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Abstract: In phenylketonuria (PKU), synthetic protein derived from L-amino acids (AAs) is essential
in a low-phenylalanine (Phe) diet. Glycomacropeptide (GMP), an intact protein, is very low in Phe
in its native form. It has been modified and adapted for PKU to provide an alternative protein
source through supplementation with rate-limiting amino acids (GMP-AAs), although it still contains
residual Phe. This review aims to systematically evaluate published intervention studies on the use
of GMP-AAs in PKU by considering its impact on blood Phe control (primary aim) and changes
in tyrosine control, nutritional biomarkers, and patient acceptability or palatability (secondary
aims). Four electronic databases were searched for articles published from 2007 to June 2018. Of the
274 studies identified, only eight were included. Bias risk was assessed and a quality appraisal of the
body of evidence was completed. A meta-analysis was performed with two studies with adequate
comparable methodology which showed no differences between GMP-AAs and AAs for any of the
interventions analysed. This work underlines the scarcity and nature of studies with GMP-AAs
interventions. All were short-term with small sample sizes. There is a need for better-designed studies
to provide the best evidence-based recommendations.

Keywords: phenylketonuria; glycomacropeptide; amino acids; phenylalanine; metabolic control;
nutritional biomarkers; acceptability

1. Introduction

Phenylketonuria (PKU, OMIM # 261200) is the most common inborn error of amino acid
metabolism and is caused by a defect in phenylalanine (Phe) hydroxylase (PAH; EC 1.14.16.1) or
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in its cofactor, tetrahydrobiopterin (BH4). The resulting accumulation of Phe in blood and brain causes
irreversible neurological impairment [1].

The low-Phe diet introduced in the 1950s by Dr. Horst Bickel was a milestone that allowed
avoidance of severe complications for patients with PKU [2]. Untreated PKU may lead to irreversible
intellectual disability, microcephaly, motor deficits, eczematous rash, autism, seizures, developmental
problems, aberrant behaviour, and psychiatric symptoms [3]. Dietary treatment requires natural protein
and Phe restrictions, together with synthetic protein substitutes that provide most of the nitrogen
in the diet [4]. The availability of protein substitutes in Europe as well as the nutritional profile of
protein substitutes available in Portugal were previously reported. Differences in the availability across
European countries and nutritional inconsistencies were found [5].

Following Kure’s first description of the impact of BH4 in PKU in 1999 [6], pharmacological
treatment with sapropterin has allowed a relaxation of dietary restrictions in a subgroup of patients,
mainly those with mild or moderate PKU. This compound acts as a pharmaceutical chaperone [3],
but almost all patients require a low-Phe diet supplemented with a synthetic protein derived
from L-amino acids (AAs) [3]. PKU requires lifelong treatment in order to keep blood Phe control
within acceptable target ranges, but dietary adherence is challenging, especially in adolescence and
adulthood [7].

In the last decade, glycomacropeptide (GMP), a whey-based natural protein derived from the
cheese manufacturing process, has been introduced for PKU [8]. It contains only residual amounts of
Phe, tyrosine (Tyr), and tryptophan [9], and has many functional and physiological properties. It acts
as a prebiotic, and has anti-inflammatory and nutraceutical properties, creating an attractive peptide
for patients with inherited metabolic disorders as an alternative protein replacement for AAs [10].
GMP is an incomplete intact protein, but in PKU it is supplemented with any deficient amino acids
(GMP-AAs) to offer a more nutritionally complete product [11].

In a preclinical study, wild-type and PKU mice were fed diets consisting of 20% protein from
casein, AAs, or GMP-AAs. In this study, the GMP-AAs group showed similar growth and significantly
reduced concentrations of Phe in plasma and brain compared to those fed by conventional sources [12].
Another study sought to evaluate the effect of three diets (GMP-AAs, AAs, and casein) on plasma
amino acids, cytokines, fat and lean mass, and acute energy balance in PKU and wild-type mice.
The PKU mice had growth and lean mass similar to the wild-type mice fed GMP-AAs or AAs. However,
the GMP-AAs significantly reduced energy expenditure, food intake and plasma Phe concentrations in
PKU mice, whereas AAs and casein induced metabolic stress [13]. Neurotransmitter concentrations and
behavioural phenotype were found to be similar in PKU mice fed with either GMP-AAs or AAs [14].
In a further animal study, GMP-AAs showed prebiotic properties by positively modulating the gut
microbiota, increasing short-chain fatty acids, and reducing inflammatory markers [15]. A study by
Solverson et al. [16] reported potential long-term benefits for bone health using GMP-AAs.

Overall, the studies in PKU mice showed a positive influence of GMP-AAs. However, scientific
evidence from clinical studies that support the use of GMP-AAs as a major source of protein in PKU
patients is less robust. Doubts still persist regarding the potential effect on patients of the residual
Phe provided by GMP-AAs as well as how the nutritional biomarkers are influenced by GMP-AAs
intake [10,17–27].

The primary aim was to systematically review the existing literature relating to the influence of
residual Phe in GMP-AAs on blood Phe control. The secondary aims were to evaluate the impact on
blood Tyr metabolic control, changes in nutritional biomarkers, and the acceptability or palatability of
GMP products.
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2. Materials and Methods

2.1. Review Question

A systematic literature search was performed according to the Preferred Reporting Items for
Systematic Reviews and Meta-Analysis (PRISMA) guidelines [28]. The protocol is registered with
the “International prospective register of systematic reviews” (PROSPERO) with systematic review
number CRD42018098873.

