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Abstract: Anaerobic power and anaerobic capacity significantly influence performance in many
sport disciplines. These include prolonged sprints in athletics, swimming, or cycling, and other
high intensity intermittent sports, such as soccer or basketball. Considering the association of
exercise-induced acidosis and fatigue, the ingestion of potential buffering agents such as sodium
bicarbonate, has been suggested to attenuate metabolic acidosis and improve anaerobic performance.
Since elite soccer players cover from 200 to 350 m while sprinting, performing 40–60 all out sprints
during a game, it seems that repeated sprint ability in soccer players is among the key components of
success. In our experiment, we evaluated the effectiveness of chronic supplementation with sodium
and potassium bicarbonate, fortified with minerals, on speed and speed endurance in elite soccer
players. Twenty-six soccer players participated in the study. The subjects were randomly divided into
two groups. The experimental group was supplemented with sodium bi-carbonate and potassium
di-carbonate fortified with minerals, while the control group received a placebo. The athletes were
tested at baseline and after nine days of supplementation. Anaerobic performance was evaluated by
the Repeated Anaerobic Sprint Test (RAST) protocol which involved 6 × 30 m max sprints, separated
by 10 s of active recovery. Resting, post ingestion and post exercise concentrations of HCO3

− and
blood pH were measured as well as lactate concentration. The current investigation demonstrated
a significant increase in RAST performance of elite soccer players supplemented with sodium and
potassium bicarbonate along with calcium phosphate, potassium citrate, and magnesium citrate
ingested twice a day over a nine-day training period. The improvements in anaerobic performance
were caused by increased resting blood pH and bicarbonate levels.

Keywords: supplementation; buffering; speed endurance; team sport athletes

1. Introduction

There are numerous sport disciplines in which performance depends to a large extent on anaerobic
capacity. These include either single supramaximal efforts, such as prolonged sprints in athletics
(200–400 m), swimming (100–200 m), cycling (1000 m) or speed skating (1000–1500 m). On the other
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hand, many sports are characterized by high intensity intermittent exercise. These include team sports,
in which repeated sprint ability is significant for performance or combat sports, where repeated bouts
of power are indispensable for success. Both types of exercise may cause disturbances in acid–base
balance and fatigue of skeletal muscle. The factors determining fatigue are complex and include both
central and peripheral components [1,2]. The decline in performance during exercise that is attributed
to the CNS, which integrates input from various body parts, is known as central fatigue. Peripheral
components of fatigue include the excessive accumulation of metabolites, of which hydrogen ions
(H), potassium (K), and phosphate ions (Pi), as well as the depletion of energy substrates seem to
be of greatest significance [3,4]. Single all out efforts lasting approximately 40–60 s cause substantial
muscle (6.0–6.4) and blood (6.9–7.0) decreases of pH and lactate concentrations of 22–26 mmol/L and
a significant inhibition of glycolytic flux [5]. During team sport games, which may last from 40 min
(basketball) to 120 min in an overtime soccer game, decreased repeated sprint ability is primarily
attributed to the depletion of muscle glycogen, as the acid–base disturbances are less evidenced, and
post exercise lactate concentrations significantly lower [6,7].

Considering the association of exercise-induced acidosis and fatigue, the ingestion of potential
buffering agents such as sodium bicarbonate, sodium citrate or potassium bicarbonate has been
suggested to attenuate metabolic acidosis and improve anaerobic performance [8–10]. Some authors
have also suggested chronic using highly alkalized water during periods of intense training and
competition to improve hydration and to increase the rate of lactate utilization following anaerobic
exercise [11,12].

The ergogenic effects of buffering agents such as sodium bicarbonate have been explored for many
decades now. Most empirical data support the benefits of sodium bicarbonate or related substances
on exercise performance of different type, duration and intensity [2,13–15], however there are reports
suggesting no ergogenic effects of buffering supplements as well [16–18]. It has been suggested that
the discrepancies in results of empirical research with buffering agents are related to: selection of
subjects; exercise protocols, especially the intensity, mode and duration of exercise; dosage and timing
of supplement ingestion; and the chemical composition of the buffering supplements. As mentioned
above, trained and untrained subjects have been included in research [19–22]; exercise protocols have
included single bouts of supramaximal effort [23], intermittent high intensity exercise [24] and skilled
based protocols [25,26]. The dosage has usually ranged within 0.3–0.4 g kg−1/BM and ingestion
time before performance has varied from 60 to 120 min, in single or split doses [20,27–31]. Most
studies have used sodium bicarbonate as the only buffering agent in their supplement [28,32,33],
while others have tested the combined effects of carbohydrates and sodium bicarbonate [19], creatine
and sodium bicarbonate [34], β-alanine and sodium bicarbonate [35,36], and caffeine and sodium
bicarbonate [37] on different, sport specific or general exercise modalities. Recently, there are attempts
to combine glucose and/or electrolytes with sodium or potassium bicarbonate to increase buffering
capacity [7,11]. The majority of authors tested the acute effects of buffering substances on exercise
performance [13,38,39], while recently chronic effects of sodium bicarbonate and other buffering agents
have also been evaluated with regards to anaerobic performance [15,22]. Considering team sport games,
repeated sprint ability test protocols have confirmed positive effects of buffering supplements [11,38],
while empirical research with sport specific simulations, including football, soccer, rugby and water
polo, have not confirmed ergogenic benefits of sodium bicarbonate [20,40,41].

