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Abstract: MicroRNAs (miRNAs) are small (18–25 nucleotides), noncoding RNAs that have been
identified as potential regulators of bone marrow stromal cell (BMSC) proliferation, differentiation,
and musculoskeletal development. Vitamin C is known to play a vital role in such types
of biological processes through various different mechanisms by altering mRNA expression.
We hypothesized that vitamin C mediates these biological processes partially through miRNA
regulation. We performed global miRNA expression analysis on human BMSCs following vitamin C
treatment using microarrays containing human precursor and mature miRNA probes. Bioinformatics
analyses were performed on differentially expressed miRNAs to identify novel target genes and
signaling pathways. Our bioinformatics analysis suggested that the miRNAs may regulate multiple
stem cell-specific signaling pathways such as cell adhesion molecules (CAMs), fatty acid biosynthesis
and hormone signaling pathways. Furthermore, our analysis predicted novel stem cell proliferation
and differentiation gene targets. The findings of the present study demonstrate that vitamin C can
have positive effects on BMSCs in part by regulating miRNA expression.
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1. Introduction

Adult stem cell differentiation is a complex process that is heavily influenced by tissue origin
and interaction with the cellular microenvironment [1]. Bone marrow stromal cells (BMSCs) are
mesenchymal lineage cells that can differentiate into a number of different cell types including
osteoblasts, osteocytes, adipocytes, and chondrocytes [2,3]. The differentiation pathway of BMSCs
depends in large part on their niche/microenvironment [1]. Targeted gene reprogramming is vital
to direct BMSCs toward specific lineages in the field of tissue-engineering. One potential strategy in
this regard employs various micronutrient supplements such as amino acids and vitamins to guide
BMSC differentiation.

Micronutrients, including vitamin C, are important factors in musculoskeletal development and
BMSC biology [4–15]. For example, vitamin C is a key player in collagen synthesis, cell proliferation,
and BMSC differentiation [9–15]. Moreover, vitamin C acts as an antioxidant and prevents oxidative
damage of cellular macromolecules. Vitamin C is an essential nutrient that is not synthesized by most
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mammals including humans [16–18] because of a mutation in gulonolactone oxidase (GULO) enzyme.
GULO is an important catalyzing enzyme which helps in the conversion of L-gulono-G-lactone into
ascorbic acid [17,18]. Human clinical and animal studies have demonstrated that a deficiency of this
vitamin leads to musculoskeletal deformities [19,20]. Therefore, dietary supplementation of vitamin C is
essential for the normal function of BMSCs. Vitamin C stimulates BMSC differentiation by induction of
differentiation-specific genes such as Collagen type 1, RUNX2, and ALP [11]. Furthermore, vitamin C is
also known to regulate human embryonic stem cell differentiation through epigenetic regulation [21,22].

The role of vitamin C in mesenchymal and embryonic stem cell differentiation has been
investigated extensively [21–24]. It is well-established that vitamin C can alter gene expression
in embryonic stem cells through epigenetic regulation by directly regulating Tet activity and
DNA methylation [19,20,22,23]. Epigenetic regulation is a mechanism in which there is change
in gene regulation without change in genetic makeup [25]. Epigenetic factors such as DNA
methylation and microRNAs are known for their roles in BMSC differentiation and musculoskeletal
development [26–31]. Vitamin C and its role in DNA methylation have been well-studied in different
biological systems [32–37] but not much is known with regard to miRNA and vitamin C. MicroRNAs
are small, non-coding, endogenous, single stranded RNAs comprised of 22 nucleotides that bind to the
3′ untranslated region of target messenger RNA (mRNA) [38,39]. MicroRNA negatively regulates gene
expression at the post-transcriptional level by degrading mRNA or by inhibiting translation [38,39].
It has been reported in a number of studies that miRNA regulates almost all cellular events including
cell proliferation, differentiation, and development [40–43]. Vitamin C-dependent miRNA gene
regulation has not been studied previously in human BMSCs. For this study, we collected human
bone marrow and isolated bone marrow stromal cells. The osteogenic and adipogenic differentiation
properties of the cells were analyzed. The BMSCs were treated with vitamin C followed by miRNA
array. The selected miRNAs were further conformed using real time-polymerase chain reaction
polymerase chain reaction (PCR). Bioinformatics analyses were performed on differentially expressed
miRNAs to identify novel target genes and signaling pathways. Our data demonstrated that vitamin
C regulates a number of miRNAs and plays an important role in various stem cell-signaling pathways.

2. Materials and Methods

2.1. Isolation of Human BMSCs (hBMSCs)

All work described here was approved by the Institutional Review Board and Institutional
Biosafety Committee of Augusta University (AU). We collected bone marrow aspirates that were
removed as part of orthopedic (total knee, hip, and ACL) surgeries and would normally have
been discarded. Bone marrow was obtained under sterile conditions from orthopedic surgery
patients (n = 10). The CD271 positive (+) BMSCs were isolated according to the manufacturer’s
protocol using a kit (Miltenyi Biotec Inc., 130-092-283, Sunnyvale, CA, USA) following previously
published methods [44,45]. The CD271+ MSCs were isolated directly from bone marrow, washed with
standard culture medium composed of DMEM medium (Corning, 10-013-CM, Corning, NY, USA),
1% antibiotics-antimycotics (AA; Invitrogen, 15240-062, Carlsbad, CA, USA) and 10% Fetal bovine
serum (FBS), transferred to 100 mm culture dish and incubated at 37 ◦C in a humidified atmosphere at
5% carbon dioxide (CO2). The media with non-adherent cells was removed after 24 h, the adherent
cells carefully washed in Phosphate-buffer saline (PBS), and adherent cells further expanded in fresh
standard culture medium. Culture-expanded CD271 + BMSCs of passage 1 were used for treating
with the vitamin C, miRNA array, quantitative real-time polymerase chain reaction (qPCR) and cell
differentiation assay.