Inclusion criteria included articles reporting observational or interventional studies. Articles
of preclinical studies (defined as not providing clinical outcome data) or abstracts were excluded.
Based on the Patients, Intervention, Comparator, Outcomes (PICO) approach, the patients/populations
under study included male and female subjects diagnosed with PKU, with ages ranging from infancy
to adulthood, under treatment with diet only or diet plus sapropterin, and who were willing to take
GMP-AAs or AAs as their primary nitrogen source or cheese made of GMP. Exclusion criteria for
patients/populations were pregnancy and no dietary treatment.

2.2. Search Strategy

Eligible literature published from 2007 to June 2018 was obtained from PubMed, CENTRAL
Cochrane Library, Scopus and Web of Science. Studies were sought with the following terms: PubMed
query—(“Phenylketonuria” [All fields] OR “Phenylketonuria” [MeSH TERM] OR “PKU” [All fields])
AND (“Glycomacropeptide” [All fields] OR “kappa-casein glycomacropeptide” [Supplementary
Concept] OR “caseinomacropeptide” [Supplementary Concept] OR GMP [All fields]); CENTRAL
Cochrane Library query—#1. “phenylketonuria”: ti,ab,kw, #2. MeSH descriptor: [Phenylketonurias]
explode all trees, #3. “PKU”, #4. #1 or #2 or #3, #5. “glycomacropeptide”, #6. #4 and #5; Scopus
query—(“Phenylketonuria” OR “PKU”) AND “Glycomacropeptide”; Web of Science query—#1.
TS = Phenylketonuria, #2. TS = PKU, #3. TS = Glycomacropeptide, #4. #1 OR #2, #5. #3 AND #4.

2.3. Study Selection

The first stage in the process was to review the titles and abstracts of the studies. These were
screened independently by two investigators (M.J.P. and A.P.) based on the inclusion and exclusion
criteria. Articles of overlapping participants were also screened and considered independent of the
“parent” study. A record number was assigned to each included study. Any disagreements were
overcome by consensus. When a research study was considered eligible, it was selected for full text
review. Of the 274 studies identified, eight were eligible for inclusion.

2.4. Data Extraction

Data was extracted by two independent investigators (M.J.P. and A.P.): author and year, country,
study design, length of intervention, sample size, patients’ characteristics, intervention features,
comparator features, and outcomes (blood Phe levels, blood Tyr levels, blood urea nitrogen (BUN),
glucose levels and acceptability/palatability). For all included studies, mean ± standard deviation (SD)
or standard error of mean (SEM) or median and interquartile range (IQR) were used for data extracted.

2.5. Quality Appraisal

The quality of all included studies was assessed using the Grading of Recommendations
Assessment, Development and Evaluation (GRADE) system [29]. The GRADE ranks as follows:
not serious, serious and very serious. The GRADE level of evidence was determined independently by
two authors (M.J.P. and L.A.), and consensus was achieved by discussion.
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2.6. Assessment of Risk of Bias

The Cochrane Collaboration’s domain-based evaluation tool as described in Chapter 8, Section 8.5,
in the Cochrane Handbook for Systematic Reviews of Interventions was used to assess risk of
bias of randomised clinical trials (RCTs) [30]. This tool comprises six domains: random sequence
generation (selection bias); allocation concealment (selection bias); blinding of participants and
personnel (performance bias); blinding of outcome assessment (detection bias); incomplete outcome
data (attrition bias), and selective reporting (reporting bias). Each RCT was rated as low risk, unclear
risk or high risk of bias.

The Risk of Bias in Non-Randomised Studies of Interventions (ROBINS-I) assessment tool
was used for non-randomised studies (observational studies). This tool includes seven specific bias
domains, pre-intervention and post-intervention [31]. The domains are: (1) confounding; (2) selection
of participants; (3) classification of intervention; (4) deviation from interventions; (5) missing outcome
data; (6) measurement of outcomes; and (7) selection of reported result overall. Risk of bias was rated
as 0—no information; 1—low risk; 2—moderate risk; 3—serious risk; and 4—critical risk.

Two authors independently assessed risk of bias (M.J.P. and L.A.) of the included articles.
Disagreements were managed by consensus.

2.7. Data Analysis

Meta-analysis was performed using Review Manager Version 5.3 (The Nordic Cochrane Centre,
The Cochrane Collaboration 2014, Portland, OR, USA).

Our primary question was about the effect of GMP intervention on altering blood Phe concentrations
in PKU. Due to absence of statistical information and assuming that randomisation was well conducted,
we compared the final values of blood Phe. The same approach was applied to the secondary outcomes
(blood Tyr, BUN, glucose). The secondary outcome acceptability/palatability was compiled in a table.

In two RCTs with sufficient methodological similarity [18,22], a meta-analysis was carried out.
The study of Ahring et al. [18] tested four drink mixtures (DMs 1–4), consisting of GMP or AAs or a
combination. For the purposes of analysis, we only considered DM3 and DM4. In the same study, the
values of BUN and glucose were available in mmol/L which were converted to mg/dL. In these two
studies, GMP-AAs provided 1.8 mg Phe/g of protein equivalent. A forest plot was generated and
calculated the mean difference (MD) as the effect measure. We combined the MD with the use of the
random-effects model. The degree of statistical heterogeneity between studies was assessed with the
use of the I2 statistic. We reported statistical heterogeneity as important if the I2 statistic was ≥40%,
according to the Cochrane guidelines. Significance was set at the level of P-value less than 0.05.