Soccer is the most popular sport in the world. It is a team sport that involves speed, acceleration,
changes of direction as well as numerous technical and tactical activities that require concentration and
precision [42]. At the elite level, soccer players perform from 1300 to 1400 different motor activities
during a 90 min game. Most specific and general motor activities are executed and repeated at high
intensity, causing significant disturbances in acid–base equilibrium and gradual fatigue. A soccer game
played at the elite level can elicit up to 85–90% of maximal heart rate, while blood lactate concentrations
can reach 7–8 mmol/L at half time and decrease to 5–6 mmol/L after the game, because of glycogen
depletion [42]. Depending on the position on the field, players cover from 10,500 to 12,000 m while
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walking, jogging, running backwards, striding and sprinting [43]. During a game, elite soccer players
cover from 200 to 350 m while sprinting, performing 40–60 all out sprints at distances ranging from
5–8 m up to 25–33 m. Considering the above, it seems that repeated sprint abilities in soccer are among
the key components determining success.

This study evaluated the effectiveness of chronic supplementation with sodium and potassium
bicarbonate, fortified with potassium, magnesium and calcium citrate and phosphate on speed and
repeated sprint ability in elite soccer players.

2. Materials and Methods

2.1. Subjects

Twenty-six well-trained soccer players, who compete at the elite polish league, participated in
the study. The experiment took place during an 11-day camp in Spain, thus training, living and
feeding conditions were identical for all participants. The athletes constituted a homogenous group
in regards to age, somatic characteristics, as well as aerobic and anaerobic performance (Table 1).
The subjects (n = 26) were randomly divided into two groups: the experimental group (EG; n = 13),
which received a complex of independent supplements (sodium bi-carbonate, potassium di-carbonate,
calcium phosphate, potassium citrate, magnesium citrate, and calcium citrate (Table 2)), and the control
group (CG; n = 13), which received a placebo. All subjects had valid medical examinations and showed
no contraindications to participate in the study. Subjects were informed verbally and in writing of the
experimental protocol, and the possibility to withdraw at any stage of the experiment, and gave their
written consent for participation. The study was approved by the Research Ethics Committee at the
Academy of Physical Education in Katowice, Poland.

Table 1. Statistically significant differences between the experimental and control groups at baseline
and after bi-carbonate and mineral supplementation at rest and after exercise.

Variables d p F

LA_post-exercise 0.884 0.0001 802.6
pH_rest 0.780 0.0001 795.5

HCO3
− rest 0.989 0.0001 1766.9

Note: d, effect size; p, statistical significance; F, value of analysis of variance function; Effect size r: r ≥ 0.5 is large
effect, r < 0.5 and ≥0.3 is moderate effect, r < 0.3 and ≥0.1 is small effect.

Table 2. Statistically significant differences between baseline and post-intervention period at rest, post
ingestion, and after exercise for the experimental group.

Variables d p F

6 × 30 m 0.984 0.00001 4812.9
LA post-exercise 0.960 0.00001 4653.1

pH post-ingestion 0.689 0.00011 587.7
HCO3

− post-ingestion 0.872 0.00001 3541.9
HCO3

− post exercise 0.798 0.00001 2862.9
Mg2+ rest 0.589 0.00012 171.8

Note: d, effect size; p, statistical significance; F, value of analysis of variance function; Effect size r: r ≥ 0.5 is large
effect, r < 0.5 and ≥0.3 is moderate effect, r < 0.3 and ≥0.1 is small effect.

