Supplementary Materials Table S1. Pubmed search terms and search strategy. | derms] OR "diet" [All Fields]) AND derms] OR "food" [All Fields])) AND derms] OR "malaysia" [All Fields]) de" [PDat] : "2017/06/22" [PDat] AND def Terms]) desired [PDat] : "2017/06/22" [PDat] AND def Terms]) desired [PDat] : "2017/06/22" [PDat] AND desired [PDat] : "2017/06/22" [PDat] AND desired [PDat] : "2017/06/22" [PDat] AND desired [PDat] : "2017/06/22" [MeSH Terms] desired [PDat] : "2017/07" "2 | 183
283
181 | selected 6 0 8 | |--|---|---| | Germs] OR "food" [All Fields])) AND GH Terms] OR "malaysia" [All Fields]) 26" [PDat] : "2017/06/22" [PDat] AND H Terms]) ND ("malaysia" [MeSH Terms] OR Gields])) AND "humans" [MeSH Terms] GH Terms] OR "proteins" [All Fields] OR Gields]) AND ("food" [MeSH Terms] OR Gields]) AND ("food" [MeSH Terms] OR Gields]) AND ("alaysia" [MeSH Terms] OR Gields]) AND ("2007/07/07" [PDat] : at] AND "humans" [MeSH Terms]) Geys" [MeSH Terms] OR ("nutrition" [All Greveys" [All Fields]) OR "nutrition Ids] OR ("nutrition" [All Fields] AND Ids]) OR "nutrition survey" [All Fields]) Gields]) OR "malaysia" [All | 183
283 | 6 | | SH Terms] OR "malaysia" [All Fields]) 26" [PDat]: "2017/06/22" [PDat] AND H Terms]) ND ("malaysia" [MeSH Terms] OR Fields])) AND "humans" [MeSH Terms] SH Terms] OR "proteins" [All Fields] OR Fields]) AND ("food" [MeSH Terms] OR Fields]) AND ("food" [MeSH Terms] OR Fields]) AND ("2007/07/07" [PDat]: at] AND "humans" [MeSH Terms]) reys" [MeSH Terms] OR ("nutrition" [All rveys" [All Fields]) OR "nutrition Ids] OR ("nutrition" [All Fields] AND Ids]) OR "nutrition survey" [All Fields]) "[MeSH Terms] OR "malaysia" [All | 283 | 0 | | 26"[PDat]: "2017/06/22"[PDat] AND H Terms]) "ND ("malaysia"[MeSH Terms] OR Fields])) AND "humans"[MeSH Terms] SH Terms] OR "proteins"[All Fields] OR Fields]) AND ("food"[MeSH Terms] OR Fields]) AND ("malaysia"[MeSH Terms] OR Fields]) AND ("2007/07/07"[PDat]: at] AND "humans"[MeSH Terms]) The eys"[MeSH Terms] OR ("nutrition"[All trees"[All Fields]) OR "nutrition" Index or "malaysia"[All Fields] AND Index or "malaysia"[All Fields]) The eys" [MeSH Terms] OR "malaysia"[All Fields]) The eys" [MeSH Terms] OR "malaysia"[All Fields]) The eys" [MeSH Terms] OR "malaysia"[All Fields]) | 283 | 0 | | H Terms]) AND ("malaysia" [MeSH Terms] OR Fields])) AND "humans" [MeSH Terms] EH Terms] OR "proteins" [All Fields] OR Fields]) AND ("food" [MeSH Terms] OR Fields]) AND ("malaysia" [MeSH Terms] OR Fields]) AND ("2007/07/07" [PDat]: at] AND "humans" [MeSH Terms]) reys" [MeSH Terms] OR ("nutrition" [All rveys" [All Fields]) OR "nutrition Ids] OR ("nutrition" [All Fields] AND Ids]) OR "nutrition survey" [All Fields]) "[MeSH Terms] OR "malaysia" [All | 283 | 0 | | IND ("malaysia" [MeSH Terms] OR Fields])) AND "humans" [MeSH Terms] SH Terms] OR "proteins" [All Fields] OR Fields]) AND ("food" [MeSH Terms] OR Si)) AND ("malaysia" [MeSH Terms] OR Fields]) AND ("2007/07/07" [PDat]: at] AND "humans" [MeSH Terms]) reys" [MeSH Terms] OR ("nutrition" [All rveys" [All Fields]) OR "nutrition Ids] OR ("nutrition" [All Fields] AND Ids]) OR "nutrition survey" [All Fields]) "[MeSH Terms] OR "malaysia" [All | 283 | 0 | | Gields])) AND "humans" [MeSH Terms] GH Terms] OR "proteins" [All Fields] OR Elds]) AND ("food" [MeSH Terms] OR Elds]) AND ("malaysia" [MeSH Terms] OR Gields]) AND ("2007/07/07" [PDat]: at] AND "humans" [MeSH Terms]) eys" [MeSH Terms] OR ("nutrition" [All rveys" [All Fields]) OR "nutrition lds] OR ("nutrition" [All Fields] AND lds]) OR "nutrition survey" [All Fields]) "[MeSH Terms] OR "malaysia" [All | 283 | 0 | | SH Terms] OR "proteins" [All Fields] OR elds]) AND ("food" [MeSH Terms] OR s])) AND ("malaysia" [MeSH Terms] OR fields]) AND ("2007/07/07" [PDat]: at] AND "humans" [MeSH Terms]) eys" [MeSH Terms] OR ("nutrition" [All rveys" [All Fields]) OR "nutrition lds] OR ("nutrition" [All Fields] AND lds]) OR "nutrition survey" [All Fields]) or "[MeSH Terms] OR "malaysia" [All | | | | elds]) AND ("food" [MeSH Terms] OR s])) AND ("malaysia" [MeSH Terms] OR fields]) AND ("2007/07/07" [PDat]: at] AND "humans" [MeSH Terms]) eys" [MeSH Terms] OR ("nutrition" [All rveys" [All Fields]) OR "nutrition dds] OR ("nutrition" [All Fields] AND lds]) OR "nutrition survey" [All Fields]) "[MeSH Terms] OR "malaysia" [All | | | | s])) AND ("malaysia" [MeSH Terms] OR fields]) AND ("2007/07/07" [PDat]: at] AND "humans" [MeSH Terms]) eys" [MeSH Terms] OR ("nutrition" [All rveys" [All Fields]) OR "nutrition lds] OR ("nutrition" [All Fields] AND lds]) OR "nutrition survey" [All Fields]) "[MeSH Terms] OR "malaysia" [All | 181 | 8 | | s])) AND ("malaysia" [MeSH Terms] OR fields]) AND ("2007/07/07" [PDat]: at] AND "humans" [MeSH Terms]) eys" [MeSH Terms] OR ("nutrition" [All rveys" [All Fields]) OR "nutrition lds] OR ("nutrition" [All Fields] AND lds]) OR "nutrition survey" [All Fields]) "[MeSH Terms] OR "malaysia" [All | 181 | 8 | | Fields]) AND ("2007/07/07"[PDat]: at] AND "humans"[MeSH Terms]) eys"[MeSH Terms] OR ("nutrition"[All rveys"[All Fields]) OR "nutrition lds] OR ("nutrition"[All Fields] AND lds]) OR "nutrition survey"[All Fields]) "[MeSH Terms] OR "malaysia"[All | 181 | 8 | | at] AND "humans" [MeSH Terms]) eys" [MeSH Terms] OR ("nutrition" [All rveys" [All Fields]) OR "nutrition lds] OR ("nutrition" [All Fields] AND lds]) OR "nutrition survey" [All Fields]) "[MeSH Terms] OR "malaysia" [All | 181 | 8 | | eys"[MeSH Terms] OR ("nutrition"[All rveys"[All Fields]) OR "nutrition lds] OR ("nutrition"[All Fields] AND lds]) OR "nutrition survey"[All Fields]) "[MeSH Terms] OR "malaysia"[All | 181 | 8 | | rveys"[All Fields]) OR "nutrition Ids] OR ("nutrition"[All Fields] AND Ids]) OR "nutrition survey"[All Fields]) "[MeSH Terms] OR "malaysia"[All | | | | lds] OR ("nutrition" [All Fields] AND lds]) OR "nutrition survey" [All Fields]) "[MeSH Terms] OR "malaysia" [All | | | | lds]) OR "nutrition survey"[All Fields])