3. Results

3.1. Study Selection

Figure 1 describes the process of study selection according to PRISMA. The first literature search
identified 274 articles. Initial screening identified 12 papers for full text review. From this, 4 were
eliminated as they failed to meet the exclusion criteria. Eight studies were eligible for the systematic
review and meta-analysis was performed for only two studies.

3.2. Study Characteristics

Table 1 summarizes the main characteristics of all included articles. Only two studies were
considered RCTs with crossover according to the Consolidated Standards of Reporting Trials
(CONSORT) guidelines [32] and the remaining six studies were as follows: two crossover clinical
studies, two clinical studies, one retrospective study, and one cross-sectional study. Four studies were
conducted in the United States at the University of Wisconsin–Madison. The remaining four studies
were performed in the United Kingdom, Portugal, Denmark, and Egypt. Studies were published
between 2007 and 2018, with the vast majority published since 2010.
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Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) study flow
diagram describing process of study selection. Reviews or preclinical studies (defined as not providing
clinical outcome data) and abstracts were excluded. Full-text articles that provided no outcome of
interest were also excluded.

Table 1. Characteristics of studies included in the systematic review.

Author, Year (Ref.) Country Study Design Sample
Size (N)

Age
(Range)—Years Gender PKU Phenotype

Lim et al. 2007 [10] United States Cross-sectional study 49 12–42 N/A N/A
van Calcar et al.

2009 [17] United States Crossover clinical
study 11 23 ± 7 (11–31) 4 F; 7 M 10 classical;

1 variant form
MacLeod et al.

2010 [20] United States Crossover clinical
study 11 23 ± 7 (11–31) 4 F; 7 M 11 classical

Zaki et al. 2016 [21] Egypt Clinical study 10 6.73 [5.02; 11.79] 4 F; 6 M 10 classical

Ney et al. 2016 [22] United States Randomised
crossover clinical trial 30 15–49 18 F; 12 M 20 classical;

10 variant form
Daly et al. 2017 [23] United Kingdom Clinical study 22 11 (6–16) 9 F; 13 M N/A

Pinto et al. 2017 [24] Portugal Retrospective,
longitudinal study 11 27 ± 10 (13–42) 8 F; 3 M 6 classical;

4 mild; 1 HPA

Ahring et al. 2018 [18] Denmark Randomised
crossover clinical trial 8 1 33.25 ± 11.21

(15–48) 7 F; 1 M 8 classical

F: female; HPA: hyperphenylalaninemia; M: male; N/A: not available; PKU: phenylketonuria. Data are presented
as mean ± standard deviation or median [interquartile range]. 1 Initial sample size was of eight patients but only
six patients completed the study.

The total sample size of the included articles was 139 participants, since the participants of the
study of MacLeod et al. [20] were recruited from the “parent” study of van Calcar et al. [17]. The largest
trial conducted in patients with PKU taking GMP-AAs was the study by Ney et al. [22], with a total
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of 30 participants. The participants in most of the studies were adults, with the exception of the
articles from Zaki et al. [21] and Daly et al. [23], that recruited children with PKU. Regarding the PKU
phenotype, the predominant form was classical PKU.

3.3. Treatment and Outcome Measures

Table 2 illustrates the characteristics of treatment and outcome measures. The length of
intervention is quite variable across studies, ranging from eight days to twenty months. In the studies
of van Calcar et al. [17] and MacLeod et al. [20], subjects consumed the AAs diet or the GMP-AAs
diet for four days. In the work performed by Zaki et al. [21], the study was divided into two periods,
each lasting nine weeks each. In one of the periods, children were given 50% of their total protein
substitute as GMP made with cheese and the remaining 50% was given in the form of AAs. In the other
period, the total protein substitute was taken in the form of AAs. In the study of Ney et al. [22], subjects
consumed for three weeks each, in a random order, AAs or GMP-AAs, separated by a washout period
of three weeks with AAs. In the work of Daly et al. [23], 12 children received GMP-AAs (partially
or fully to replace AAs but individually titrated according to their blood Phe control) and 9 subjects
received AAs as their protein substitute. In the retrospective study conducted by Pinto et al. [24] with
11 subjects, GMP-AAs partially or fully substituted AAs. In the study performed by Ahring et al. [18],
subjects tested four DMs (1–4) in a random order at each visit (DM1 = GMP; DM2 = AAs (equivalent
amino acid profile to DM1); DM3 = GMP + AAs; DM4 = AAs (equivalent amino acid profile to DM3
but without Phe).

Table 2. Characteristics of treatment and outcome measures of the included studies.

Author, Year
(Ref.)