2.2. Diet and Supplemental Protocol

Energy as well as macro- and micronutrient intake of all subjects were determined by 24 h
nutrition recall 3 weeks before the study was initiated. The participants were placed on an isocaloric
(3455 ± 436 kcal/day) mixed diet (55% carbohydrates, 20% protein, 25% fat) prior to and during the
investigation. The pre-trial meals were standardized for energy intake (600 kcal) and consisted of
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carbohydrate (70%), fat (20%) and protein (10%). The participants did not take any medications and
substances not prescribed by the supplementation protocol for 3 weeks before and during the study.

The players from the experimental group ingested a single dose of 3000 mg sodium di-carbonate,
3000 mg potassium di-carbonate (6 caps containing 500 mg each), 1000 mg (600 mg + 400 mg) calcium
phosphate and calcium citrate, 1000 mg potassium citrate, and 1000 mg magnesium citrate twice a
day, 90 min before each practice session. The control group ingested identical capsules containing
cornstarch. Supplements were taken with plenty of water (600 mL). The supplementation protocol
included an additional dose of di-carbonates and minerals, 90 min before the exercise test protocol and
the day before the test. The dose of di-carbonate was chosen according to the literature data, where
amounts ranging from 5 to 9 g·day−1 are suggested. Such doses have shown significant improvements
in buffering capacity with no gastrointestinal distress.

2.3. Study Protocol

The experiment lasted 11 days, during which two series of laboratory analyses were performed.
The tests were carried out at baseline and after 9 days of supplementation. The study was conducted
during the preparatory period of the annual training cycle, when a high volume of work dominated
the daily training loads. The participants refrained from exercise for one day before testing to minimize
the effect of fatigue.

The subjects underwent medical examinations and somatic measurements. Body composition
was evaluated in the morning, between 08:00 and 08:30. The day before, the participants had their
last meal at 20:00. They reported to the laboratory after an overnight fast, refraining from exercise for
24 h. The measurements of body mass were performed on a medical scale with a precision of 0.1 kg.
Body composition was evaluated using the electrical impedance technique (Inbody 720, Biospace Co.,
Anaheim, Los Angeles, CA, USA).

Anaerobic performance was evaluated by the Running-Based Anaerobic Sprint Test (RAST)
protocol which involved 6 × 30 m maximal sprint efforts, separated by 10 s of active recovery. Infrared
photocell gates (Witty, Micro Gate System, Mahopac, New York, NY, USA) were placed precisely 30 m
apart. Additionally, two gates were placed at the 5th and 25th m of the sprint distance. The photocell
system was used to evaluate the sprint times at 5 and 30 m. The 5 m distance time was considered as
starting speed, the 30 m distance evaluated absolute speed, while total time of the 6 × 30 m determined
the level of speed endurance and anaerobic capacity. Participants were verbally informed about the
time of the rest interval between particular sprints. Before testing, participants were required to
complete a 15-min warm-up, which included jogging, dynamic stretching as well as several starts
and accelerations. After a 5-min passive rest the participants reported to the starting line and began
the RAST protocol on a command. The subjects were instructed to sprint the 30 m distance as fast as
they could, decelerate after the finish line and jog back to the starting line for the next repetition. The
procedure was repeated until 6 sprints were completed.

2.4. Biochemical Assays

To determine lactate concentration (LA), acid–base equilibrium and electrolyte status,
the following variables were evaluated: LA (mmol/L), blood pH, pCO2 (mmHg), pO2 (mmHg),
HCO3

− act (mmol/L), HCO3
− std, (mmol/L), BE (mmol/L), O2SAT (mmol/L), ctCO2 (mmol/L),

Na+ (mmol/L), K+ (mmol/L), and Ca2+, Mg2+. The measurements were performed from fingertip
capillary blood samples at rest and after 3 min of recovery. Determination of LA was based on an
enzymatic method (Biosen C-line Clinic, EKF-diagnostic GmbH, Barleben, Germany). The remaining
variables were assessed using a Blood Gas Analyzer GEM 3500 (Analyzer Premier 3500, GEM, Bedfort,
Massachusetts, MA, USA).
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2.5. Statistical Analysis

The Shapiro–Wilk, Levene and Mauchly’s tests were used to verify the normality, homogeneity
and sphericity of the sample’s data variances, respectively. Verifications of the differences between
analyzed values before and after di-carbonate and mineral supplementation, between rest and post
exercise conditions in the E and C groups were verified using ANOVA with repeated measures. Effect
sizes (Cohen’s d) were reported where appropriate. According to Cohen’s guidelines, the effect for r
was established as follows: large effect ≥ 0.5, moderate effect < 0.5 and ≥0.3, and small effect < 0.3 and
≥0.1 [44–47]. Statistical significance was set at p < 0.05. All statistical analyses were performed using
Statistica 9.1 (TIBCO Software Inc., Palo Alto, California, CA, USA) and Microsoft Office (Redmont,
Washington, DC, USA), and are presented as means with standard deviations.

