiety. However, most studies were performed in healthy individuals for capsaicin-induced
satiety, so clinical measures of changes in obesity are not well understood.

3.3. Capsaicin in Vascular and Renal Function

Insulin resistance, type 2 diabetes, and obesity create changes in the vascular environment
by increasing glucose, triglycerides, free fatty acids, and LDL-cholesterol, while decreasing
HDL-cholesterol in blood [133–136]. These changes contribute to the development of cardiovascular
diseases. Furthermore, components of metabolic syndrome also contribute to changes in kidney
function, and may lead to chronic kidney disease [137]. Capsaicin has been studied against these
complications, and an association has been identified between dietary capsaicin and a decreased risk
for the development of obesity, type 2 diabetes, and cardiovascular diseases [125].
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Capsaicin-induced activation of TRPV1 resulted in the release of substance P and CGRP,
which produced vasodilation, thus decreasing blood pressure and relieving hypertension [40,138].
Wistar rats with a high intake of salt and who received low-dose capsaicin exhibited increased plasma
CGRP concentrations, indicating capsaicin-induced post-synaptic release of CGRP and substance P [138].
When these rats were treated with the TRPV1 antagonist, capsazepine, the blood pressure-lowering
effects of capsaicin were ameliorated, thus indicating the direct involvement of endothelial TRPV1
in capsaicin’s response [138]. Chronic low-dose capsaicin treatment reduced blood pressure in
Spontaneously Hypertensive Rats, while improving endothelium-dependent relaxation of mesenteric
arteries [139]. These rats did not show increased plasma concentrations of CGRP and substance P,
suggesting that the long-term consumption of capsaicin reduces arterial pressure, primarily due to
the activation of TRPV1, which then promotes phosphorylation of protein kinase A and endothelial
nitric oxide synthase. These downstream processes increase the production of nitric oxide, which is
responsible for improvements in endothelium-dependent relaxation [139]. Low-dose capsaicin treatment
in Stroke-Prone Spontaneously Hypertensive Rats increased eNOS expression in carotid arteries,
improved endothelium-dependent relaxation of basilar arteries, decreased intima-media thickness
of intracranial arterioles, delayed the onset of stroke, and increased survival time, without changes in
blood pressure [140]. TRPV1 activation in renal tissue decreased renal perfusion pressure, increased
glomerular filtration rate, and increased water and sodium excretion [141]. This suggests that the
TRPV1 activation by capsaicin augments CGRP and substance P release, and therefore, has a key role
in mediating renal function and, consequently, blood pressure [141]. Capsaicin reduced plasma total
cholesterol and triglycerides concentrations, increased ATP-binding cassette transporter A1 expression,
reduced LDL receptor-related protein 1 expression, and reduced lipid storage and atherosclerotic lesions
in ApoE−/− mice, but not in the aorta from ApoE−/− TRPV1−/− mice [142]. This study clearly
identifies a key role for TRPV1 in the prevention of atherosclerosis [142]. Activation of TRPV1 by
capsaicin rescued the autophagy impaired by oxidized LDL by activating the AMPK signaling pathway,
and hence, by inhibiting foam cell formation [143]. In db/db mice, administration of capsaicin reversed
high-glucose-induced endothelial dysfunction through TRPV1 activation [144]. It was suggested that
this effect may result from increased PKA phosphorylation and upregulation of UCP2 expression.
These mechanistic changes reduced oxidative stress and increased NO concentrations [144]. Based on
these beneficial responses in a limited number of animal studies, human studies are warranted.

3.4. Capsaicin in Non-Alcoholic Fatty Liver Disease

Non-alcoholic fatty liver disease has been considered as one of the consequences of metabolic
syndrome [42]. It includes a range of conditions including inflammation, fat deposition, and fibrosis in
the liver. Links have been established between obesity, dyslipidemia, and development of non-alcoholic
fatty liver disease [145,146]. Dietary capsaicin in high-fat diet-fed mice reduced weight gain and serum
activities of ALT and AST, as well as hepatic TNF [147]. Further, hepatic steatosis and inflammation
were attenuated by capsaicin, while these effects were absent in TRPV1 knockout mice, suggesting the
possible role of TRPV1 in mediating responses of capsaicin [147]. In vitro studies using HepG2 cells
confirmed this action to be through PPARδ-mediated enhancement of autophagy [147]. In high-fat
diet-fed mice, dietary capsaicin prevented the development of fatty liver, suggesting that UCP2
upregulation is the mechanism [80]. In high-fat diet-fed mice, capsaicin with a combination of antibiotics
(vancomycin, neomycin, metronidazole, and ampicillin) reduced intestinal inflammation and leakiness,
whereas capsaicin alone was unable to produce these responses. Capsaicin, with or without antibiotics,
increased PPARα expression in adipose tissue [148]. Capsaicin and antibiotics had synergistic effects
on reducing obesity, fatty liver, and insulin resistance in these high-fat diet-fed mice [148]. Capsaicin
attenuated bile duct ligation-induced biliary fibrosis through inhibition of the activation of hepatic
stellate cells [149]. Capsaicin also reduced carbon tetrachloride-induced liver fibrosis development
in mice [149]. With the limited number of studies of capsaicin in non-alcoholic fatty liver disease in
animals, and the absence of studies in humans, this may be an important focus for future research.
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3.5. Anti-Inflammatory Actions of Capsaicin