"[MeSH Terms] OR "malaysia"[All | | | | "[MeSH Terms] OR "malaysia"[All | | | | | | | | 2007/07/15"[PDat]: "2017/07/11"[PDat]) | | | | | 192 | 1 | | eSH Terms] OR "economics" [All Fields] | 1,2 | - | | on"[All Fields]) AND ("malaysia"[MeSH | | | | aysia"[All Fields])) AND | | | | Dat] : "2017/07/11" [PDat] AND | | | | H Terms]) | | | | -, | 105 | 1 | | take"[All Fields]) OR "energy | 103 | 1 | | , | | | | , , | | | | | | | | | | | | | | | | | 766 | 7 | | | 700 | , | | malayela | 1944 | 21 | | , | 1744 | 1 | | , | | 1 | | , | | | | 1 | ds] OR ("nutrient" [All Fields] AND lds]) OR "nutrient intake" [All Fields]) or "nutrient intake" [All Fields]) or "[MeSH Terms] OR "malaysia" [All '2007/07/15" [PDat] : "2017/07/11" [PDat] [MeSH Terms]) or monosaccharide OR disaccharide OR malaysia | Ids]) OR "nutrient intake"[All Fields]) a"[MeSH Terms] OR "malaysia"[All i"2007/07/15"[PDat] : "2017/07/11"[PDat] i[MeSH Terms]) OR monosaccharide OR disaccharide OR | Table S2. Findings on energy intake of Malaysian adults | Source (y) | Sample | Method | Results | | | | |---|---|---|---|--------------|--------------|--------------| | FAO food
balance
sheet
(2013)[5] | n/a |
Calculated
from
available
food
supply | Available total energy
Average dietary energy
average) - 2014-2016 = 127 - 2012-2014 = 124 | rgy supply | | | | Nationwide st | udies | | | | | | | Mahmud et al. (2015)[6] | MANS 2014
sample | Single 24-
hr recall | Prevalence of Malaysian adults that met the RN energy = 23% (95% CI 20.9, 25.2) - Males = 20.1% (95% CI 17.3, 23.3) - Females = 26.1% (95% CI 23.5, 28.9) 10.6% of adults had intakes exceeding the RNI 66.5% of adults had intakes below the RNI | | | | | MANS 2014
(2014)[16] | 2973
individuals
aged 18 to
59 years | Single 24-
hr recall | Demographic Energy intake/day characteristic (% RNI of median) | | | - | | | J | | | Both sexes | Men | Women | | | | | Malaysia
Zone | 64.4 | 66.5 | 62.1 | | | | | - Peninsular
Malaysia | 63.3 | 66.7 | 60.4 | | | | | - East Malaysia
Strata | 65.7 | 66.4 | 65.5 | | | | | - Urban
- Rural | 65.8
62.1 | 69.6
63.4 | 62.6
61.4 | | | | | Age group (years) - 18-19 | 65.5 | 62.6 | 71.3 | | | | | - 20-29
- 30-39 | 68.9
65.0 | 67.4
70.2 | 70.8
61.1 | | | | | - 40-49
- 50-59 | 63.7
59.4 | 66.6
61.3 | 59.5
58.7 | | | | | Ethnicity
- Malay | 2864.
7 | 67.4 | 62.0 | | | | | ChineseIndian | 66.8
58.3 | 69.6
66.5 | 64.4
52.8 | | | | | - | Bumiputera | 62.7 | 63.1 | 62.3 | |-------------------------------------|--------------------|----------|-----------|--------------------|----------|--------|-----------| | | | | Sab | | | | | | | | | -
Sara | Bumiputera
awak | 63.8 | 62.1 | 65.5 | | | | | - | Others | 64.1 | 67.0 | 61.4 | | | | | - | Other Bumis | 55.6 | 55.5 | 55.6 | | | | | Ma | rital status | | | | | | | | - | Never married | 65.2 | 64.5 | 65.9 | | | | | - | Married/cohabit | 64.5 | 67.4 | 61.8 | | | | | ing | | | | | | | | | - | Divorced/separa | 60.4 | 64.4 | 59.2 | | | | | ting | 5 | | | | | | | | - | Widow | 56.0 | - | 55.9 | | | | | Edu | ıcational level | | | | | | | | - | Non-formal | 51.9 | 51.8 | 52.8 | | | | | - | Primary | 60.7 | 64.4 | 58.4 | | | | | - | Secondary | 64.0 | 65.8 | 62.0 | | | | | - | Tertiary | 68.3 | 69.9 | 66.0 | | | | | - | Others | 70.9 | 62.8 | 74.1 | | | | | Wo | rk status | | | | | | | | - | Government/se | 66.6 | 71.1 | 63.1 | | | | | mi- | government | | | | | | | | - | Private | 64.8 | 67.2 | 62.0 | | | | | - | Self-employed | 64.2 | 66.5 | 59.9 | | | | | - | Unpaid workers | 90.0 | 95.8 | 90.0 | | | | | - | Not working | 61.1 | 55.4 | 61.8 | | | | | - | Retired | 62.7 | 58.7 | 69.8 | | | | | - | students | 67.0 | 63.3 | 67.7 | | | | | Inco | ome group | | | | | | | | - | less than | 61.1 | 63.2 | 60.2 | | | | | RM | 1500 | | | | | | | | - | RM1500- | 66.0 | 69.2 | 64.7 | | | | | RM | 3500 | | | | | | | | _ | More than | 67.3 | 70.4 | 63.3 | | | | | RM | 3500 | | | | | Asma | 3063 | 126-item | Age | e group (y) | Energy | intake | Energy as | | (2014) | individuals | FFQ | | | Mean ± | SD | mean % | | analysis of
MANS 2003
data[7] | aged 18 to
59 y | | Men | n | (kcal/da | ay) | RNI | | | | | - | 18-29 | 2463 ± 1 | 18.0 | | | | | | - | 30-50 | | 2491 | 1 ± 14.1 | | |------------------|-------------|----------------|------|---------------|-------------------|----------|--------------|-----------| | | | | - | 51-60 | | 2408 | 8 ± 33.6 | | | | | | - | Total for all | ages | 2472 | 2 ± 10.6 | 101 | | | | | Wo | omen | | | | | | | | | - | 18-29 | | 2083 | 3 ± 14.9 | | | | | | - | 30-50 | | 2159 | 9 ± 13.3 | | | | | | - | 51-60 | | 2112 | 2 ± 28.1 | | | | | | - | Total for all | ages | 2125 | 5 ± 9.4 | 100.8 | | | | | - | | | | | | | Mirnalini et | 6886 adults | Single 24- | Ag | e group (y) | | Ene | rgy intake | Energy as | | al. (2008)[8] | aged 18 to | hr recall | | | | Mea | an ± SE | mean % | | | 59 y | | Me | n | | (kca | ıl/day) | RNI | | | | | - | 18-19 | | 1817 | 7 ± 82 | 74.5 | | | | | - | 20-29 | | 1805 | 5 ± 23 | 74.0 | | | | | - | 30-39 | | 1847 | 7 ± 24 | 75.1 | | | | | - | 40-49 | | 1716 | 6 ± 23 | 69.8 | | | | | - | 50-59 | | 1638 | 8 ± 30 | 66.6 | | | | | Wo | omen | | | | | | | | | - | 18-19 | | 1419 | 9 ± 55 | 71.0 | | | | | - | 20-29 | | 1519 | 9 ± 22 | 76.0 | | | | | - | 30-39 | | 1468 | 8 ± 18 | 67.3 | | | | | - | 40-49 | | 1387 | 7 ± 21 | 63.6 | | | | | - | 50-59 | | 1360 | 0 ± 28 | 62.4 | | | | | All | | | | | | | | | | - | 18-19 | | 1621 | 1 ± 51 | | | | | | - | 20-29 | | 1665 | 5 ± 16 | | | | | | - | 30-39 | | 1660 |) ± 16 | | | | | | - | 40-49 | | 1555 | 5 ± 16 | | | | | | - | 50-59 | | 1503 | 3 ± 21 | | | Small
studies | | | | | | | | | | Author | Sample | Method | R4 | esults | | | | | | (y) | Sample | Wichiou | 1 | csuits | | | | | | (y) | | | | | | | | | | All ages | | | | | | | | | | Karupa | 128 urban | 3-day diet | Δα | e group 1 | Mean | | Energy as | % RNII | | iah et al. | women aged | records (2 | (y) | 0 1 | energy | , | Lifeigy as | /U 1X1 N1 | | (2013)[9] | 19 to 65 y | weekdays, | (y) | | energy
intake | | | | | (2010)[7] | 17 to 00 y | weekdays,
1 | | | mtake
(kcal) ± | - | | | | | | weekend) | | | (KCai) <u> </u> | <u> </u> | | | | | | weekenu) | 10 4 | | 3D
1867 ± | 175 | 93 | | | | | | 171 | 49 | 100/ I | 1/3 | <i>9</i> 0 | | 30 to 50 $1838 \pm 229 84$ | Young
adults | | | 51 to 59 | 1706 ± 109 | 78 | | | |--------------------------------|---|-------------------------|-------------------|---------------------------------------|--------------------------------------|---------------------------|------------------------| | Abdull Hakim et al. (2012)[10] | 200 students
aged 18 to
24 y (45%
males, 55%
females) | Single 24-
hr recall | Subjects | Energy
intake
(kcal) ±
SD | < RNI
No. (%) | Meet
RNI
No.