3. Results

The repeated measures ANOVA between the experimental and control group, considering
baseline values and the post-intervention period (supplementation) at rest and after exercise, revealed
statistically significant results for three variables (Table 1).

Post-hoc tests revealed a statistically significant increase in mean LA post-exercise when
comparing the values (from 7.68 to 9.36 mmol/L with p = 0.0001) after exercise between the control and
experimental group supplemented with di-carbonate and minerals. Similar changes were observed for
post-ingestion blood pH (from 7.35 to 7.47 with p = 0.0001) and HCO3

− (from 24.3 to 28.8 mmol/L
with p = 0.0001) between the control and experimental groups.

Intragroup analysis with repeated measures ANOVA between the baseline and post-intervention
period (di-carbonate and mineral ingestion) at rest, post ingestion and after exercise for the
experimental group, revealed statistically significant differences for six variables (Table 2 and
Figures 1–4). The changes in the control group were not statistically significant.
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The post-hoc tests showed a statistically significant improvement in the results of the 6 × 30 m
running test (from 25.09 s to 24.53 s with p = 0.00001), significant increase in post exercise LA
concentration (from 7.94 to 9.36 mmol/L with p = 0.00001), as well as an significant increase in
post ingestion pH (from 7.38 to 7.47 with p = 0.00011), and HCO3

− values (from 25.42 to 28.81 mmol/L
with p = 0.00001). Following bicarbonate and mineral supplementation post exercise HCO3

−

concentration increased significantly (from 12.83 to 14.24 mmol/L with p = 0.00001), as well as
the resting concentration of Mg (from 2.17 to 2.44 mg/dL with p = 0.00012).

4. Discussion

4.1. Ergogenic Effects and Mechanism

The ergogenic effect of sodium bicarbonate and other buffering supplements on exercise
performance stems from the reinforced extracellular bicarbonate buffer capacity to regulate acid–base
balance during exercise. The oral intake of NaHCO3

− elevates the concentration of bicarbonate ions
(HCO3

−), thus increasing the alkalotic environment in the extracellular fluid compartments [27,28].
The elevated HCO3

− enlarges the gradient between extracellular and intracellular H+, which stimulates
the lactate/H+ cotransporter [48]. This leads to a greater efflux of H+ from intramuscular regions into
the extracellular fluid, allowing HCO3

− and buffering compensatory systems to remove H+, thus,
increasing pH. Several mechanisms have been proposed to explain how induced alkalosis evokes an
ergogenic response to anaerobic exercise, yet there is no consensus among sport scientists. Numerous
propositions surrounding both peripherally and centrally driven mediators of fatigue and exercise
performance have been investigated [49]. Such mechanisms include the attenuation of exercise-induced
arterial oxygen desaturation allowing for enhanced oxygen delivery [50], delayed impairment of
muscular contractile properties [51], and augmented glycolytic flux [52]. More recently, research is
indicative of an altered neuromuscular response to pre-exercise NaHCO3

− administration [53,54].
The neuromuscular response that is characterized by a reduced rate of force production declines during
isometric contractions after a bout of submaximal exercise [54] and repeated bouts of high intensity
exercise [53]. The suggestion therefore is that NaHCO3

− modifies peripheral indices of fatigue to
improve exercise performance. In addition, evidence also has alluded to a central derived contribution
to NaHCO3

− ergogenic effect.

4.2. Anaerobic Performance

The current investigation demonstrated a significant increase in anaerobic performance of athletes
in the experimental group supplemented with sodium bicarbonate and minerals. The improvements
in anaerobic performance following sodium bicarbonate consumption were influenced by significant
increases in resting blood pH and bicarbonate concentration.

Anaerobic glycolysis leads to an equal production of lactate and hydrogen ions [55]. Most of the
released hydrogen ions are buffered, however, a portion (~0.001%) that stays in the cytosol results in a
decrease in muscle pH and impairment of exercise. The rationale for the ergogenic effects of bicarbonate
is that the increase in extracellular pH and bicarbonate will enhance the efflux of lactate and H+ from
the muscle cell [56]. Buffering of protons can attenuate changes in pH and enhance the muscle’s
buffering capacity, allowing for a greater amount of lactate to accumulate in the muscle. The results
of the current study demonstrated a significant increase in resting blood pH (from 7.38 to 7.47),
resting HCO3

− concentration (from 23.21 to 28.81 mmol/L) and post exercise lactate concentration
(from 7.94 to 9.36 mmol/L) in the experimental group supplemented with bicarbonate and minerals.