Length of
Intervention Intervention Comparator Primary

Outcome
Secondary
Outcomes

Lim et al.
2007 [10] N/A GMP-AAs AAs N/A Acceptability *

van Calcar et al.
2009 [17]

Two treatments for
four days each: AAs

(days 1–4) and
GMP-AAs (days 5–8)

Period I—0%
GMP-AAs; Period

II—100% GMP-AAs;
11 patients

Period I—100% AAs;
Period II—0% AAs;

11 patients
Blood Phe

Blood Tyr
BUN

Glucose
Acceptability *

MacLeod et al.
2010 [20]

Two treatments for
four days each: AAs

(days 1–4) and
GMP-AAs (days 5–8)

Period I—0%
GMP-AAs; Period

II—100% GMP-AAs;
11 patients

Period I—100% AAs;
Period II—0% AAs;

11 patients
Blood Phe Blood Tyr

Acceptability *

Zaki et al.
2016 [21] Eighteen weeks

Period I—50% GMP;
Period II—0% GMP;

10 patients

Period I—50% AAs;
Period II—100% AAs;

10 patients
Blood Phe Urea/BUN

Acceptability *

Ney et al.
2016 [22] Eleven weeks

Three weeks each of
GMP-AAs or AAs; 15
patients in each arm

Three weeks each of
GMP-AAs or AAs; 15
patients in each arm

Blood Phe

Blood Tyr
BUN

Glucose
Acceptability *

Daly et al.
2017 [23] Twenty-six weeks 12

patients—GMP-AAs 9 patients—AAs Blood Phe Blood Tyr
Acceptability *

Pinto et al.
2017 [24] Twenty months 11

patients—GMP-AAs 11 patients—AAs Blood Phe
Blood Tyr

Urea/BUN
Glucose

Ahring et al.
2018 [18]

Four visits, analysis
at five timepoints (0,
15, 30, 60, 120 and

240 min)

6 patients tested the
four DMs (DM1 =

GMP; DM3 =
GMP + AAs)

6 patients tested the four
DMs [DM2 = AAs

(equivalent amino acid
profile to DM1); DM4 =
AAs (equivalent amino
acid profile to DM3 but

without Phe)]

Blood Phe

Blood Tyr
BUN

Glucose
Acceptability *

AAs: synthetic protein derived from L-amino acids; BUN: blood urea nitrogen; DM: drink mixture; GMP:
glycomacropeptide; GMP-AA: glycomacropeptide supplemented with amino acids; N/A: not available; Phe:
phenylalanine; PKU: phenylketonuria; Tyr: tyrosine. * The results of acceptability are shown in Table 3.
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Table 3. Acceptability of GMP products versus AAs.

Author, Year
(Ref.) Method Number of

Items Evaluated Type of Items Evaluated Main Findings

Lim et al.
2007 [10] Five-point hedonic scale 1

Seven products
(five GMP-AAs
and two AAs)

GMP-AAs (strawberry pudding, strawberry fruit leather,
chocolate beverage, snack crackers, orange sports beverage)

and AAs (crackers, chocolate beverage)

Decreasing order of overall acceptability—strawberry pudding (4.2
± 0.9), snack cracker (3.6 ± 1.4), strawberry fruit leather (3.4 ± 1.0),
chocolate beverage (3.3 ± 1.0), orange sports beverage (3.3 ± 1.1),

AAs in crackers (2.9 ± 1.3), AAs in a chocolate beverage (2.5 ± 1.4)

van Calcar et al.
2009 [17] No methodology described

Six GMP-AAs
and subject’s

usual AAs

GMP-AAs (orange-flavoured sports beverage,
chocolate-flavoured or caramel-flavoured beverage,

chocolate or strawberry pudding, cinnamon crunch bar)
and subject’s usual AAs

After consuming the GMP-AAs diet for four days, 10 of 11 subjects
claimed that the GMP-AAs products were superior in sensory

qualities to their usual AAs. Moreover, at the end of the study, 6 of 7
adults expressed a strong preference to consume GMP-AAs products

rather than their usual AAs

MacLeod et al.
2010 [20]

Four questions,
motivation-to-eat VAS

questionnaires

Six GMP-AAs
and subject’s

usual AAs

GMP-AAs (orange-flavoured sports beverage,
chocolate-flavoured or caramel-flavoured beverage,

chocolate or strawberry pudding, cinnamon crunch bar)
and subject’s usual AAs

The motivation-to-eat VAS profiles were not significantly different at
any timepoint between the AAs (day 4) and GMP-AAs (day 8)

Zaki et al.
2016 [21] Questionnaire N/A N/A Throughout the study, all patients preferred the diet supplemented

with GMP over the classical AAs due to better taste and satiety

Ney et al.,
2016 [22]

Six-question survey and
six-point scale 2

Fifteen AAs and
N/A the exact

number of
GMP-AAs

N/A

AAs vs GMP-AAs
(1) 3.97 ± 0.24 vs 4.90 ± 0.18, P = 0.001
(2) 4.79 ± 0.22 vs 5.07 ± 0.16, P = 0.366
(3) 4.50 ± 0.25 vs 4.86 ± 0.19, P = 0.172
(4) 4.19 ± 0.18 vs 4.69 ± 0.16, P = 0.019
(5) 3.83 ± 0.26 vs 4.72 ± 0.27, P = 0.003
(6) 3.34 ± 0.31 vs 4.47 ± 0.23, P = 0.001

Daly et al.,
2017 [23]

Acceptability questionnaires
(taste, smell, texture,

mouthfeel and overall
acceptability)

N/A
In the GMP-AAs group, subjects took a berry flavoured

GMP-AAs powder (35 g sachet = 20 g protein equivalent)
which subjects prepared with water or low-protein milk