(%) | >
RNI
No.
(%) | | | | | Males - 18 y | 1923.09 ±
477.62
(67.7%
RNI) | | | | | | | | -
19+ y | 1948.25 ±
440.07
(79.8%
RNI) | | | | | | | | Total (n=90) | 1938.47 ± 452.55 | 82 (90.9) | | 8
(9.1) | | | | | Females – 18
y | 1756.84 ± 363.34 (85.7% RNI) | | | | | | | | - 19+ y | 1651.07 ± 388.46 (82.5% RNI) | | | | | | | | Total (n=110) | 1681.84 ± 382.72 | 79 (72.2) | | 31
(27.
8) | | Gan et al. (2011)[11] | 584 students
aged 18 to
24 y (41%
males; 59%
females) | Two 24-h recalls | Subjects | Energy intake (kcal/d) mean ± SD | Energy
as %
RNI
mean±S
D | <
RNI
No.
(%) | ≥
RNI
No.
(%) | | | | | Males
(n=237) | 2120 ± 614 | 86.9±25. | 173
(73.0 | 64
(27.0
) | | | | | Females (n=343) | 1624 ± 506 | 81.2±25.
3 | 276
(80.5 | 67
(19.5
) | | adults | |--------| | uuuiis | | Norsha m et al. (2015)[14] | 450 women
aged 30 to
65 y | Diet
history
questionna
ire | Normal With breast adiposity Total | Mean
energy
intake
(kcal/d) ±
SD
1414±405
1537±386 | Meet RNI
No. (%)
152 (34)
75 (17)
227 (51%) | Does not meet RNI No. (%) 140 (31) 83 (18) 223 (49%) | |-----------------------------------|--|---------------------------------------|---|--|---|--| | Yee et al. (2013)[12] | 73 healthy
Chinese
premenopau
sal women
aged 30 to
45y from
Klang Valley | Single 24-
hr recall | Subjects | Mean
energy
intake
(kcal/d) ±
SD | RNI value profor comparison (no computate | on only | | | | | All subjects 30 to 45 y | 1506 ± 427
(range
455-2938) | RNI = 2180 | | | Sulaima
n et al.
(2011)[13] | 301 women
(151 in rural
areas, 150 in
urban areas)
aged 21 to
49 y (mean | Single 24-h
recall;
MANS
FFQ | Subjects
according to
food security
status | Mean
energy
(kcal) ±
SD | Energy as % I (mean ± SD) | RNI | | | age 38.05 ± 7.03 y) | | Rural
respondent
- Food secure | 1959 ± 620.08 | 90.15 ± 28.54 | | | | | | - Moderately insecure | 1671 ± 573.18 | 77.44 ± 26.31 | | | | | | - Severely
insecure
Urban
respondent | 1602 ± 624.94 | 73.67 ± 29.93 | | | | | | - Food secure | 1407 ± 363.90 | 64.53 ± 16.69 | | | | | | | - Moderatinsecure- Severelyinsecure | 379.55 | | 63 ± 17.41
99 ± 20.34 |
--|--------------------------------------|-----------------------------------|-----------------------------|---|--|--|----------------------------------| | Premenopaus | | middle-a
women a | ged ve FF(| , | energy
(kcal) ± | | ergy as % RDA | | al Postmenopau 1591 ± 198 90.3 sal | | | | Females (a | all) 1615 ± 2 | 226 88.5 | 5 | | Postmenopau 1591 ± 198 90.3 sal No data Table S3. Findings on protein intake of Malaysian adults Source Sample Method Results (y) FAO n/a Calculate • Protein supply (g/capita/day) = 81.58 food • Protein supply (kcal/capita/day) = 326.32; comprise available approximately 11% of available energy/capita/day sheet food • Average supply of protein of animal origin (3-year average)] - 2011-2013 = 44 g/capita/day Nationwide surveys Mahmu MANS 2014 Single 24- det al. sample hr recall for protein = 40.4% (95% CI 37.9, 43.0) (2015)[6] - Males = 39.4% (95% CI 38.3, 44.8) 50.7% of adults had intakes exceeding the RNI 8.8% had intakes below the RNI MANS 2973 Single 24- Demographic Protein intake/day (% RNI of characteristic median) MANS 2973 Single 24- Demographic Protein intake/day (% RNI of characteristic median) MANS 2973 Single 24- Demographic Protein intake/day (% RNI of characteristic median) Both Men Women sexes | | | | Premenop | oaus 1633 ± 2 | 244 87.3 | 3 | | Source Sample Method Results FAO n/a Calculate of Protein supply (g/capita/day) = 81.58 food d from available approximately 11% of available energy/capita/day sheet food supply average) 1 | | | | al | | | | | Source Sample Method Results (y) FAO n/a Calculate food d from available available sheet food supply (scal/capita/day) = 81.58 FAO n/a Calculate food d from available available available sheet food supply (scal/capita/day) = 326.32; compri approximately 11% of available energy/capita/day Average supply of protein of animal origin (3-year average) J 2011-2013 = 44 g/capita/day Nationwide surveys Mahmu MANS 2014 d et al. sample hr recall (2015)[6] J Females = 41.5% (95% CI 37.9, 43.0) - Females = 41.5% (95% CI 38.3, 44.8) 50.7% of adults had intakes exceeding the RNI 8.8% had intakes below the RNI MANS 2973 Single 24- Demographic Protein intake/day (% RNI of characteristic median) MANS 2973 Single 24- Characteristic median) MANS 2973 Single 24- Demographic Protein intake/day (% RNI of characteristic median) Both Men Women sexes | | | | | pau 1591 ± | 198 90.3 | 3 | | Source Sample Method Results (y) FAO n/a Calculate • Protein supply (g/capita/day) = 81.58 food d from • Protein supply (kcal/capita/day) = 326.32; compri approximately 11% of available energy/capita/day sheet food • Average supply of protein of animal origin (3-year average) Variable Vari | No data | | | | | | | | (y) FAO n/a Calculate • Protein supply (g/capita/day) = 81.58 food d from • Protein supply (kcal/capita/day) = 326.32; compri approximately 11% of available energy/capita/day sheet food • Average supply of protein of animal origin (3-year average) [2013)[5] supply average] [1] - 2011-2013 = 44 g/capita/day - 2011-2011 = 42 g/capita/day Nationwide surveys Mahmu MANS 2014 d et al. sample hr recall (2015)[6] - Males = 39.4% (95% CI 37.9, 43.0) - Females = 41.5% (95% CI 38.3, 44.8) 50.7% of adults had intakes exceeding the RNI 8.8% had intakes below the RNI MANS 2973 Single 24- Demographic Protein intake/day (% RNI of characteristic median) MANS 2973 Single 24- Demographic Protein intake/day (% RNI of characteristic median) Both Men Women sexes | Гable S3. | Findings or | n protein inta | ake of Malaysian a | dults | | | | food d from available available sheet food • Average supply (kcal/capita/day) = 326.32; comprising approximately 11% of available energy/capita/day approximately 11% of available energy/capita/day approximately 11% of available energy/capita/day average) 2013][5 | | Sample | Method | Results | | | | | Mahmu MANS 2014 Single 24- Prevalence of Malaysian adults that met the RNI for d et al. sample hr recall protein = 40.4% (95% CI 37.9, 43.0) (2015)[6] - Males = 39.4% (95% CI 35.9, 43.0) - Females = 41.5% (95% CI 38.3, 44.8) 50.7% of adults had intakes exceeding the RNI 8.8% had intakes below the RNI MANS 2973 Single 24- Demographic Protein intake/day (% RNI of individuals individuals hr recall characteristic median) [16] aged 18 to 59 years Both Men Women sexes | food
balance
sheet
(2013)[5 | nya | d from
available
food | Protein sup approximately 1 Average su average) 2011-2013 = | oply (kcal/cap.