2.2. Osteogenic and Adipogenic Differentiation Assays

The differentiation potential of cultured hBMSCs into osteogenic and adipogenic lineages was
validated in vitro. The osteogenic differentiation [12] and adipogenic assays [2] were performed as
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per published methods. In brief, cells were plated in 24-well plates at 5000 cells/cm2 and cultured
in Dulbecco’s Modified Eagle Medium (DMEM) for 24 h. Culture medium was then aspirated
and replaced with osteogenic medium. The osteogenic media was prepared in DMEM that was
supplemented with 5% FBS, 0.25 mM ascorbic acid (Sigma-Aldrich, A4544, St. Louis, MO, USA),
0.1 mM dexamethasone (Sigma-Aldrich, D4902, St. Louis, MO, USA), and 10 mM β-glycerophosphate
(Sigma-Aldrich, G9891, St. Louis, MO, USA). The medium was replaced freshly 2 times per week for
3 weeks. Osteogenic differentiation was assessed by staining for bone mineralization with Alizarin Red
(AR; Sigma-Aldrich, A5533, St. Louis, MO, USA). The cells were fixed with 10% formalin for 20 min at
room temperature (RT) and stained with 40 mM AR, pH 4.1 for 20 min at RT. Stained monolayers were
visualized by phase-contrast microscopy using an inverted microscope (Nikon, Melville, NY, USA).
Differentiation was quantified as previously described [2]. In brief, cells were destained using 10%
cetylpyridinium chloride (Sigma-Aldrich, C0732, St. Louis, MO, USA). Collected samples were then
analyzed with a microplate reader at 590 nm.

For the adipogenic assay, the cultures were incubated in IMDM (Gibco, 12440-046, Waltham,
MA, USA) supplemented with 10% FBS, 10% Horse Serum (BioAbChem, 720460, Ladson, SC,
USA), 12 mM L-glutamine, 5 µg/mL insulin (Cell Application Inc., 128-100, San Diego, CA, USA),
50 µM indomethacin (Sigma-Aldrich, I7378, MO, USA), 1 × 10−6 M dexamethasone, and 0.5 µM
3-isobutyl-1-methylxanthine (Sigma-Aldrich, I5879, St. Louis, MO, USA). The medium was replaced
2 times per week for 3 weeks followed by real time PCR on adipogenic genes.

2.3. Vitamin C Treatment, Gene Expression Analysis and Intracellular Vitamin C Estimation

Human BMSCs were cultured on 24 well plates and treated with or without vitamin C (low
(25 µM) and high (100 µM) concentration) for 6 days. Media was changed every other day with or
without vitamin C. Total RNA was isolated for gene expression analysis on both low and high dose
vitamin C treatment groups. Collagen type II, BMP-2, BMP-7, RUNX-2 and OSX gene expressions
were performed using real time PCR (Primers’ details in supplemental Table S1). Intracellular vitamin
C estimation was performed using OxiSelect™ Ascorbic Acid Assay Kit (FRASC) (Catalog Number,
STA-860, Cell Biolabs, Inc., San Diego, CA, USA). Briefly, hBMSCs were treated with (100 µM) and
without vitamin C for 6 h followed by intracellular vitamin C estimation as per manufacturer’s protocol.

2.4. Microrna Array and Bioinformatics Analysis

The microRNA array was performed only on samples treated with the high dose (100 µM)
of vitamin C. miRNAs were isolated using an miRNA isolation kit (SABiosciences Corporation,
Frederick, MD, USA) that specifically captures small RNAs with length of less than 200 nucleotides
as per the manufacturer’s protocol. RNA concentrations were determined using a NanoDrop 1000
Spectrophotometer (NanoDrop Technologies, Wilmington, DE, USA). The quality of RNA samples
was characterized on an Agilent BioAnalyzer (Agilent Technologies, Santa Clara, CA, USA) using
an RNA6000 Nano Chip (Agilent). Microarrays were performed on miRNA using an Affymetrix
GeneChip® miRNA 2.0 array at the Integrated Genomics Core, Augusta University, GA, USA. Details of
the procedure can be found online at http://www.augusta.edu/cancer/research/shared/genomics.
The miRNA profile was analyzed for hierarchical clustering of miRNA to generate heat maps.
The results were normalized using robust multichip averages. T-tests were used to calculate the
p-value to determine whether there is a significant difference for miRNA expression between the
control and the treatment groups. Principal component analysis (PCA) was performed between
vitamin C treatment and control samples. Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) signaling pathway analyses were performed using DIANA-miRPath v. 3.0
(http://diana.imis.athena-innovation.gr/DianaTools/index.php) on differentially expressed microRNAs
target genes. GO word clouds were generated using the online Wordle software (www.wordle.net).
Bioinformatics software (http://www.targetscan.org/vert_71/ and http://www.mirdb.org/) was used
to predict targets genes of differentially regulated miRNAs of musculoskeletal importance.