A clear link has been established between inflammation and development of metabolic disorders
including obesity [150–152]. Chronic low-grade inflammation in adipose tissue is now considered an
initiator of damage in adipose tissue that contributes to adipogenesis [153]. Thus, anti-inflammatory
compounds have been used with success in reducing obesity [154–160]. Capsaicin has been
characterized as an effective anti-inflammatory molecule in metabolic studies [74,76,77,81,105,147].
Based on these outcomes, it can be hypothesized that capsaicin as an effective anti-inflammatory
molecule would attenuate metabolic inflammatory conditions including obesity, diabetes, osteoarthritis,
and non-alcoholic fatty liver disease.

3.6. Capsaicin in Oxidative Stress

Oxidative stress is an important determinant of the development of metabolic syndrome and
its associated complications [161,162]. In ovariectomized Wistar rats given 30% sucrose solution,
topical application of capsaicin with exercise reduced serum concentrations of malondialdehyde and
nitrites, while increasing serum glutathione concentrations and superoxide dismutase activity [85].
In healthy rats, capsaicin reduced oxidative stress, as measured by tissue malondialdehye and diene
conjugation [163]. Capsaicin prevented lipid peroxidation and carbonyl formation in proteins in
human erythrocytes subjected to oxidative stress [164]. Thus, capsaicin could be effective in reducing
the increased oxidative stress that characterizes metabolic disease.

3.7. Limitations in Clinical Use of Capsaicin

The strong pungency of capsaicin can limit compliance as a food supplement or nutraceutical,
even though capsaicin is commonly consumed through the addition of chilli as a spice in food.
This limitation has been overcome in chronic pain management by the use of topical applications,
such as creams or patches [8,9]. While this may be feasible in metabolic syndrome, novel products such
as chitosan microspheres, liposomes, nanoparticles, or soft gel capsules may be necessary to deliver
capsaicin to the intestines, i.e., to bypass release in the stomach [115,165,166]. Furthermore, developing
new orally active TRPV1 agonists that mimic the efficacy of capsaicin but lack its pungency could
produce an ideal drug for treating metabolic syndrome. An example is the CH-19 Sweet chilli pepper,
containing the three capsaicin analogues, capsiate, dihydrocapsiate, and nordihydrocapsiate [167].
It should be noted that consumption of hot pepper is not equivalent to the use of pure capsaicin [168].

Although capsaicin is commercially available for use in pain management [39,40], adverse effects
need to be considered for chronic interventions. Around 10% of patients treated with capsaicin patches
reported adverse effects, including erythema and pain at the site of application [39]. Further, capsaicin
and capsaicinoids have been shown to induce tumorigenic activities in various cell lines [169].
In contrast, capsaicin reduces the growth of many tumors in mice [169]. Long-term surveillance
of chronic capsaicin use in large, multicenter, randomized, double-blinded, and controlled studies in
humans is necessary to establish the safety and efficacy of capsaicin and capsaicin analogues.

Functions of mitochondria and endoplasmic reticulum have been identified as playing important
roles in skeletal muscle metabolism [170]. Interference with the function of these organelles is an
important factor in developing insulin resistance in skeletal muscle [170]. Capsiate has shown beneficial
responses in skeletal muscle function [171,172]; thus, capsaicin or its analogues can be targeted for
improving skeletal muscle function. Similarly, mitochondrial function in liver was improved by a
combination of capsaicin and α-tocopherol [79], further suggesting potential in targeting mitochondrial
function with capsaicin.

Although there are appropriate animal studies providing evidence of the potential health benefits
of capsaicin in the treatment of metabolic syndrome, the limited number of human studies has not
provided the basis for the development of capsaicin as a nutraceutical. Many of the functional foods
and nutraceuticals have the same problem, i.e., of not receiving the translation to humans after showing
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positive effects in animal studies [173]. Furthermore, liver and skeletal muscle play important roles in
the metabolism and insulin resistance in these organs; this is an important factor in the development of
metabolic syndrome. Thus, identifying responses of capsaicin in humans against insulin resistance in
liver and skeletal muscle could provide a valuable foundation for its development as a drug against
diabetes and metabolic syndrome. As the adverse effects of capsaicin, such as redness, swelling,
soreness, dryness, burning, itching, and pain, are already known through the use of creams and patches,
managing similar adverse effects of capsaicin in metabolic syndrome should be carefully considered.