1% of availab
pply of prote
44 g/capita/d | ita/day) =
ele energy
in of anin | 326.32; comprise
//capita/day | | d et al. sample hr recall protein = 40.4% (95% CI 37.9, 43.0) - Males = 39.4% (95% CI 35.9, 43.0) - Females = 41.5% (95% CI 38.3, 44.8) 50.7% of adults had intakes exceeding the RNI 8.8% had intakes below the RNI MANS 2973 Single 24- Demographic Protein intake/day (% RNI of individuals hr recall characteristic median) [16] aged 18 to 59 years Both Men Women sexes | Nationwi | de surveys | | | | | | | 2014 individuals hr recall characteristic median) [16] aged 18 to 59 years Both Men Women sexes | | | _ | | - | | et the RNI for | | Both Men Women sexes | (2015)[6 | | | - Males = 39 Females = 4 50.7% of adults | 4% (95% CI 35
1.5% (95% CI
had intakes ex | 5.9, 43.0)
38.3, 44.8
(ceeding | | | | (2015)[6
]
MANS
2014 | 2973
individuals
aged 18 to | _ | - Males = 39 Females = 4 50.7% of adults 8.8% had intake | 4% (95% CI 33
1.5% (95% CI
had intakes ex
s below the R
Proteir | 5.9, 43.0)
38.3, 44.8
a intake/d | the RNI | | | (2015)[6
]
MANS
2014 | 2973
individuals
aged 18 to | _ | - Males = 39 Females = 4 50.7% of adults 8.8% had intake | 4% (95% CI 38
41.5% (95% CI
had intakes ex
s below the R
Proteir
median | 5.9, 43.0)
38.3, 44.8
sceeding
NI
intake/d | the RNI
lay (% RNI of | | Zone | | | | |-------------------|-------|-------|-------| | - Peninsular | 94.8 | 99.2 | 90.2 | | Malaysia | | | | | - East Malaysia | 102.5 | 103.2 | 102.2 | | Strata | | | | | - Urban | 99.4 | 105.2 | 95.8 | | - Rural | 95.6 | 97.2 | 93.5 | | Age group (years) | | | | | - 18-19 | 94.7 | 101.4 | 87.3 | | - 20-29 | 100.8 | 101.7 | 99.5 | | - 30-39 | 99.3 | 106.9 | 95.7 | | - 40-49 | 95.0 | 98.7 | 93.3 | | - 50-59 | 93.4 | 96.0 | 91.6 | | Ethnicity | | | | | - Malay | 95.8 | 100.7 | 92.0 | | - Chinese | 110.1 | 114.8 | 103.5 | | - Indian | 82.1 | 89.7 | 69.2 | | - Bumiputera | 95.7 | 97.2 | 92.9 | | Sabah | | | | | - Bumiputera | 99.2 | 88.4 | 105.4 | | Sarawak | | | | | - Others | 102.9 | 106.4 | 99.6 | | - Other Bumis | 94.9 | 93.3 | 94.9 | | Marital status | | | | | - Never married | 97.8 | 101.1 | 92.3 | | - Married/cohab | 98.6 | 101.5 | 96.6 | | iting | | | | | - Divorced/separ | 90.9 | 93.7 | 87.2 | | ating | | | | | - Widow | 77.3 | | 77.1 | | Educational level | | | | | - Non-formal | 81.2 | 80.9 | 81.7 | | - Primary | 96.1 | 96.1 | 96.6 | | - Secondary | 98.1 | 103.3 | 91.8 | | - Tertiary | 100.8 | 101.3 | 100.2 | | - Others | 99.1 | 93.4 | 115.6 | | Work status | | | | | - Government/se | 98.6 | 100.9 | 97.8 | | mi-government | | | | | - Private | 97.3 | 99.1 | 94.1 | | - Self-employed | 100.4 | 103.0 | 93.7 | | - Unpaid | 104.8 | 135.7 | 104.8 | | workers | | | | | | | | - | Not working | 94.5 | 88.0 | 95.1 | |-----------|-------------|------------|-----|---------------|--------------|----------------|--------------| | | | | - | Retired | 92.7 | 85.0 | 112.1 | | | | | - | students | 88.4 | 96.1 | 84.0 | | | | | Inc | ome group | | | | | | | | - | less than | 93.5 | 96.0 | 91.3 | | | | | RM | 1 1500 | | | | | | | | - | RM1500- | 102.3 | 106.0
 98.1 | | | | | RM | 13500 | | | | | | | | - | More than | 100.7 | 106.0 | 97.8 | | | | | RM | 13500 | | | | | | | | | | | | | | Asma | 3063 | 126-item | Ag | e group (y) | Mean p | orotein | Protein as % | | (2014) | individuals | FFQ | | | intake | $(g/d) \pm SD$ | RNI | | analysis | aged 18 to | | | | | | | | of | 59 y | | Me | n | | | | | MANS | | | | | | | | | 2003 | | | | | | | | | data[7] | - | 18-29 | 110 ± 1 | .5 | | | | | | - | 30-50 | 114 ± 1 | .5 | | | | | | - | 51-60 | 106 ± 3 | .2 | | | | | | - | Total for all | 112 ± 1 | .0 | 180.4 | | | | | age | es | | | | | | | | Wo | omen | | | | | | | | - | 18-29 | 91 ± 1.1 | l | | | | | | - | 30-50 | 97 ± 1.2 | 2 | | | | | | - | 51-60 | 91 ± 1.9 |) | | | | | | - | Total for all | 94.1 ± (| 0.8 | 171.2 | | | | | age | es | | | | | Mirnali | MANS 2003 | Single 24- | | | | | | | ni et al. | data (6886 | hr recall | | | | | | | (2008)[8 | individuals | | Me | n | Mean (| (g/day) ± | Mean % RNI | |] | aged 18 to | | | | SE | | | | | 59 y) | | | | | | | | | | | - | 18-19 | 65 ± 3.7 | 7 | 104.8 | | | | | - | 20-29 | 64 ± 1.0 | | 103.3 | | | | | - | 30-39 | 67 ± 1.1 | | 108.1 | | | | | - | 40-49 | 63 ± 1.0 | | 101.6 | | | | | - | 50-59 | 61 ± 1.3 | 3 | 98.4 | | | | | Wo | omen | | | | | | | | - | 18-19 | 53 ± 2.6 | | 96.4 | | | | | - | 20-29 | 57 ± 1.0 |) | 103.6 | | - | 30-39 | 55 ± 0.9 | 100.0 | |-----|-------|--------------|-------| | - | 40-49 | 53 ± 1.0 | 96.4 | | - | 50-59 | 51 ± 1.3 | 92.7 | | All | | | | | - | 18-19 | 59 ± 2.3 | | | - | 20-29 | 61 ± 0.7 | | | - | 30-39 | 61 ± 0.7 | | | - | 40-49 | 58 ± 0.7 | | | - | 50-59 | 56 ± 0.9 | | | | | | | Small studies | Source | Sample | Method | Results | | | | | |-----------|------------|------------|---------------|---|--|---------|--------| | (y) | | | | | | | | | All ages | | | | | | | | | Karupai | 128 urban | 3-day diet | Age group (y) | Mean | Protein as | s % RNI | | | ah et al. | women | records (2 | | prote | | | | | (2013)[9 | aged 19 to | weekdays | | in | | | | |] | 65 y | , 1 | | intak | | | | | | | weekend) | | e | | | | | | | | | (g/d) | | | | | | | | | ± SD | | | | | | | | 19 to 29 | 71 ± 9 | 129 | | | | | | | 30 to 50 | 71 ± | 129 | | | | | | | | 11 | | | | | | | | 51 to 59 | 71 ± | 129 | | | | | | | | 11 | | | | | Young | | | | | | | | | adults | | | | | | | | | Abdull | 200 | Single 24- | Subjects | Mean | <rni< td=""><td>Meet</td><td>>RNI</td></rni<> | Meet | >RNI | | Hakim | students | hr recall | | prote | No. (%) | RNI | No.(%) | | et al. | aged 18 to | | | in | | No.(%) | | | (2012)[1 | 24 y (45% | | | intak | | | | | 0] | males, 55% | | | e | | | | | | females) | | | (g/d) | | | | | | | | | ±SD | | | | | | | | Males - 18 y | 67.74 | | | | | | | | - | ± | | | | | | | | | 21.22 | | | | | | | | - 19+ y | 73.62 | | | | | | | | | ± | | | | | | | | | 19.15 | | | | | 0] | | | · | (g/d)
±SD
67.74
±
21.22
73.62
± | | | | | | | | Total | 71.33
±
20.07 | 38 (4 | 12) | 2 (2. | 4) | 50
(56.4) | |--------------------------------------|--|-------------------------|-------------------------------|--------------------------------------|-----------------------------------|----------------------------------|----------------------------|--------------------|--------------------| | | | | Females – 18 y | 61.59
±
19.73 | | | | | | | | | | -
19+ y | 63.59
±
20.55 | | | | | | | | | | Total | 63.01
±
20.24 | 75 (6 | 58) | 2 (1. | 9) | 33
(30.2) | | Gan et
al.
(2011)[1
1] | students
aged 18 to
24 y (41%
males; 59%
females) | Two 24-h
recalls | Subjects | Mean prote in intak e (g/d) ± SD | Prote
as %
RNI
mean
D | • | <rn
No.
(%)</rn
 | | ≥RNI
No.
(%) | | | | | Males | 80.6 ± 27.1 | 128.6
.2 | 6±43 | 60(2 | 5.3 | 177(74.
7) | | | | | Females | 60.7 ± 23.4 | | 6±42 | • | 45. | 187(54.
4) | | Older
adults | | | | | | | | | | | Norsha
m et al.