http://www.augusta.edu/cancer/research/shared/genomics
http://diana.imis.athena-innovation.gr/DianaTools/index.php
http://www.targetscan.org/vert_71/
http://www.mirdb.org/
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Validation of miRNA using real time-PCR: Two hundred nanograms of enriched small RNA were
converted into cDNA using RT2 miRNA First Strand Kit (SABiosciences Corporation, Frederick, MD,
USA). Fifty picograms of cDNA were amplified in each qRT-PCR using syber green dye and miRNA
specific primers. The real-time qRT-PCR was performed on a Bio-rad q-pcr machine with following
cycling parameters: 95 ◦C for 10 min, then 40 cycles of 95 ◦C for 15 s, and 60 ◦C for 30 s. SYBR Green
fluorescence was recorded during the annealing step of each cycle. The average of RNU6 (RNA, U6
small nuclear 2) and SNORD (small nucleolar RNA, C/D box) was used as normalization reference
genes for miRNAs. Relative expression of miRNA was evaluated by using the comparative cycle
threshold (CT) method (∆∆Ct).

3. Results

3.1. Osteogenic and Adipogenic Differentiation Assays

Human bone marrow stromal cells showed stem cell characteristics such as adhesion to
tissue culture plates, fibroblast-like morphology, and differentiation properties. To identify their
differentiation properties, hBMSC were cultured in osteogenic and adipogenic media. For osteogenic
properties, cells were treated with osteogenic media for 3 weeks followed by Alizarin red assay
staining and real time PCR. Treatment with osteogenic media showed significant (p = 0.01) increases
Alizarin red staining (Figure 1) and bone specific markers (data not shown). hBMSCs were treated with
adipogenic media for 3 weeks showed significantly (p = 0.01) elevated levels of adipogenic markers
such as PPAR-g2 and Adipsin genes) (Figure 1c).
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Figure 1. (a) Human bone marrow stromal cells (BMSCs) cultured in osteogenic medium and stained
for mineralized nodules using an Alizarin red S assay; (b) Quantitative analysis of the extent of
mineralization in the Alizarin red S assay using elution of dye by 10% (wt./vol.) cetylpyridinium
chloride (means ± SD, n = 4) (c) Real time PCR analysis of steady-state levels of mRNA for adipogenic
genes PPAR-g and adipsin. Data for each sample were normalized with glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) mRNA. Data (means ± SD, n = 4) are represented as the fold change in
expression compared to the control. * p = 0.04, ** p = 0.01.
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3.2. Vitamin C Regulates Musculoskeletal-Related Gene Expression in Hbmscs

Supplementation of vitamin C is required for the differentiation of hBMSCs but the dose of
vitamin C supplementation is debatable. To gain further insight into the dose of vitamin C in the
human bone marrow stromal cell culture system, we treated cells with either a low (25 µM) or a high
(100 µM) doses of vitamin C for 6 days followed by real time PCR on musculoskeletal related genes.
A higher dose of vitamin C treatment showed the most significant changes in expression of those
genes related to osteogenic differentiation. Specifically, COL-II and BMP2 were increased three-fold
(p = 0.001), where BMP-7, RUNX2 and Osterix (OSX) were up-regulated approximately four-fold
(p = 0.001) at a higher dose compared to control (Figure 2). Lower doses of vitamin C did not show
significant changes (Figure 2). We also quantified intracellular accumulation of vitamin C following
vitamin C treatment after 6hrs. We found significantly (p = 0.001) higher concentration of intracellular
vitamin C compared to the control (Figure 2f).
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Figure 2. Vitamin C regulates musculoskeletal genes in hBMSCs. Real-time PCR showing dose
dependent change in gene expression in hBMSCS after vitamin C treatment (a) Collagen II; (b) BMP-2;
(c) BMP-7; (d) RUNX2 and (e) OSX (Osterix). Data (n = 4) are represented as the fold change in
expression compared with control (* p = 0.04, # p = 0.001); (f) Intracellular concentration of vitamin C in
hBMSCs. hBMSCs cells were treated with 100 µM vitamin C and intracellular accumulation of vitamin
C was measured in the control and vitamin C treated cells after 6hrs (n = 6, # p = 0.001).

3.3. Global Mirna Expression Profile Following Vitamin C

To identify miRNAs that were differentially expressed following vitamin C treatment, we
conducted a comprehensive miRNA microarray analysis of samples from hBMSCs that were treated
with or without vitamin C. miRNAs were isolated after 6 days post treatment. The miRNAs that
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exhibited a significant (p < 0.05) 1.5-fold difference in expression after vitamin C treatment compared
with the control groups were selected for analysis. Our analysis identified 122 miRNAs that were
differentially expressed (p < 0.05) in response to vitamin C. Out of 122 miRNAs, 80 miRNAs were
up-regulated and 42 were down-regulated in the presence of vitamin C. The list of up-regulated and
down-regulated miRNAs after vitamin C treatment is shown in Table 1. Hierarchical cluster analysis
using the normalized miRNA expression data confirmed that the expression of miRNAs in vitamin in
C treated BMSCs can be clearly distinguished from the controls (Figure 3).