All of the subjects in the GMP-AAs group described the protein
substitute as acceptable, with improved taste, mouth feel, texture,

and smell compared to their conventional AAs

Pinto et al.,
2017 [24] N/A N/A N/A N/A

Ahring et al.,
2018 [18] Two questions—VAS 3 Four DMs

DM1 = GMP; DM2 = AAs (equivalent amino acid profile as
DM1); DM3 = GMP + AAs (0.16 g Phe/100 g amino acids

present in GMP); DM4 = AAs (equivalent amino acid profile
as DM3 but without Phe)

1) DM1: 36 ± 18, DM2: 41 ± 16, DM3: 28 ± 27, DM4: 35 ± 30); 2)
DM1: 34 ± 31, DM2: 44 ± 22, DM3: 36 ± 28, DM4: 26 ± 22); all
comparisons (DM1 and DM2, DM3 and DM4, DM3 to DM1 and

DM2, respectively) were statistically insignificant

AAs: synthetic protein derived from L-amino acids; DM: drink mixture; GMP: glycomacropeptide; GMP-AAs: glycomacropeptide supplemented with amino acids; N/A: not available;
VAS: visual analogue scale. Data are presented as mean ± standard deviation or mean ± SEs (in the case of Ney et al., 2016). 1 Five sensory categories—appearance, odour, taste, texture
and overall acceptability (1 = dislike very much; 2 = dislike; 3 = neither like nor dislike; 4 = like; 5 = like very much). 2 Six questions: (1) How much do you like your AAs/GMP-AAs?;
(2) How easy is it to prepare your AAs/GMP-AAs?; (3) How willing are you to take AAs/GMP-AAs three times a day?; (4) How easy is it to stay on your phenylketonuria diet when you
are using AAs/GMP-AAs?; (5) How comfortable are you eating AAs/GMP-AAs in social situations?; (6) Overall, how convenient is it to take and consume AAs/GMP-AAs away from
home? (1 = dislike extremely; 2 = dislike; 3 = somewhat dislike; 4 = somewhat like; 5 = like; 6 = like extremely). 3 Two questions: (1) How satisfied are you? and (2) How does the DM taste?
This was presented to patients as a horizontal line, ranking from 0 = very hungry to 100 = very satisfied and from 0 = bad taste to 100 = good taste.
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Considering the outcome measures, only the study by Lim et al. [10] evaluated acceptability.
The remaining studies used blood Phe as a primary outcome measure. Blood Tyr was measured in all
studies, with exception of the studies of Lim et al. [10] and Zaki et al. [21]. BUN was measured in the
studies of van Calcar et al. [17], Ney et al. [22], and Ahring et al. [18]. In the studies of Zaki et al. [21]
and Pinto et al. [24], only the values of urea were available. Glucose was measured in the studies of
van Calcar et al. [17], Ney et al. [22], Pinto et al. [24], and Ahring et al. [18]. Acceptability was assessed
by all apart from Pinto et al. [24].

3.4. Acceptability/Palatability of GMP Products

Acceptability is a hedonic response affected by the organoleptic properties of products, among
others. Measuring acceptability is both subjective and complex, with many different methodologies
available. Acceptability of GMP products was determined based on different methodologies as
illustrated in Table 3. The included studies showed that GMP products were well accepted by patients.
There is evidence suggesting that GMP products based on natural protein source are more palatable
than protein substitutes based on mono amino acids. However, it is important to highlight the lack of
uniformity in the methods used to evaluate this parameter. The presentation form of the products was
also variable, some studies used solid food whereas other studies used only drinks.

3.5. Quality Appraisal

Using the GRADE system, inconsistency and imprecision were the most common reasons for
downgrading (Table 4).

Table 4. Quality of all included studies according to Grading of Recommendations Assessment,
Development and Evaluation (GRADE) system.

Outcomes Number
of Studies Study Design Risk of Bias Inconsistency Indirectness Imprecision

Blood Phe
2 Randomised trials Not serious Serious Not serious Very serious
5 Observational studies Not serious Serious Not serious Very serious

Blood Tyr 2 Randomised trials Not serious Serious Not serious Very serious
4 Observational studies Not serious Serious Not serious Very serious

BUN
2 Randomised trials Not serious Serious Not serious Very serious
3 Observational studies Not serious Serious Not serious Very serious

Glucose
2 Randomised trials Not serious Serious Not serious Very serious
4 Observational studies Not serious Serious Not serious Very serious

Acceptability 2 Randomised trials Not serious Serious Not serious Very serious
5 Observational studies Not serious Serious Not serious Very serious

BUN: blood urea nitrogen; Phe: phenylalanine; Tyr: tyrosine. The GRADE ranks as follows: not serious, serious,
and very serious.

3.6. Assessment of Risk of Bias

Risk of bias for RCTs was evaluated according to the Cochrane guidelines (Figures 2 and 3).
Only two out of eight studies were considered RCTs. For the domain random sequence generation
(selection of bias), 1/2 rated as unclear and 1/2 rated as low; for the domain allocation concealment
(selection bias), 2/2 rated as high; for the domain blinding of participants and personnel (performance
bias), 1/2 rated as low and 1/2 rated as high; for the domain blinding of outcome assessment (detection
bias), 2/2 rated as unclear; for the domain incomplete outcome data (attrition bias), 1/2 rated as unclear
and 1/2 rated as low; for the domain selective reporting (reporting bias), 2/2 rated as low.
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Risk of bias for observational studies was evaluated using ROBINS-I tool (Table 5). In domains
1 and 2, 5/5 were rated as serious; in domains 3, 4 and 5, 5/5 rated as low; in domains 6 and 7,
4/5 were rated as low and 1/5 rated as serious; and overall, 5 of 5 were rated as moderate risk of bias.
All studies provided sound evidence for non-randomised studies but cannot be considered comparable
to well-performed randomised trials.