(2015)[1
4] | 450 women
aged 30 to
65 y | | Subjects | Mean
protein
intake
(g/day) | | Protintal
10-3
ener
No. | ke
5%
gy | inta
>35
ene | tein
ke
% | | | | | Normal (n=292) | 59.2±21 | .3 | 104
(69.3 | 3) | 188 | (62.7) | | | | | With breast adiposity (n=158) | 70.0±37 | 7.9 | 46
(30.7 | 7) | 112 | (37.3) | | Yee et
al.
(2013)[1
2] | 73 healthy
Chinese
premenopa
usal women
aged 30 to | Single 24-
hr recall | All subjects 30 to 45 y | Mean
prote
in
intak
e | RNI | for st | udy Į | oopu | lation | | | 45 y from
Klang
Valley | | | (g/d)
± SD | RNI = 55 g/day (presented | |-----------------|------------------------------|------------|---------------------|------------------------------|--| | | | | | 30
(rang
e 15-
175) | for comparison only; no computation done by authors) | | Sulaima | 301 women | Single 24- | Subjects according | Mean | Protein as % RNI | | n et al. | (151 in rural | h recall; | to food security | prote | (mean ± SD) | | (2011)[1 | areas, 150 in | MANS | status | in | | | 3] | urban | FFQ | | intak | | | | areas) aged | | Rural respondent | e | | | | 21 to 49 y | | | (g/d) | | | | (mean age | | | ± SD | | | | 38.05 ± 7.03 | | | | | | | у) | | - Food secure | 85.76 | 154.42 ± 54.23 | | | | | 1 oou seedre | ± | 101.12 2 0 1.20 | | | | | | 29.06 | | | | | | - Moderately | 82.09 | 148.45 ± 65.49 | | | | | insecure | ± | | | | | | | 35.78 | | | | | | - Severely insecure | 73.32 | 134.47 ± 53.61 | | | | | | ± | | | | | | | 29.21 | | | | | | Urban respondent | | | | | | | - Food secure | 64.37 | 117.03 ± 40.05 | | | | | | ±
22.47 | | | | | | - Moderately | 59.29 | 107.80 ± 44.87 | | | | | insecure | ± | 107.00 ± 41.07 | | | | | 11000010 | 24.68 | | | | | | - Severely insecure | 55.03 | 100.06 ± 42.61 | | | | | · | ± | | | | | | | 23.44 | | | - | 2.0 | | | | . | | Pon et | 360 urban | Quantitat | Subjects | Mean | Protein as % RDA | | al.
(2006)[1 | middle- | ive FFQ | | prote | | | (2006)[1
5] | aged | | | in
intak | | | <i>ی</i> ا | women | | | e | | | | | | | - | | | aged 51.65 ± | | (g/da | |--------------|----------------|--------------| | 5.4 y | | y) ± | | | | SD | | | Females (all) | 59.4 ± 144.8 | | | | 10.4 | | | Premenopausal | 59.8 ± 145.9 | | | | 10.9 | | | Postmenopausal | 58.7 ± 143.2 | | | | 9.5 | ⁻⁻⁻ No data Table S4. Findings on fat intake of Malaysian adults | Source | Sample | Method | Results | | | |---|---|--|---|--|-------------------| | FAO food balance sheet (2013)[5] | n/a | Calculated
from
available
food supply | | ita/day) = 89.74
apita/day) = 807.66; con
% of available energy/cap | • | | Mahmu
d et al.
(2015)[6] | MANS 2014 sample | Single 24-hr
recall | fat = 3.4% (95% CI
- Males = 3.1%
- Females = 3.7
94.9% of adults ha | laysian adults that met the 2.7, 4.4) (95% CI 2.2, 4.5) (95% CI 2.7, 5.1) and intakes exceeding the latintakes below the RNI | | | MANS
2014[16] | 2973
individuals
aged 18 to 59
years | Single 24-hr
recall | | (both sexes) = 46.43 g/da
ge of total energy contributen and women | - | | Asma
(2014)
analysis
of
MANS
2003[7] | 3063
individuals
aged 18 to 59
y | 126-item
FFQ | Age group (y) Men (RNI 54-82 g; 20-30% TEI) - 18-29 - 30-50 | Mean fat intake $(g/day) \pm SD$ 65 ± 1.9 67 ± 2.1 | Fat as mean % RNI | | | | | - 51-60 | 58 ± 4.4 | | | | | | | men (RNI 46-
g; 20-30%
f)
18-29
30-50
51-60
Total for all | 65 ± 1.4 52 ± 1.4 53 ± 1.5 42 ± 1.5 51.4 ± 0.9 |

111.8 | |-----------------------------------|--|------------------------|--|---|--|---------------| | Mirnalin
i et al.
(2008)[8] | MANS 2003
sample; 6886
individuals
aged 18 to 59
y | Single 24-hr
recall | Me
g/d | | both sexes (all age group | os) = 46 | | | , | | Me | n | Mean fat intake | Mean as | | | | | | | (g/day) ± SE | % TEI | | | | | _ | 18-19 | 56 ± 3.7 | | | | | | - | 20-29 | 56 ± 0.9 | | | | | | _ | 30-39 | 56 ± 1.0 | | | | | | | | 00 = 1.0 | | | | | | _ | 40-49 | 53 ± 1.1 | | | | | | | | | | | | | | - | 40-49 | 53 ± 1.1 | | | | | | - | 40-49
50-59 | 53 ± 1.1 | | | | | | -
-
Wo | 40-49
50-59
omen | 53 ± 1.1
49 ±1.4 |
 | | | | | -
-
Wo | 40-49
50-59
omen
18-19 | 53 ± 1.1 49 ± 1.4 46 ± 1.9 |

 | | | | | -
-
Wo | 40-49
50-59
omen
18-19
20-29 | 53 ± 1.1 49 ± 1.4 46 ± 1.9 48 ± 0.9 | | | | | | -
Wo | 40-49
50-59
omen
18-19
20-29
30-39 | 53 ± 1.1 49 ± 1.4 46 ± 1.9 48 ± 0.9 45 ± 0.8 | | | | | | -
Wo | 40-49
50-59
men
18-19
20-29
30-39
40-49
50-59 | 53 ± 1.1 49 ± 1.4 46 ± 1.9 48 ± 0.9 45 ± 0.8 43 ± 1.0 | | | | | | -
Wo | 40-49
50-59
men
18-19
20-29
30-39
40-49
50-59 | 53 ± 1.1 49 ± 1.4 46 ± 1.9 48 ± 0.9 45 ± 0.8 43 ± 1.0 | | | | | | -
Wo |
40-49
50-59
omen
18-19
20-29
30-39
40-49
50-59 | 53 ± 1.1 49 ± 1.4 46 ± 1.9 48 ± 0.9 45 ± 0.8 43 ± 1.0 41 ± 1.2 | | | | | | -
Wo
-
-
-
-
-
-
All | 40-49
50-59
omen
18-19
20-29
30-39
40-49
50-59 | 53 ± 1.1 49 ± 1.4 46 ± 1.9 48 ± 0.9 45 ± 0.8 43 ± 1.0 41 ± 1.2 51 ± 2.1 | | | | | | -
Wood-
-
-
-
-
All | 40-49
50-59
omen
18-19
20-29
30-39
40-49
50-59
18-19
20-29 | 53 ± 1.1 49 ± 1.4 46 ± 1.9 48 ± 0.9 45 ± 0.8 43 ± 1.0 41 ± 1.2 51 ± 2.1 52 ± 0.7 | | Small studies | Source | Sample | Method | Results | |--------|--------|--------|---------| | (y) | | | | All ages | Kaur et al. (2016)[1 | 101
Malaysian
Punjabis aged
18 to 59 y | 2-day diet
records | Subjects All (both sexes) | Median fat intake g/day, (P5, P95) 61.48 (34.1, 93.2) | Fat as smean± | | | |---------------------------------------|---|---|---|---|------------------------------|---------------------------|--------------------| | Young
adults | | | | | | | | | Shahril
et al.
(2013)[1
8] | 380 students
aged 18 to 24
y | Diet history
for the last 7
days, FFQ | Subjects | Mean fat intake (g/day) at baseline | Fat as S | % energy | | | | | | Intervention groupControlgroup | | 34.0±0. | | | | Abdull
Hakim
et al.
(2012)[1 | n=200
students aged
18 to 24 y
(45% males,
55% females) | Single 24-hr
recall | Subjects | Mean
fat
intake
(g/d) ±
SD | <rni
No.
(%)</rni
 | Meet
RNI
No.
(%) | >RNI
No.