3.4. Principal Component Analysis (PCA)

We performed a PCA to explore the relationships between the control and vitamin C-treated
samples. The PCA graph (Figure 3) shows the presence of the cluster of vitamin C treatment samples
that is clearly distinct from the control (non-treated) samples.

Table 1. Selected miRNAs differentially regulated in presence of vitamin C in human bone marrow
stromal cells.

MicroRNA ID/Probeset ID Fold-Change p-Value

hsa-miR-3651_st −3.76469 0.000718
hsa-miR-4485_st −3.70276 0.002619
hsa-miR-1275_st −3.00098 0.022393

hsa-miR-4708-5p_st −2.94613 0.002456
hsa-miR-3197_st −2.86102 0.048879
hsa-miR-720_st −2.81658 0.019125
hsa-miR-210_st −2.75739 0.001763

hsa-miR-29b-1-star_st −2.71192 0.032586
hsa-miR-4284_st −2.49253 0.003259
hsa-miR-4479_st −2.39325 0.026759
hsa-miR-3175_st −2.37271 0.013122
hsa-miR-4730_st −2.36644 0.009171

hsa-miR-23a-star_st −2.26148 0.001843
hsa-miR-4321_st −2.25569 0.024075

hp_hsa-mir-3676_st −2.13436 0.008900
hsa-miR-4787-3p_st −2.05594 0.003156
hsa-miR-574-5p_st −2.02613 0.019283
hsa-miR-4492_st −1.99221 0.011873
hsa-miR-345_st −1.96585 0.019316

hsa-miR-1270_st −1.90283 0.047187
hsa-miR-4697-5p_st −1.83134 0.039445

hsa-miR-4433_st −1.80613 0.005357
hp_hsa-mir-4477a_st 1.83543 0.0351021

hp_hsa-mir-548ag-2_st 1.83747 0.0217069
hsa-miR-4727-3p_st 1.86033 0.0446828

hsa-miR-335_st 1.86288 0.0415722
hsa-miR-202_st 1.87834 0.00218913

hsa-miR-4436a_st 1.96484 0.00880198
hp_hsa-mir-532_st 1.98369 0.035662

hsa-miR-3942-5p_st 1.98754 0.002823
hsa-miR-3163_st 2.0011 0.019565

hp_hsa-mir-548f-1_st 2.01894 0.026558
hsa-miR-92a-2-star_st 2.02393 0.003107
hsa-miR-548a-3p_st 2.02776 0.003973
hsa-miR-3121-3p_st 2.03509 0.007681

hsa-miR-3201_st 2.07949 0.006952
hsa-miR-4657_st 2.07988 0.027179

hsa-miR-4704-5p_st 2.10426 0.002415
hsa-miR-1825_st 2.1387 0.028925

hsa-miR-550a-star_st 2.16711 0.017221
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Table 1. Cont.

MicroRNA ID/Probeset ID Fold-Change p-Value

hsa-miR-1323_st 2.21591 0.006721
hsa-miR-3927_st 2.23141 0.002801

hsa-miR-509-3-5p_st 2.2723 0.003025
hsa-miR-4423-3p_st 2.27939 0.030500

hsa-miR-890_st 2.34751 0.035107
hsa-miR-4773_st 2.41459 0.002370

hsa-miR-371b-5p_st 2.42868 0.038520
hsa-miR-3128_st 2.49419 0.014536
hsa-miR-1272_st 2.59151 0.033417

hsa-miR-4659a-3p_st 2.60253 0.005995
hsa-miR-377_st 2.64791 0.003494

hsa-miR-550b_st 2.68252 0.013600
hsa-miR-20b-star_st 2.76807 0.004101
hsa-miR-3152-3p_st 3.2214 0.002098

hsa-miR-1208_st 5.02485 0.010838
hsa-miR-4529-3p_st 12.0104 0.009329
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Figure 3. Differential miRNA expression in human bone marrow stromal cells after vitamin C treatment
(n = 4 each group). (a) The heat-map showing the differential expression pattern of miRNAs compared
to control group; (b) Principle component analysis (PCA) mapping of vitamin C treatment and control
samples. Control group (indicated by red color) was clustered distinctly from vitamin C treated group
(indicated by blue color).

3.5. Validation of Differentially Expressed Mirnas

To further verify the results obtained from miRNA microarrays, we performed real-time PCR
on five randomly selected miRNAs to validate our findings. MiRNA real-time PCR showed similar
changes as noted in miRNA array (Figure 4). In vitamin C (100 µM)- treated samples, we found
that miR-29b (p = 0.04) and miR-4705 (p = 0.04) were significantly down-regulated and miR-3942
(p = 0.01) and miR-3152 (p = 0.04) were significantly up-regulated whereas miRNA-371b showed a



Nutrients 2018, 10, 186 8 of 17

trend of up-regulation similar to our array findings. Low dose vitamin C (25 µM) treatment did not
show significant changes in any of the above-mentioned miRNA expression analyses (supplementary
Figure S1).
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3.6. Signaling Pathway Predictions