The concentration of bicarbonate is much lower in the muscle than in the blood
(10 vs. 25 mmol/L), and the low permeability of the charged bicarbonate ion precludes any immediate
effects on the acid–base status of muscles [57]. These results are in agreement with the view that an
appropriate mineral and hydration status is necessary for active bicarbonate ion transport.
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Fatigue development during high-intensity intermittent exercise may be caused by a complex
interplay between intra and extracellular concentrations, as well as gradients of ions such as K+,
Na+, Cl−, H+ and Mg+ [58,59]. In the present study, no differences were detected in K+ and Na+

ions, but a significant increase in Mg2+ (from 2.17 mg/dL to 2.44 mg/dL). The supplementation
with magnesium has been reported to increase muscle strength and power as well as hemoglobin
levels [60]. Mg is a cofactor to over 325 enzymatic reactions, and a deficiency of the mineral therefore
has many physiological and exercise performance implications. A transient shift of magnesium
to the intracellular space during exercise is a probable explanation for a large proportion of the
hypomagnesaemia. However, regarding magnesium variations with exercise in red blood cells,
dissimilar findings are reported. The magnesium levels in RBC were reported to be increased after
several types of exercise [61], and were related to increased metabolic activity during exercise, which
would induce a shift of the cation from the plasmatic compartment. Ionized Mg concentration is
supposed to be a more sensitive variable than total Mg, giving more reliable information about the
status and regulation of major mobilization magnesium pools in the body. However, only limited
information about the effects of exercise on the metabolically and regulatory fraction of Mg2+ is
available [62]. Mooren and co-workers [62] concluded that changes in the fraction of Mg2+ should be
sufficient to influence intracellular signaling and metabolic processes. Although some explanations
have been offered for the compartmental shifts of magnesium, the precise mechanism remains to be
clarified. Anaerobic performance enhancement is associated with physiological-regulatory functions
of Mg2+ within muscle contraction and relaxation. The potential effect is being justified by regulating
troponin expression via Ca2+ concentration gradients [63], MgATP complex formation optimizing
energy metabolism, increasing protein synthetic rate, greater amount of actin-mysoin crossbridges [64]
all of which contribute to improved strength and anaerobic metabolism.

Different strategies used for improving buffering capacity of tissues and blood do not allow for a
direct comparison. Despite this, there appears to exist an ergogenic effect in response to NaHCO3

−,
which may explain the large effect size noted by Tobias et al. [15]. It seems that further work is required
to elucidate the mechanism by which sodium bicarbonate and other buffering supplements improve
anaerobic exercise performance, although most authors suggest interplay of peripheral and central
components [9,14]

The results of our experiment are in line with many other well controlled research projects, which
have used repeated high intensity exercise protocols. However, there are some novelties to our study,
which should be addressed. First, we used a chronic nine-day supplementation procedure, split into
two daily ingestions of a complex containing 3000 mg of sodium di-carbonate, 3000 mg potassium
di-carbonate (six caps containing 500 mg each), 1000 mg of calcium phosphate and citrate, 1000 mg
potassium citrate, and 1000 mg magnesium citrate. The experimental group of players took the
supplement twice a day, 90 min before each practice session. The control group received a placebo
that was identical to the buffering supplement. The players were well conditioned before the start of
the experiment, and had identical living and training conditions during the study as the experiment
was conducted during a preseason camp in Spain. The diet and training loads of the players were
controlled and the testing conditions for the RAST were identical for baseline and post intervention
measurements. All biochemical evaluations were performed in duplicate in the same laboratory.

5. Conclusions

Chronic supplementation with sodium and potassium bicarbonate, fortified with potassium and
magnesium citrate, as well as calcium phosphate and calcium citrate, improves repeated sprint ability
in elite soccer players. The improvements in anaerobic performance are caused by increased resting
and post ingestion blood pH and bicarbonate levels. Although our study is restricted to bicarbonate
ingestion combined with chosen minerals, and the statistical power suffers from a low sample size, its
results indicate a significant role of magnesium ions in delaying fatigue during high-intensity exercise.
The parallel use of minerals and bicarbonate is an innovative aspect of this study and it requires
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further research. This experiment confirms both acute and chronic buffering effects in elite athletes of
sodium and potassium bicarbonate fortified with minerals. Such supplementations protocols can be
suggested for competitive athletes before competition or periods of high intensity training to improve
anaerobic performance.
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