(%) | | | | | Males - 18 y | 91.11 ±
41.84
78.36 ± | | | | | | | | 19+ y
Total | 25.59
83.32 ±
33.25 | 19
(21.1) | 34
(37.5) | 37
(41.5) | | | | | Females – 18 y | 79.19 ± 26.31 72.04 ± | | | | | | | | 19+ y
Total | 26.12
74.12 ±
26.26 | 16
(14.6) | 32
(28.9) | 62
(56.5) | | Ismail et al. (2012)[1 9] | 88 adults
aged 18 to 30
y with and
without acne
vulgaris | 3 day food
diaries | Subjects Males - Cases - Controls Females - Cases | Fat
intake | (Mean: 33.3 ± 4 33.7 ± 4 33.3 ± 5 | l.1
l.0 | gy | |-----------------------------------|---|--|--|--|---|--|--| | Gan et
al.
(2011)[1
1] | n=584
students aged
18 to 24 y
(41% males;
59% females) | Two 24-h
recalls | - Controls Subjects Males Females | Mean fat intake (g/d) ± SD 75.7 ± 26.1 59.2 ± 21.2 | Fat <20% energ y No. (%) 51 (21.5) 92 (26.8) | 20-
30%
energ
y
No.
(%)
101
(42.6)
156
(45.5) | Fat >30% energ y No. (%) 85 (35.9) 95 (27.7) | | Older
adults | | | | | | | | | Shyam
et al.
(2015)[2
0] | nondiabetic women with previous gestational diabetes aged 20 to 40 y with mean age 30.5 ± 9 y | 3-day
dietary
records at
baseline | Subjects according to treatment group assignment | Mean
fat
intake
(g/day)
± SD | Fat as ?
±SD) | % energy | (mean | | | uge 50.5 ± 7 y | | LGI (low glycemic index) CHDR (conventional healthy diet recommendation s) | 62 ± 23
60 ± 20 | 29 ± 8 30 ± 6 | | | | Norsha
m et al.
(2015)[1
4] | 450 women
(Malaysian,
Chinese,
Indian) aged
30 to 60
without
breast cancer | Diet history
questionnai
re | Subjects according to breast adiposity | Mean fat intake (g/d) ± SD | Fat intake
25-35%
energy
No. (%) | High fat intake >35% energy No. (%) | |--------------------------------------|--|---|---|--|---|-------------------------------------| | | | | Normalbreast densityAdiposityof the breast | 58.3 ± 22.5 63.5 ± 21.7 | 38 (53.5)
33 (46.5) | 254 (67.0)
125 (33.0) | | Yee et al. (2013)[1 2] | 73 healthy
Chinese
premenopaus
al women
aged 30 to 45
y from Klang
Valley | Single 24-hr
recall | Subjects | Mean
fat
intake
(g/day)
± SD | Fat as % ene | ergy | | | | | All subjects 30 to 45 y | 61 ± 23 | 36 | | | Eng & Moy (2011)[2 | 151 Malay
adults (37.6%
males, 62.4%
females)
mean age 49.8
± 4.1 y | 3-day
dietary
records (2
weekdays, 1
weekend) | Subjects | Mean fat intake (g/d) ± SD | Fat as % end | ergy | | | , | | All (both sexes) | Total fat = 66.8 ± 16.9 | 32.8 ± 5.2 | | | | | | | Saturate
d fat =
22.7 ±
7.04 | % energy from saturated factors 2.91 | | | | | | | MUFA = 19.1 ± 5.51 | % energy from = 8.52 ± 2.27 | | | | | | | PUFA = 12.0 ± 4.46 | % energy from 5.34 ± 1.97 | om PUFA = | | Sulaima
n et al.
(2011)[1
3] | 301 women
(151 in rural
areas, 150 in
urban areas)
aged 21 to 49
y (mean age | Single 24-h
recall;
MANS FFQ | Subjects
according to
food security
status | Mean
fat
intake
(g/day)
± SD | Fat as % en
(mean ± SD | | |---------------------------------------|---|------------------------------------|---|--|---------------------------|------------| | | $38.05 \pm 7.03 \text{ y}$ | | Rural | | | | | | | | respondent | | | | | | | | - Food secure | 69.85 ± | 32.28 ± 4.98 | | | | | | | 27.96 | 20.72 7.75 | | | | | | - Moderately | 57.34 ± | 29.62 ± 6.73 | | | | | | insecure | 27.29
50.89 ± | 27.07 + 6.70 | | | | | | - Severely
insecure | 30.89 ± 24.84 | 27.97 ± 6.70 | | | | | | Urban | 24.04 | | | | | | | respondent | | | | | | | | - Food secure | 42.24 ± | 26.88 ± 5.92 | | | | | | | 14.16 | | | | | | | - Moderately | 34.50 ± | 23.55 ± 6.49 | | | | | | insecure | 16.69 | | | | | | | - Severely | 32.81 ± | 24.39 ± 6.11 | | | | | | insecure | 17.47 | | | | Shahar | 70 le c el there | Diethietem | | | | | | et al. | 70 healthy
men aged 40 | Diet history questionnai | Mean fat intake ± | SD | Fat as % en | ergy (mean | | (2011)[2 | to 80 y (mean | re (DHQ) | (g/day) | | ± SD) | ergy (mean | | 4] | = 67.8 y | ~/ | (8)) / | | - / | | | | • | | 45.0 ± 13.1 | | 25.1 ± 5.9 % |) | | | | | | | | | | Lee et al. | 115 women | Diet history | Subjects | | Fat as % en | ergy | | (2010)[2 | aged 18 to 59 | over 7 days | | | (mean ± SD |)) | | 2] | y (mean age | | | | | | | | $37.2 \pm 7.6 \text{ y}$ | | normal | | 21.0 + 6.4 | | | | | | - normal
weight | | 31.0 ± 6.4 | | | | | | - overweight | | 32.4 ± 6.6 | | | | | | - obese | | 33.5 ± 5.8 | | | | | | | | | | | Asma et | 150 married | 2-day 24-hr | Subjects | | Total fat | Saturated | | al. | couples aged | recall, FFQ | | | as % | fat as % | | (2010)[2 | 20 and above | | | | energy | energy | | 3] | (mean age | | | | (mean ± | (mean ± | | | husbands | | | | SD) | SD) | 43.33 ± 11.16 y; wives 41.28 ± 10.93 y) | - | husbands |
28.6 ± 5.8 | 4.3 ± 2.8 | |---|----------|--------------------|---------------| | - | wives |
29.7 ± 6.2 | 4.9 ± 3.1 | --- No data | Source | Sample | Method | Results | | | |-----------|-----------------|--------------|-------------------|------------------------|------------| | (y) | | | | | | | FAO | n/a | Per capita | Supply for | Available | Estimated | | food | | values | carbohydrate- | kcal/capita/day | % of per | | balance | | calculated | source foods | | capita | | sheet | | from | | | available | | (2013)[5] | | available | | | energy * | | | | food supply | | | | | | | | - Cereals | 1279 | 44 % | | | | | excluding | | | | | | | beverages | | | | | | | - Sugar & | 411 | 14 % | | | | | sweeteners | | | | | | | - Fruits | 57 | 2% | | | | | excluding wine | | | | | | | - Vegetables | 56 | 2% | | | | | - Starchy | 31 | 1% | | | | | roots | | | | | | | Total | 1834 | 63% | | Nationwid | e studies | | | | | | Mahmu | MANS 2014 | Single 24-hr | Prevalence of ad | ults that met the RNI | for | | d et al. | sample | recall | carbohydrate | | | | (2015)[6] | - | | - Males = 39.1 | % (95% CI 35.6, 42.7) | | | | | | - Females = 4 | 1.5% (95% CI 38.3, 44. | 7) | | | | | 6.3% of adults ha | nd intakes exceeding t | he RNI | | | | | | nad intakes below the | | | MANS | 4000 adults | Single 24-hr | Median daily int | ake of carbohydrate v | vas 195 g; | | 2014[16] | aged 18 to 59 v | recall | • | rgy from carbohydra | _ | | | | | 53.5% of adults had intakes below the RNI | |----------|-----------------|--------------|---| | MANS | 4000 adults | Single 24-hr | Median daily intake of carbohydrate was 195 g; median % of energy from carbohydrate was 55% | | 2014[16] | aged 18 to 59 y | recall | | | Mirnalin | MANS 2003 | Single 24-hr | Mean CHO intake (both sexes, all age groups) = 232 ± 1.4 g/day; contributed 59% of energy intake Median CHO
intake = 221 g/day 19 | | i et al. | sample | recall | | (2008) [8] | Asma (2014) analysis of MANS 2003[7] | 3063
individuals
aged 18 to 59 y | 126-item
FFQ | Age | e group (y)
n | Mean CHO intake
(g/day) ± SD | Mean
%RNI
(55-70%
TEI) | |--------------------------------------|--|-----------------|--------------------|---------------------------------------|--|---------------------------------| | | | | | men | 461 ± 4.2
463 ± 3.3
447 ± 7.5
460 ± 2.5 |

74.4 | | | | | -
-
-
age | 18-29
30-50
51-60
Total (all | 393 ± 3.5
403 ± 3.1
391 ± 7.2
397.5 ± 2.2 |

74.9 | | Small | studies | | |-------|---------|--| | Smun | siuuies | | | Source | Sample | Method | Results | | | |----------|------------------|----------------|--------------|-------------------|--------| | (y) | | | | | | | All ages | | | | | | | Kaur et | 100 Malaysian | 3-day 24 h | Median CHO | % energy from CHO | | | al. | Punjabis aged | recalls | intake | Mean ±SD | | | (2016)[1 | 18 to 59 y (mean | | (g/day) | | | | 7] | age 31.4 ± 11 y) | | | | | | | | | | | | | | | | 243.9 | 54.6 ±7.2 | | | | | | | | | | Young | | | | | | | adults | | | | | | | Shahril | 380 students | Diet history | Treatment | Mean CHO intake | % | | et al. | aged 18 to 24 y | for the last 7 | group | $(g/day) \pm SD$ | energy | | (2013)[1 | | days, FFQ | | | from | | 8] | | | | | CHO | | | | | | | Mean | | | | | | | ±SD | | | | | Intervention | | 51.9 ± | | | | | | | 0.4 | | | | | Control | | | | 51.6 ± 0.4 | |-----------------------------------|---|--|------------------|---|--------------------------------------|--|----------------------------| | Gan et
al.