We performed Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation and
GO analysis to identify functions of the miRNAs found to be differentially expressed after vitamin
C treatment. The KEGG annotation analysis showed that a number of molecules are affected by
these miRNAs. Interestingly, up-regulated and down-regulated miRNAs both regulate some common
signaling pathways such as cell adhesion molecules (CAMs), fatty acid biosynthesis/metabolism and
thyroid hormone signaling pathway. The important KEGG signaling for up-regulated miRNAs
are Mucin type O-Glycan biosynthesis, glycosphingolipid biosynthesis, biotin metabolism and
arrhythmogenic right ventricular cardiomyopathy (ARVC) and down-regulated are amino sugar
and nucleotide sugar metabolism, endocytosis, MAPK signaling pathway, GABAergic synapse,
and glutamatergic synapse. Details of KEGG annotation analysis are shown in Table 2.

Table 2. Selected KEGG biological pathways potentially affected by (a) miRNAs down-regulated;
and (b) miRNAs up-regulated in the presence of vitamin C in human bone marrow stromal cells.

(a)

KEGG Pathway p-Value Number of Genes Involved Number of miRNAs Involved

Prion diseases 4.07 × 10−10 7 7
Morphine addiction 4.80 × 10−5 32 17

Amino sugar and nucleotide sugar metabolism 0.002142 16 11
Thyroid hormone signaling pathway 0.002958 37 17

Cell adhesion molecules (CAMs) 0.006179 43 16
Endocytosis 0.009192 63 18
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Table 2. Cont.

(a)

KEGG Pathway p-Value Number of Genes Involved Number of miRNAs Involved

Oxytocin signaling pathway 0.011941 53 21
Melanogenesis 0.013774 35 17

MAPK signaling pathway 0.013774 77 22
GABAergic synapse 0.02274 32 18

Vasopressin-regulated water reabsorption 0.035605 16 11
Adrenergic signaling in cardiomyocytes 0.035605 48 22

Glutamatergic synapse 0.03746 34 13
Biosynthesis of unsaturated fatty acids 0.040121 7 5

Circadian entrainment 0.046058 37 16

(b)

KEGG Pathway p-Value Number of Genes Involved Number of miRNAs Involved

Mucin type O-Glycan biosynthesis 1.69 × 10−11 11 7
Fatty acid biosynthesis 1.86 × 10−8 1 1

Glycosphingolipid biosynthesis-lacto and neolacto series 6.27 × 10−5 9 8
Fatty acid metabolism 0.000184 7 6

Adherens junction 0.000623 25 18
Biotin metabolism 0.010804 1 1

Arrhythmogenic right ventricular cardiomyopathy 0.014001 21 18
Caffeine metabolism 0.027365 2 2

Thyroid hormone signaling pathway 0.027365 32 21

The gene ontology analysis showed that more than 87 biological processes were associated
with the down- and up-regulated miRNAs (Table 3). The most common GO pathways regulated
by both up-regulated and down-regulated miRNAs are organelles, biosynthetic processes, cellular
protein modification process, enzyme binding, cellular component assembly and nucleic acid binding
transcription factor activity. Details of the GO analyses are shown in Table 3. Wordle-based clouds
were generated for both up-regulated and down-regulated pathways from the GO analysis to identify
most prominent vitamin C-dependent, miRNA-mediated signaling pathways (Figure S2). Word clouds
demonstrate the font size depending on relative word frequencies in the GO analysis [46].

Table 3. Selected (firsts 50) gene ontology (GO) biological pathways potentially affected by (a) miRNAs
down-regulated; and (b) miRNAs up-regulated in the presence of vitamin C in human bone marrow
stromal cells.

(a)

GO Category p-Value Genes miRNAs

organelle 1.15 × 10−87 2073 24
ion binding 7.43 × 10−46 1270 25

cellular nitrogen compound metabolic process 7.82 × 10−45 1006 24
biosynthetic process 1.56 × 10−32 856 24

small molecule metabolic process 1.56 × 10−17 489 24
cellular protein modification process 3.92 × 10−15 475 24

neurotrophin TRK receptor signaling pathway 2.05 × 10−14 70 18
synaptic transmission 2.05 × 10−14 121 21

nucleic acid binding transcription factor activity 1.32 × 10−13 231 24
cellular protein metabolic process 2.55 × 10−11 106 20

cell-cell signaling 1.27 × 10−10 162 24
catabolic process 1.50 × 10−10 390 24

cellular component assembly 2.41 × 10−9 272 23
molecular_function 2.43 × 10−9 3342 25

gene expression 2.95 × 10−9 116 22
symbiosis, encompassing mutualism through parasitism 4.66 × 10−9 111 21

post-translational protein modification 4.93 × 10−9 46 17
cellular_component 5.00 × 10−9 3383 25
blood coagulation 1.28 × 10−8 101 20

viral process 2.94 × 10−8 97 21
protein binding transcription factor activity 7.72 × 10−8 110 22

macromolecular complex assembly 1.45 × 10−7 185 23



Nutrients 2018, 10, 186 10 of 17

Table 3. Cont.