Table 5. Risk of bias in non-randomised studies according to the Risk of Bias in Non-Randomised
Studies of Interventions (ROBINS-I) tool.

Author, year (Ref.) Domain
1

Domain
2

Domain
3

Domain
4

Domain
5

Domain
6

Domain
7 Overall

Lim et al. 2007 * [10] N/A N/A N/A N/A N/A N/A N/A N/A
van Calcar et al. 2009 [17] 3 3 1 1 1 1 1 2—Moderate
MacLeod et al. 2010 [20] 3 3 1 1 1 1 1 2—Moderate

Zaki et al. 2016 [21] 3 3 1 1 1 3 3 2—Moderate
Daly et al. 2017 [23] 3 3 1 1 1 1 1 2—Moderate
Pinto et al. 2017 [24] 3 3 1 1 1 1 1 2—Moderate

N/A. not applicable; Domain 1: confounding; Domain 2: selection of participants; Domain 3: classification of
intervention; Domain 4: deviation from interventions; Domain 5: missing outcome data; Domain 6: measurement of
outcomes; Domain 7: selection of reported result; Overall. Risk of bias assessment: 0—No information; 1—Low;
2—Moderate; 3—Serious; 4—Critical. * Non-comparative study only acceptability of GMP products is evaluated,
therefore this tool is not applicable in this case.
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3.7. Meta-Analysis

Focusing on the primary outcome (blood Phe levels), the meta-analysis showed no significant
differences between GMP-AAs and AAs (MD = 123.36 µmol/L (−35.18, 281.89); I2 = 0%; P = 0.13;
two studies; N = 72 participants; Figure 4), although a tendency to lower Phe concentrations in patients
treated with AAs was observed.
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Figure 4. Forest plot of studies with data on the effect of glycomacropeptide interventions on blood
phenylalanine levels. The analysis included data from two studies with a total of 72 participants. AAs:
synthetic protein derived from L-amino acids; CI: confidence interval; df: degrees of freedom; GMP-AAs:
glycomacropeptide supplemented with amino acids; IV: intravitreal; SD: standard deviation.

The overall treatment effect on blood Tyr levels was not statistically significant (MD = −3.91 µmol/L
(−8.12, 0.31); I2 = 0%; P = 0.07; two studies; N = 72 participants; Figure 5) and patients treated with
AAs tended to have higher levels of Tyr.Nutrients 2018, 10, x FOR PEER REVIEW  12 of 17 
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Figure 5. Forest plot of studies with data on glycomacropeptide interventions on blood tyrosine
levels. The analysis included data from two studies with a total of 72 participants.AAs: synthetic
protein derived from L-amino acids; CI: confidence interval; df: degrees of freedom; GMP-AAs:
glycomacropeptide supplemented with amino acids; IV: intravitreal; SD: standard deviation.

The meta-analysis for BUN reported no significant differences between GMP-AAs and AAs
(MD = −0.22 mg/dL (−1.49, 1.04); I2 = 0%; P = 0.73; two studies; N = 72 participants; Figure 6); nor did
the meta-analysis for glucose levels (MD = −1.33 mg/dL (−7.51, 4.85); I2 = 57%; P = 0.67; two studies;
N = 72 participants; Figure 7).

When analysing BUN, the value of SD of DM4 was imputed since no value was reported. It was
calculated from the arithmetic mean of SD of DM2 from baseline and final and DM4 from baseline.

The studies included in this meta-analysis were quite consistent in all outcomes as a result of I2

values, a measure of heterogeneity. Nevertheless, the length of study was different between studies,
and in the study of Ahring et al. [18], patients had high blood Phe levels at the start of the study and
this aspect could have masked the results.
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Figure 6. Forest plot of studies with data on the effect of glycomacropeptide interventions on blood urea
nitrogen. The analysis included data from two studies with a total of 72 participants.AAs: synthetic
protein derived from L-amino acids; CI: confidence interval; df: degrees of freedom; GMP-AAs:
glycomacropeptide supplemented with amino acids; IV: intravitreal; SD: standard deviation.
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Figure 7. Forest plot of studies with data on the effect of glycomacropeptide interventions on glucose
levels. The analysis included data from two studies with a total of 72 participants. AAs: synthetic
protein derived from L-amino acids; CI: confidence interval; df: degrees of freedom; GMP-AAs:
glycomacropeptide supplemented with amino acids; IV: intravitreal; SD: standard deviation.

4. Discussion

This is the first systematic review and meta-analysis addressing the use of GMP in the nutritional
management of PKU. This study was designed with the aim of reviewing the current literature on the
use of GMP in PKU and the effect of residual Phe in GMP on blood Phe control, biochemical status,
and palatability.