(2011)[1
1] | n=584 students
aged 18 to 24 y
(41% males;
59% females) | Two 24-h
recalls | Subject
s | Mean
CHO
intake
± SD
(g/day | CHO intake
<55% energy
No. (%) | 55-
70%
energ
y
No.
(%) | >70%
energy
No. (%) | | | | | Male | 280 ±
91 | 153 (64.6) | 80 (33.8) | 4 (1.7) | | | | | Female | 214 ± 73 | 208 (60.6) | 135
(39.4) | 0 (0.0) | | Ismail et al. (2012)[1 | 88 adults aged
18 to 30 y | 3 day food
diaries | Subjects | | Mean CHO in (g/day) ± SD | take | % energy from CHO Mean ±SD | | | | | Males
- Cas | ses with | | | 50.5 ± | | | | | acne | | | | 3.6 | | | | | - Coi | ntrols | | | 51.7 ± 4.7 | | | | | Females | | | | | | | | | | ses with | | | 51.8 ± 6.6 | | | | | acne
- Coi | ntrols | | | 53.1 ± 4.3 | | Older
adults | | | | | | | | | Shyam
et al.
(2015)[2
0] | 77 nondiabetic women with previous GDM aged 20 to 40 y receiving conventional dietary recommendations (CHDR) or | 3-day
dietary
records at
baseline | Treatme
group | nt | Mean CHO in
(g/day) ± SD | take | % energy from CHO Mean ±SD | | | low GI
education (LGI) | | | | | | | |--------------------------------------|------------------------------------|-----------------------------------|-----------------------------|---------------------------------------|-----------------------------------|--------------------------------------|--| | | | | - | CHDR | 245 ± 75 | | 55 ± 9 | | | | | - | LGI | 225 ± 68 | | 53 ± 7 | | Norsha
m et al.
(2015)[1
4] | 450 women aged 30 to 65 y | Diet history
questionnai
re | Sub | jects | Mean CHO
intake ±SD
(g/day) | CHO intake 55-75% of energ y No. (%) | High
CHO
intake
>75%
energy
No. (%) | | | | | - | Normal | 162.7±46.5 | 52
(66.7) | 240
(64.5) | | | | | - | With breast | 171.3±55.9 | 26 | 132 | | | | | adi | posity | | (33.3) | (35.5) | | Sulaima | 301 women (151 | Single 24-h | Res | pondents | Mean CHO in | take | % | | n et al. | in rural areas, | recall; | | | $(g/day) \pm SD$ | | energy | | (2011)[1 | 150 in urban | MANS FFQ | | | | | from | | 3] | areas) aged 21 | | | | | | CHO | | | to 49 y (mean age 38.05 ± 7.03 | | | | | | Mean
±SD | | | y) | | Rui | ·al | | | | | | | | | ood secure | | | 50 ± 5.3 | | | | | | oderate food | | | 51 ± 8.8 | | | | | inse | ecurity | | | | | | | | - Se | evere food | | | 53 ± 8.3 | | | | | inse | ecurity | | | | | | | | Urb | oan | | | | | | | | | od secure | | | 56 ± 8.2 | | | | | - FC | ou secure | | | 30 ± 0.2 | | | | | | oderate food | | | 50 ± 3.2 59 ± 7.4 | | | | | - M | oderate food
ecurity | | | 59 ± 7.4 | | | | | - M
inse
- Se | oderate food
ecurity
evere food | | | | | | | | - M
inse
- Se | oderate food
ecurity | | | 59 ± 7.4 | | Shahar
et al. | 70 healthy men
aged 67.8 ±4.6 y | Diet history
questionnai | - M
inse
- Se
inse | oderate food
ecurity
evere food |

e ± SD (g/day) | | 59 ± 7.4 | ±SD) 4] | | | | 238 ± 54 | | 58.8 ± 7.1% | |---------------------------|---|---|---------------|---------------------------------------|-----------------------------| | Lee et al. (2010)[2
2] | 47 normal energy reporters, Malay women aged 20 to 59 y (mean age 37.2±7.6 y) | Food
history over
a period of
7 days | Weight status | Mean CHO intake
(g/1000 kcal) ± SD | % energy from CHO Mean ± SD | | | | | - Normal | 138 ± 17 | 55.1 ± 6.6 | | | | | - Overweight | 141 ± 23 | 55.9 ± 9.4 | | | | | - Obese | 136 ± 21 | 54.4 ± 8.4 | ⁻⁻⁻ No data Table S6. Assessment for risk of bias | | Selection | n bias | Performa | nce bias | Reporting bias | | | | |----------|----------------------------|--|---|---------------------------------|--|--|----------------|--| | Study | Sampl
ing
metho
d | Represent
ative of
age 19 to
59 y | Dietary
assessm
ent
method
used | Usual
intake
measu
red | Included/excl
uded
over/underrep
orters | Use of free vs. all includ ing payme nt-requiring database | Total
score | Classifica
tion of
risk of
bias | | Norsha | | | | | | | | | | m et al. | | | | | | | | | | 2015 | 2 | 1 | 4 | 2 | 2 | 2 | 13 | moderate | | Shyam | | | | | | | | | | et al. | | | | | | | | | | 2015 | 2 | 2 | 4 | 2 | 2 | 2 | 14 | high | | Karupa | | | | | | | | | | iah et | | | | | | | | | | al. 2013 | 1 | 1 | 4 | 2 | 2 | 2 | 12 | moderate | | Shahril | | | | | | | | | | et al. | | | | | | | | | | 2013 | 1 | 2 | 4 | 2 | 2 | 2 | 13 | moderate | ^{*} Calculated from food balance sheet data | Yee et | | | | | | | | | |----------|---|---|---|---|---|---|-------|----------| | al. 2013 | 2 | 2 | 5 | 2 | 2 | 2 | 15 | high | | Abdull | | | | | | | | | | Hakim | | | | | | | | | | et al. | | | | | | | | | | 2012 | 2 | 2 | 5 | 2 | 2 | 2 | 15 | high | | Ismail | | | | | | | | | | et al. | | | | | | | | | | 2012 | 2 | 2 | 3 | 2 | 2 | 2 | 13 | moderate | | Eng & | | | | | | | | | | Moy | | | | | | | | | | 2011 | 2 | 2 | 4 | 2 | 2 | 2 | 14 | high | | Gan et | | | | | | | | | | al. 2011 | 1 | 2 | 2 | 2 | 2 | 2 | 11 | moderate | | Shahar | | | | | | | | | | et al. | | | | | | | | | | 2011 | 2 | 2 | 4 | 2 | 2 | 2 | 14 | high | | Sulaim | | | | | | | | | | an et | | | | | | | | | | al. 2011 | 1 | 2 | 5 | 2 | 2 | 2 | 14 | high | | Asma | | | | | | | | | | et al. | | | | | | | | | | 2010 | 2 | 2 | 2 | 2 | 2 | 2 | 12 | moderate | | Lee et | | | | | | | | | | al. 2010 | 2 | 1 | 4 | 2 | 1 | 2 | 12 | moderate | | Pon et | | | | | | | | | | al. 2006 | 2 | 2 | 6 | 2 | 2 | 2 | 16 | high | | | | | | | | | Over | | | | | | | | | | all | | | | | | | | | | score | | | | | | | | | | = | MODER | | | | | | | | | 13.35 | ATE TO | | | | | | | | | 2 | HIGH | Scoring guide: | Selection bias indicators | Score | |--|---| | - Sampling method | 1 = random sampling; 2 = purposive or convenience | | - Representative of adults aged 19 to 59 y | 1 = yes; 2 = no, specific groups only | | Performance bias indicators | | | - Dietary assessment method used | 1 = food weighing | | | 2 = multiple 24-h recalls | |--------------------------------------|--| | | 3 = food diary (multiple days) | | | 4 = diet history | | | 5 = single 24-h recall | | | 6 = food frequency questionnaire (FFQ) | | - Usual intake measured | 1 = yes; 2 = no | | Reporting bias indicator | | | - Included over/underreporters | 1 = no; 2= yes | | - Use of free databases only vs. all | | | databases | used | Total score classification: 6-9 (low risk of bias); 10-13 (moderate risk of bias); 14-16 (high risk of bias) Table S7. Sources of macronutrients in included studies | | Sources of macronutrients | | | | | | | |----------|----------------------------|--|------------------------|--|--|--|--| | Author | Carbohydrates (CHO) | Protein | Fat | | | | | | (y) | | | | | | | | | | | | | | | | | | FAO | Available supply of CHO | % protein supply from | % fat from | | | | | | food | sources; | - Vegetal products = 44% | - Vegetal products | | | | | | balance | kg/capita/day (% of total | (36.19 g/capita/day) | = 62% (55.8 | | | | | | sheet | CHO supply*) | - Animal products = 56% | g/capita/day) | | | | | | (2013)[5 | | (45.4 g/capita/day) | - Animal products | | | | | |] | | | = 38% (33.86 | | | | | | | | | g/capita/day) | | | | | | | - Cereals excluding | Animal protein sources; | Vegetable