4. Conclusions and Future Directions

Considering the importance of capsaicin-sensitive nerves in controlling glucose metabolism,
capsaicin becomes a useful molecule for controlling insulin sensitivity and blood glucose
concentrations [98]. Furthermore, the identification of TRPV1 on metabolically-active tissues has
also generated interest in the drug design and pharmaceutical industries for targeting TRPV1 to obtain
capsaicin-like activity in attenuating metabolic syndrome [37]. A summary of responses to capsaicin
through TRVP1 in metabolic disorders is given in Figure 2. Deletion of TRPV1 has further raised the
profile of this receptor in treating obesity as the deletion exacerbated diet-induced obesity and insulin
resistance [101]. Many agonists for TRPV1 have been tested to identify their potential in improving
metabolic complications. Table 2 highlights some of the TRPV1 agonists that were tested against
metabolic syndrome.

Nutrients 2018, 10, x FOR PEER REVIEW  11 of 21 

 

4. Conclusions and Future Directions 

Considering the importance of capsaicin-sensitive nerves in controlling glucose metabolism, 

capsaicin becomes a useful molecule for controlling insulin sensitivity and blood glucose 

concentrations [98]. Furthermore, the identification of TRPV1 on metabolically-active tissues has also 

generated interest in the drug design and pharmaceutical industries for targeting TRPV1 to obtain 

capsaicin-like activity in attenuating metabolic syndrome [37]. A summary of responses to capsaicin 

through TRVP1 in metabolic disorders is given in Figure 2. Deletion of TRPV1 has further raised the 

profile of this receptor in treating obesity as the deletion exacerbated diet-induced obesity and insulin 

resistance [101]. Many agonists for TRPV1 have been tested to identify their potential in improving 

metabolic complications. Table 2 highlights some of the TRPV1 agonists that were tested against 

metabolic syndrome. 

 

Figure 2. Capsaicin in metabolic syndrome. 

  

Figure 2. Capsaicin in metabolic syndrome.



Nutrients 2018, 10, 630 12 of 21

Table 2. A summary of studies demonstrating the effects of other TRPV1 agonists on obesity and
obesity-related disorders in animal models and humans.

TRPV1 Agonist Animal Model Dose (Duration) Responses

Capsiate [75] Pancreatectomized rats 0.025% of diet
(8 weeks)

↓ body weight gain
↓ visceral fat
↓ leptin

↓ basal blood glucose
↑ glucose tolerance
↑ insulin sensitivity
↑ pancreatic β-cell mass

↓ pancreatic islet cell apoptosis
↑ ratio of β:α pancreatic cells
↓ hepatic triglyceride content
↑ hepatic glycogen content

↑ pAkt/PEPCK & pAMPK signaling
post-TRPV1 activation

Dihydrocapsiate [174] High-fat diet-fed mice
2 mg/kg/day and

10 mg/kg/day
(12 weeks)

↓ body weight gain
↓WAT lipid accumulation
↓ BAT lipid accumulation
↓ hepatic triglyceride content
↓ blood triglycerides
↓ blood insulin

↓ glucose intolerance
↑ energy expenditure & mitochondrial

biogenesis gene expression
↑ intestinal crypt depth, muscularis

thickness & goblet cells
↓ gut Firmicutes

↓ host energy availability
↑ TRPV1 expression & activity

Resiniferatoxin [112] High-fat diet-fed mice 200 µg/kg
(4 weeks)

↓ body weight gain
↑ locomotor activity

6-gingerol or
aza-6-gingerol [175] High-fat diet-fed mice 0.06% of diet

(12 weeks)

↓ body weight gain
↓ visceral fat accumulation

↓ leptin
↓ blood insulin

↓ basal blood glucose
↓ glucose intolerance

↓ hepatic lipogenic enzymes

Piperine [176] High-carbohydrate,
high-fat diet-fed rats

~30 mg/kg/day
(8 weeks)

↓ body weight
↓ systolic blood pressure
↓ glucose intolerance

↓ visceral fat accumulation
↓ hepatic fibrosis and fat deposition
↓ cardiac collagen deposition

↑ cardiac function

Nonivamide [177] Moderately overweight
men

0.15 mg/day
(12 weeks)

↓ body fat
↑ postprandial serotonin

↑ satiety

↑: Increased; ↓: Decreased.
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