Overall, pooled results based on two RCTs reported no significant effect for all outcome measures.
For blood Phe control, in the adult studies, meta-analysis showed a tendency in favour of AAs despite
no clinical significance. AAs have no added Phe and the effect of the extra Phe provided by the
GMP-AAs may have been masked as adult subjects started with higher baseline blood Phe [18].
Children maintain lower blood Phe target concentrations so may have less tolerance with additional
Phe sources. In addition, fever and recurrent infections are more likely to impact on blood Phe control
in children [33]. It is well known that administration of AAs during any acute phases suppresses
Phe levels, improving metabolic control [3]. So far, it remains undocumented if GMP-AAs intake
can suppress the rise in Phe levels in a similar way to AAs, as little is known about the kinetics
of GMP-AAs in PKU. Additionally, the impact of GMP-AAs on glucose metabolism and anabolic
pathways remains to be studied, and ultimately an influence on Phe levels cannot be dismissed.
The studies by Zaki et al. [21] and Daly et al. [23], investigated the effect on blood Phe control using two
different formulations of GMP in 10 and 22 children with PKU, respectively. The different interventions
in these two studies prevented subgroup analysis, which would have enabled a better understanding
of the impact of GMP in the paediatric population versus adulthood. So far, the research about the
effects of GMP in children is still insufficient to advocate its use as a safe alternative to the traditional
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treatment. A systematic review with three trials evaluating the use of protein substitutes in PKU
concluded that the current evidence is scarce and until robust evidence from RCTs is obtained, the use
of all protein substitutes should be monitored carefully [34]. Nevertheless, the clinical use of AAs for
several decades counterweighs the scarcity of scientific evidence emerging from RCTs [3].

When we performed meta-analysis on the effect of GMP-AAs versus AAs on blood Tyr levels,
patients treated with AAs tended to have higher levels of Tyr. Tyr is considered a conditionally essential
amino acid in PKU since it is produced from Phe and without treatment with a Tyr-supplemented
protein substitute, Tyr deficiency is seen. The study of Ney et al. [22] reported that despite significantly
higher intakes of Tyr in patients consuming a low-Phe diet in combination with AAs when compared
to GMP-AAs, fasting plasma levels of Tyr were not statistically different. Moreover, the study of
Pinto et al. [24] showed an increase in blood Tyr (even when dietary Tyr intake was lower) when
patients consumed GMP-AAs.

A study performed in PKU mice showed that GMP-AAs acted as a prebiotic [15], shaping the gut
microbiota. The GMP-AAs effects on gut microbiota may influence Tyr bioavailability [26]. Tyr is one
of the amino acids with the lowest solubility [35], which can interfere with gut absorption [26].

For BUN and glucose levels, no conclusions can be reached. Subjects in the studies had similar
protein intakes, irrespective of taking GMP-AAs or AAs. BUN is an indicator of the relationship
between nutritional status and protein metabolism of patients [36]. In the study by van Calcar et al. [17],
performed with 11 subjects, BUN was significantly lower and plasma insulin was higher when
measured 2.5 h after eating a breakfast containing GMP-AAs. Glycaemia is known to be influenced by
amino acid intake [37].

A further objective was to evaluate the acceptability/palatability of GMP products. Despite
the different approaches used to measure acceptability in the included studies [10,17,18,20–23],
GMP products were well accepted by patients. A very recent study from Proserpio et al. [38] published
after our literature selection sought to explore the liking of low-Phe products (GMP products versus
AAs) as well as to obtain a sensory description of them using the check-all-that-apply (CATA) method
in 86 subjects with PKU in an ambulatory setting. The CATA questionnaire is a rapid sensory profiling
approach to characterize foods based on sensory attributes. This is the first evidence of the sensory
properties of GMP products in PKU subjects. The study included eight samples: four GMP products
and four AAs flavoured with neutral, chocolate, strawberry, and tomato aromas. GMP products
flavoured with chocolate and strawberry aromas were the most appreciated. The CATA method
appears as a suitable method to fine-tune organoleptic properties to help improve dietary adherence.
Nevertheless, this study does not provide data about the long-term acceptance of GMP products with
patients and whilst the palatability of protein substitutes is important it is essential to assess the impact
on metabolic control of any formulation that provides a source of Phe in all age groups and categories
of patients with PKU.

This systematic review has several strengths and limitations. The main strength is that it provides
a compilation of the available evidence of GMP interventions and gives an overview of the current
status. This will help in PKU guideline production. This study unveils the main flaws in the design of
GMP interventions. First, among the eight studies included in this work, only two were RCTs, studies
at the top of the hierarchy of evidence. Although high-quality observational studies can also produce
comparable responses, well-conducted RCTs are still the gold-standard of evidence [39]. Secondly,
all studies consisted of small sample sizes but in the context of PKU this cannot be undervalued due to
the rarity of the disorder. Moreover, the RCT studies were short-term, and the adults did not have
good metabolic control at baseline and had variable phenotypic presentations.