(a)

GO Category p-Value Genes miRNAs

enzyme binding 1.74 × 10−7 261 23
Fc-epsilon receptor signaling pathway 5.08 × 10−7 38 15

response to stress 1.46 × 10−6 437 25
toll-like receptor TLR1:TLR2 signaling pathway 2.79 × 10−6 21 10
toll-like receptor TLR6:TLR2 signaling pathway 2.79 × 10−6 21 10

toll-like receptor 10 signaling pathway 3.62 × 10−6 20 10
membrane organization 5.32 × 10−6 121 23

energy reserve metabolic process 8.12 × 10−6 30 13
TRIF-dependent toll-like receptor signaling pathway 1.46 × 10−5 21 10

protein complex assembly 1.95 × 10−5 158 23
MyD88-independent toll-like receptor signaling pathway 2.89 × 10−5 22 11

protein complex 3.71 × 10−5 708 24
toll-like receptor 5 signaling pathway 3.75 × 10−5 20 10
toll-like receptor 9 signaling pathway 4.84 × 10−5 21 10

Golgi lumen 5.79 × 10−5 26 11
O-glycan processing 7.15 × 10−5 18 12

immune system process 0.000127 309 25
mitotic cell cycle 0.00013 74 19

cytoskeletal protein binding 0.000137 155 22
generation of precursor metabolites and energy 0.000171 74 18

regulation of rhodopsin mediated signaling pathway 0.000201 12 10
toll-like receptor 4 signaling pathway 0.000201 26 11
inositol phosphate metabolic process 0.000219 17 9

nucleobase-containing compound catabolic process 0.000385 168 24
toll-like receptor 2 signaling pathway 0.000449 21 10

platelet degranulation 0.000563 20 15
glycosaminoglycan metabolic process 0.000573 26 13

platelet activation 0.000643 44 18

(b)

GO Category p-Value Genes miRNAs

organelle 1.67 × 10−95 2091 47
ion binding 3.27 × 10−55 1303 47

cellular nitrogen compound metabolic process 7.65 × 10−47 1010 46
biosynthetic process 1.19 × 10−35 866 46

gene expression 7.04 × 10−23 151 38
cellular protein modification process 1.18 × 10−22 507 46

small molecule metabolic process 7.20 × 10−18 488 45
nucleic acid binding transcription factor activity 1.08 × 10−12 227 43

molecular_function 2.35 × 10−11 3343 48
cellular_component 8.85 × 10−10 3375 48

cellular protein metabolic process 1.27 × 10−9 101 35
enzyme binding 1.33 × 10−9 272 43

protein binding transcription factor activity 5.19 × 10−9 114 37
cellular component assembly 9.08 × 10−9 268 42

viral process 1.39 × 10−8 98 31
blood coagulation 2.54 × 10−8 100 35

symbiosis, encompassing mutualism through parasitism 6.42 × 10−8 107 32
neurotrophin TRK receptor signaling pathway 9.66 × 10−8 56 28

catabolic process 9.95 × 10−8 371 44
cell death 3.44 × 10−7 195 40

protein complex 5.91 × 10−7 724 46
enzyme regulator activity 7.70 × 10−7 179 36

platelet activation 9.11 × 10−7 52 25
membrane organization 2.77 × 10−6 122 36

post-translational protein modification 3.62 × 10−6 40 23
Fc-gamma receptor signaling pathway involved in phagocytosis 4.22 × 10−6 22 13

cytoskeletal protein binding 1.60 × 10−5 160 37
nucleoplasm 1.79 × 10−5 233 43

cytosol 2.00 × 10−5 523 43
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Table 3. Cont.

(b)

GO Category p-Value Genes miRNAs

cell junction organization 2.35 × 10−5 42 24
nucleobase-containing compound catabolic process 3.39 × 10−5 174 41

transmembrane transporter activity 3.63 × 10−5 219 38
macromolecular complex assembly 3.63 × 10−5 172 39

toll-like receptor TLR1:TLR2 signaling pathway 5.04 × 10−5 19 15
toll-like receptor TLR6:TLR2 signaling pathway 5.04 × 10−5 19 15

TRIF-dependent toll-like receptor signaling pathway 5.32 × 10−5 20 16
toll-like receptor 10 signaling pathway 6.86 × 10−5 18 15
Fc-epsilon receptor signaling pathway 8.73 × 10−5 33 19

cellular component disassembly involved in execution phase of apoptosis 0.000104 15 11
vitamin metabolic process 0.000237 21 19

MyD88-independent toll-like receptor signaling pathway 0.000351 20 16
homeostatic process 0.000351 168 41

mitotic cell cycle 0.000368 72 34
protein complex assembly 0.000392 150 37

water-soluble vitamin metabolic process 0.000403 19 17
toll-like receptor 5 signaling pathway 0.000491 18 15

energy reserve metabolic process 0.000538 26 18
glycerophospholipid biosynthetic process 0.000692 23 14

activation of signaling protein activity involved in unfolded protein response 0.000692 18 16
transcription initiation from RNA polymerase II promoter 0.000793 52 25

toll-like receptor 9 signaling pathway 0.001896 18 15

3.7. Bioinformatics Mirna Target Prediction

Based on miRNA targets predicted from the in silico analysis, we can derive some functional
predictions of the differentially regulated miRNAs. We analyzed the potential targets of miRNAs that
are differentially expressed following vitamin C, with the criteria that the miRNAs must bind the
3′-UTR of the mRNA with its seed sequence. We used Targetscan.org and mirdb.org target prediction
tools to identify miRNA targets and their signaling pathways. We identified a number of miRNA
targets of musculoskeletal and stem cell differentiation related genes. The lists of miRNA targets are
shown in Table 4.