The present systematic review and meta-analysis raises important aspects in the scope of PKU
research. It would be ideal to create a group with PKU experts to develop standards in planning and
designing better-quality studies for protein substitute research. However, it should be acknowledged
that RCTs on protein substitutes are difficult to conduct due to food neophobia and poor acceptability
of protein substitutes.
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5. Conclusions

The two studies that qualified for comparable investigation failed to show any reduction in
plasma Phe, despite GMP-AAs providing 1.8 mg Phe/g of protein equivalent. This might be explained
by the small number of available studies, small sample sizes, and short lengths of study. Considering
that PKU is a chronic disease and requires lifelong treatment, further long-term research is warranted
to understand in depth the safety and health benefits of GMP in the context of PKU. In the interim,
the use of GMP in children should be carefully managed.
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31. Sterne, J.A.; Hernán, M.A.; Reeves, B.C.; Savović, J.; Berkman, N.D.; Viswanathan, M.; Henry, D.; Altman, D.G.;
Ansari, M.T.; Boutron, I.; et al. ROBINS-I: A tool for assessing risk of bias in non-randomised studies of
interventions. BMJ 2016, 355, 4–10. [CrossRef] [PubMed]

32. Moher, D.; Hopewell, S.; Schulz, K.F.; Montori, V.; Gøtzsche, P.C.; Devereaux, P.J.; Elbourne, D.; Egger, M.;
Altman, D.G. CONSORT 2010 explanation and elaboration: Updated guidelines for reporting parallel group
randomised trials. Int. J. Surg. 2012, 10, 28–55. [CrossRef] [PubMed]

33. Cleary, M.; Trefz, F.; Muntau, A.C.; Feillet, F.; van Spronsen, F.J.; Burlina, A.; Bélanger-Quintana, A.;
Gizewska, M.; Gasteyger, C.; Bettiol, E.; et al. Fluctuations in phenylalanine concentrations in phenylketonuria:
A review of possible relationships with outcomes. Mol. Genet. MeTable 2013, 110, 418–423. [CrossRef]
[PubMed]

34. Yi, S.H.; Singh, R.H. Protein substitute for children and adults with phenylketonuria. Cochrane Database
Syst. Rev. 2015, 2015. [CrossRef] [PubMed]

35. Singh, R.H.; Rohr, F.; Frazier, D.; Cunningham, A.; Mofidi, S.; Ogata, B.; Splett, P.L.; Moseley, K.;
Huntington, K.; Acosta, P.B.; et al. Recommendations for the nutrition management of phenylalanine
hydroxylase deficiency. Genet. Med. 2014, 16, 121–131. [CrossRef] [PubMed]

36. Arihan, O.; Wernly, B.; Lichtenauer, M.; Franz, M.; Kabisch, B.; Muessig, J.; Masyuk, M.; Lauten, A.;
Schulze, P.C.; Hoppe, U.C.; et al. Blood Urea Nitrogen (BUN) is independently associated with mortality in
critically ill patients admitted to ICU. PLoS ONE 2018, 13, e0191697. [CrossRef] [PubMed]

37. Pena, M.J.; Rocha, J.C.; Borges, N. Amino acids, glucose metabolism and clinical relevance for phenylketonuria
management. Ann. Nutr. Disord. Ther. 2015, 2, 1026.

38. Proserpio, C.; Pagliarini, E.; Zuvadelli, J.; Paci, S.; Re Dionigi, A.; Banderali, G.; Cattaneo, C.; Verduci, E.
Exploring drivers of liking of low-phenylalanine products in subjects with phenyilketonuria using
check-all-that-apply method. Nutrients 2018, 10. [CrossRef] [PubMed]

39. Barton, S. Which clinical studies provide the best evidence? The best RCT still trumps the best observational
study. BMJ 2000, 321, 255–256. [CrossRef] [PubMed]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1155/2017/6859820
http://www.ncbi.nlm.nih.gov/pubmed/29464117
http://dx.doi.org/10.1371/journal.pmed.1000097
http://www.ncbi.nlm.nih.gov/pubmed/19621072
http://dx.doi.org/10.1016/j.jclinepi.2010.04.026
http://www.ncbi.nlm.nih.gov/pubmed/21195583
http://dx.doi.org/10.1002/9780470712184.ch5
http://dx.doi.org/10.1136/bmj.i4919
http://www.ncbi.nlm.nih.gov/pubmed/27733354
http://dx.doi.org/10.1016/j.ijsu.2011.10.001
http://www.ncbi.nlm.nih.gov/pubmed/22036893
http://dx.doi.org/10.1016/j.ymgme.2013.09.001
http://www.ncbi.nlm.nih.gov/pubmed/24090706
http://dx.doi.org/10.1002/14651858.CD004731.pub4
http://www.ncbi.nlm.nih.gov/pubmed/25723866
http://dx.doi.org/10.1038/gim.2013.179
http://www.ncbi.nlm.nih.gov/pubmed/24385075
http://dx.doi.org/10.1371/journal.pone.0191697
http://www.ncbi.nlm.nih.gov/pubmed/29370259
http://dx.doi.org/10.3390/nu10091179
http://www.ncbi.nlm.nih.gov/pubmed/30154357
http://dx.doi.org/10.1136/bmj.321.7256.255
http://www.ncbi.nlm.nih.gov/pubmed/10915111
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Review Question 
	Search Strategy 
	Study Selection 
	Data Extraction 
	Quality Appraisal 
	Assessment of Risk of Bias 
	Data Analysis 

	Results 
	Study Selection 
	Study Characteristics 
	Treatment and Outcome Measures 
	Acceptability/Palatability of GMP Products 
	Quality Appraisal 
	Assessment of Risk of Bias 
	Meta-Analysis 

	Discussion 
	Conclusions 
	References