Table 4. Predicated targets of differentially regulated miRNAs of stem cell biology.

miRNA
No. of Targets Stem Cell Related Genes

MiRDB Scan Target Scan Common Targets

hsa-miR-3619-5p 788 5948 PPARGC1B, RUNX3, DLX3, TGFBRAP1, TNFAIP1, TRAF1, TRAF3,
TRAF5, TNFAIP8L1, MMP24, SOX8, QSOX2, WNT3

hsa-miR-548a-3p 947 6717 BMPR2, TGFBR3, TGFBR1, TAB2, TWISTNB, CDC42BPB, IL6R, TRAF6,
SMAD4, SMAD1, SMAD5, MMP2, WNT3

hsa-miR-3942-5p 437 3758 DLX1, BMPR2, BMP2K, TGFB2, IL6R, TNFRSF11A, TRAF3, SMAD1

hsa-miR-4741 253 4549 TAB2, SMURF1, SNIP1

hsa-miR-1825 253 4160 PPARD, RUNX2, TGFBRAP1, TGFBR1, CD40, SOX6

hsa-miR-1208 304 4651 TGFB2, TWISTNB, SMURF1, MMP16, LEPROT

4. Discussion

Adult bone marrow stromal cells are an important cell type in regenerative, cell-based
therapeutics [47]. Differentiation and regenerative capabilities of BMSCs can be enhanced by
manipulating the cellular micro-environment. One goal of regenerative medicine is to optimize the
regenerative potential of BMSCs through nutritional supplementation [4–15]. Vitamin C is one of the
most important players in cell proliferation, differentiation, extracellular matrix (ECM) synthesis and
cytoskeletal development [21–24]. We hypothesized that supplementation of vitamin C might regulate
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miRNA-dependent gene regulation. A number of reports have demonstrated that micronutrients such
as vitamin E, D and amino acid derivatives regulate miRNA-dependent gene expression in various
cell types [48–52]. Kim et al. (2015) recently demonstrated that dietary supplementation of a high dose
of vitamin C resulted in enhanced anti-senescence and anti-atherosclerotic effects via regulation of
anti-inflammatory microRNA [53]. Goa et al. (2014) reported that vitamin C induces a pluripotent
state in mouse embryonic stem cells by modulating microRNA expression [54]. Another investigator
also noted differential miRNA expression in vitamin C-deficient (L-gulonogammalactone oxidase
knockout) C57BL6 mice during follicular maturation [55].

To our knowledge, no study has investigated the effect(s) of vitamin C-dependent miRNA
regulation on human bone marrow stromal cells. Hence, identification of vitamin C-dependent
microRNA regulation is important for understanding the basic mechanisms underlying BMSC
differentiation and tissue engineering. We identified a list of miRNAs that were differentially expressed
following vitamin C treatment (100 µM dose). Principal component analysis (PCA) showed that control
samples are clustered together and clearly separated from vitamin C treatment groups. To further
verify our miRNA array data, we randomly selected five miRNAs and performed real time PCR for
further confirmation. Real-time PCR showed similar patterns of differential expression identical to
those seen with the miRNA Array data.

Vitamin C is an essential nutrient that is not synthesized by most mammals including
humans; therefore, the dietary supplementation of vitamin C is required for normal cell function.
One outstanding question regarding vitamin C supplementation is what doses promote the optimal
differentiation of human BMSCs. Our data demonstrate that a higher doses (100 µM) of vitamin C
effectively activate musculoskeletal-related genes in human BMSCs whereas lower doses (25 µM)
of vitamin C did not. Similar results were also noted for vitamin C-dependent miRNA regulation.
At lower doses of vitamin C, we did not find a significant change in miRNA expression comparable to
what we observed with the higher 100 µM dose. Our study suggested that dose of vitamin C (100 µM)
is important to achieve miRNA and gene expression changes in human BMSCs.

We correlated our miRNA data with published literature to gain additional insights into the
role(s) of these differentially regulated miRNAs in stem cell biology. Scientific literature suggests that
miRNAs differentially regulated by vitamin C have an important role in mouse and human stem cell
biology. Di Fiore et al (2014) reported that miR-29b-1 regulates cell proliferation, clonogenic growth,
and migration ability of osteosarcoma cells, through negative regulation of stemness markers (Oct3/4,
Sox2 and Nanog) [56]. Zhang et al. (2016) demonstrated that miR-589-5p inhibits MAP3K8 and
suppresses CD90+ cancer stem cells in hepatocellular carcinoma [57]. Both miR-29b-1 and miR-589-5p
are down-regulated in vitamin C- treated human BMSCs. There is a possibility that vitamin C treatment
down-regulates miR-29b-1 and miR-589-5p and promotes Oct3/4, Sox2, Nanog and SOX2 and MAP3K8
expression respectively in hBMSCs and helps in cell proliferation and differentiation. Moreover,
Quan et al. (2017) showed that human alveolar progenitor type II cell (ATIIC)-derived exosomal
miR-371b-5p promotes ATIIC-specific stem cells proliferation by targeting PTEN (phosphatase and
tensin homolog) [58]. Su et al. (2015) demonstrated that miR-181a inhibits differentiation of HL-60
cells and CD34+ hematopoietic stem/progenitor cells by directly targeting PRKCD-P38-C/EBPα
pathway [59] and Jones et al. (2015) reported that miR-215 target caudal-type homeobox 1 (CDX1) and
regulates colorectal cancer stem cell differentiation [60]. The above mentioned miRNAs (miR-371b-5p,
miR-181a and miR-215) were up-regulated with treatment of vitamin C to hBMSCs. We speculate
that these miRNAs target PTEN, PRKCD-P38-C/EBPα and CDX1, respectively, and promote cell
proliferation and differentiation of BMSCs. Figure 5 showing possible vitamin C dependent miRNAs
mediated signaling in bone marrow stromal cells based on published verified targets.
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Our miRNA array data identified a number of novel miRNAs; their functions are not
well-understood. In order to determine the potential role(s) of miRNAs involved in hBMSCs exposed
to vitamin C, we analyzed the predicted target genes of selected miRNAs. Bioinformatics analysis is an
important tool for identifying the predicted role of novel miRNAs. We focused on selected miRNAs:
miR-3619-5p, miR-548a-3p, miR-3942-5p, miR-4741, miR-1825, and miR-1208. After bioinformatics
analysis, we found that these miRNAs target a number of genes that are important for regulating
stem cell differentiation, particularly with regard to lineage commitment in musculoskeletal tissues
(See Table 4). MicroRNA gene regulation is a complex process. It is well known that a single miRNA
can target a number of genes, and a single gene is targeted by a number of miRNAs. We hypothesized
that vitamin C dependent hBMSC cell proliferation and differentiation is partly regulated by these
novel miRNAs.

To determine the biological function of miRNAs that are differentially expressed by vitamin C, KEGG
pathway annotation and GO analysis were performed to analyze their target gene pools. KEGG annotation
revealed that a number of signaling molecules are regulated by vitamin C treatment. Perhaps the most
important signaling molecules are cell adhesion molecules (CAMs), fatty acid biosynthesis/metabolism
and thyroid hormone signaling pathway molecules. These signaling molecules are regulated by
both down-regulated and up-regulated miRNAs. Previously, Pustylnik et al. (2013) demonstrated that
vitamin C induces the expression of cell adhesion molecules and stimulates the differentiation of
osteoblasts [61]. Furthermore, it has been previously reported that supplementation of vitamin C
improves the thyroid hormone level in hypothyroidism patients [62]. Dysregulation of thyroid hormone
is involved in various musculoskeletal pathologies such as osteoporosis [63,64]. Our KEGG signaling
analysis indicated that vitamin C might regulate miRNAs of thyroid hormone importance and may
participate in bone metabolism. Bayerle-Eder et al. (2004) reported that supplementation with vitamin
C improves lipid-induced impairment of endothelium-dependent vasodilation [65] and Ginter et al.
(1969) demonstrated that chronic vitamin C deficiency affects the fatty acid composition of blood serum,
liver triglyceride and cholesterol [66]. Fatty acids and their metabolites are important factors in stem
cell proliferation and differentiation [67,68]. Our study indicates that vitamin C-induced miRNAs
might have a substantial role in fatty acid-dependent signaling in BMSC cell biology. Moreover, the
GO analysis showed that vitamin C is involved in a number of cellular metabolic processes (such as
protein biosynthesis, cellular functions, enzyme biosynthesis, cell cycle) and signaling (such as TLR, TRK,
and MAPK signaling) (Table 3). These cellular metabolic processes and signaling are vital in BMSC
proliferation and differentiation.
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5. Conclusions

To our knowledge, our study is the first report to identify vitamin C-dependent differential
novel miRNA expression in hBMSCs. We also provide new data linking these miRNAs to key
signaling pathways involved in BMSC biology. We believe our study is a key step in gaining a greater
understanding of how vitamin C contributes to hBMSC biology through the miRNA signaling network.
Our study has some limitations. For example, we performed the study only on human bone marrow
derived stromal cells, and the vitamin C-dependent miRNA regulation in adipose-derived stem cells
could potentially differ somewhat from hBMSCs. Similar studies need to be performed on different
stem cells originating from other tissue types. Furthermore, we performed our study only at one-time
point (six-day) after treatment with vitamin C. It is important to know both the short and long term
effects of vitamin C on BMSCs. Future work by our group will focus on validating the predicted miRNA
targets and their role in vitamin C-dependent tissue engineering and musculoskeletal development.

Supplementary Materials: The following are available online at www.mdpi.com/2072-6643/10/2/186/s1, Figure
S1: Real-time PCR showing no significant changes in miRNA expression in low dose (25 µM) vitamin C treated
samples compared to control (a) miR-4708, (b) miR-29b, (c) miR-3152, and (d) miR-3942 (n = 4), Figure S2:
Wordle-based clouds for combine differentially (up and down-regulated) regulated miRNAs of vitamin C treated
samples (a) KEGG and (b) GO analysis. Word clouds demonstrating the font size depending on relative word
frequencies in KEGG and GO analysis, Table S1: Nucleotide sequences of human primers used for RT-PCR.
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