fat sources; | | | | | | | beverages = 150.12 (46%) | kg/capita/day | Kg/capita/day (% of | | | | | | | | (% of total protein supply*) | veg. fat supply*) | | | | | | | - Vegetables = 70.43 (22%) | - Fish, seafood = 58.97 | - Vegetable oils = | | | | | | | | (34%) | 16.63 (75% of veg. fat | | | | | | | | | supply) | | | | | | | - Fruits excluding wine = | - Meat & poultry = 56.25 | • palm oil = 6.89 | | | | | | | 45.29 (14%) | (33%) | (41% of veg. oil) | | | | | | | - Sugar & sweeteners = | Meat (bovine, pig, | • palm kernel oil = | | | | | | | 44.12 (14%) | mutton & goat) = 15.22 kg | 4.37 (26%) | | | | | | | | (28% of meat supply) | | | | | | | | - Starchy roots = 14.91 | • Poultry = 41.04 kg (73% | • soyabean oil = | | | | | | | (5%) | of meat supply) | 2.35 (14%) | | | | | | | Available cereals | - Milk = 25.28 (15%) | • Coconut oil = | | | | | | | (kg/capita/day) | | 1.13 (7%) | | | | | | | - Rice, milled = 81.25 | - Eggs = $16.57 (10\%)$ | • oilcrops, other = | | | | | | | | | 0.97 (6%) | | | | | - Wheat & wheat products = 51.04 - Maize & products = 15.82 - Cereals, other = 1.09 - Oats = 0.87 - Pulses, nuts, seeds = 10.04 (6%) - Offal edible = 4.03 (2%) - Maize germ oil = 0.33 (2%) - Sesame oil = 0.32 (2%) - Ground nut oil = 0.18 (1%) - Oilcrops = 5.49 (25% of veg. fat supply) Animal fat sources (visible fat supply) Saturate Kg/capita/ d fat day (% of animal fat supply*) - Fat, 0.69 (63%) animal raw - Butt 0.32 (29%) er, ghee - Cre 0.02 (2%) am Total 1.03 (94%) saturate d fat Unsatura ted fat - Fish 0.07 (6%) liver oil Nation wide studies MANS Top carbohydrate-source 2014[16 foods consumed daily by] adults and % consuming - White rice = 89.8% - Sugar (white, brown, Melaka) = 55.9% - Leafy green vegetables = 43.2% - Condensed milk = 23.5% Top protein-source foods consumed daily by adults (% consuming) - Marine fish (29.4%) - Hen egg (14.2%) NR 26 Cream crackers = 12.9% Top carbohydrate-source foods consumed weekly by adults and % consuming - Cabbage = 55.7% - Local kuih = 53.9% - White bread = 50.9% - Leafy green vegetables = 47.3% Noodles = 46.7% Top protein-source foods consumed weekly by adults (% consuming) - Hen egg = 70.6% - Chicken = 66.9% - Marine fish = 56.4% - Other types of legumes (long bean, French bean, kacang botol) = 47.6% Small studies All ages Sulaim No. of servings per day for carbohydrate-source food an et al. groups by food security status (2011)[13] No. of servings per day for NR protein-source food groups by food security status NR | | Grains | Fruits & | | Meat, | Milk & | |-----------|---------|----------|----------|---------|-----------| | | & | vegetabl | | fish, | dairy | | | cereals | es | | poultry | product | | | (no. of | (no. of | | & | s (no. of | | | svgs/da | svgs/da | | legume | svgs/da | | | y) | y) | | s (no. | y) | | | | | | of | | | | | | | svgs/da | | | | | | | y) | | | Food- | 6.44 | 1.53 | Food- | 2.83 | 0.52 | | secure | | | secure | | | | Moderat | 6.42 | 1.62 | Modera | 3.08 | 0.29 | | e | | | te | | | | insecurit | | | insecuri | | | | y | | | ty | | | | Severe | 6.38 | 1.14 | Severe | 2.34 | 0.23 | | insecurit | | | insecuri | | | | y | | | ty | | | | | | | | | | Young adults | Shahril
et al.
(2013)[1 | Mean daily servings of carbohydrate-source food groups | | | Mean daily servings of protein-source food groups | | | Mean daily servings of fat-source foods | | | |---|--|---------------|--------------------|---|--|--------------|---|--------------------|--| | 8] | - Rice = 1.7 | | | - | - Poultry = 1.6 | | | - Deep-fried foods | | | | Vegetables = 1.4Beverages withsweetened condensed milk = | | | - | 16 | | | = 0.2 | | | | 1.0 Bread = 0.8 Biscuits = 0.6 Fruits & 100% fruit juice = 0.4 Beverages with added sugar = 0.4 Noodles = 0.3 | | | Milk = 0.1 Dairy products = 0.1 Egg = 0.1 Nuts & legumes = 0.0 | | | | | | | | Sweet dessert = 0.2Cereals = 0.1 | | | | | | | | | | Abdull
Hakim
et al.
(2012)[1
0] | % of students who ate vegetables daily = 43% of males, 42% of females % of students who ate fruits daily = 14% of males, 17% of females | | | NR | | | | NR | | | Gan et al. (2011)[1 | Daily intake of carbohydrate-
source foods (% of subjects) | | | | Daily intake of protein-
source foods (% of subjects) | | | NR | | | • | | Male
s (%) | Fema
les
(%) | | | Males
(%) | Fema
les
(%) | | | | | Bread/rice/noo
dles | 72.5 | 70.9 | Mea
ken | at/chic | 70.9 | 59.4 | | | | | Vegetables | 61.7 | 60.8 | Fish | | 40.1 | 33.8 | | | | | Fruits 100% fruit | 24.9
22.0 | 23.1
14.4 | Mill
Leg | k
umes | 27.3
27.0 | 21.6
17.8 | | | | | juice
Canned drinks | 21.1 | 7.8 | | | | | | | | Older
adults | | | | | | | | |----------------------|--|----------------------|---------------|--|------------------------|----------------------|---| | Eng & Moy (2011)[2 | NR | | | NR | 2 | dai | pe of fat consumed
ly, g/day (% of
ergy) | | | | | | | | ene
-
g/d
- | Saturated fat = 7 g/day (10.1% ergy) MUFA = 19.1 ay (8.52% energy) PUFA = 12 g/day 84% energy) | | Asma et al. (2010)[2 | % of recommended no. of servings of carbohydrate-source food groups | | | NR | 2 | | energy from
urated fat | | | | Husban | wives | | | - | Husbands = 4.3% | | | Grains
Vegetabl
es | ds
110.4%
69.7 | 97.3%
68.3 | | | - | Wives = 4.9% | | | Fruits | 59.6 | 49.7 | | | | | | Pon et al. (2006)[1 | CHO foods consumed daily: fruits (71% of subjects); vegetables (90% of subjects) | | | Protein foods consumed daily (% of subjects) | | | | | 5] | Carbohydrate-containing
dishes consumed in at least 1
meal during the day (% of
subjects) | | | - | Fish & seafood (36.0%) | | | | | - Rice (in mixed rice, chicken rice, nasi lemak) (100%) | | | - | Milk (34.7%) | | | | | - Bread, cookies, cereals (55%) | | - | Legumes & products | | | | | | | | (15 | .3%) | | | | | | - Nood (30%) | les soup/si | ımilar | - | Poultry (13.1%) | | | | | | noodles/si | milar | - | Cheese & yogurt (5.3%) | | | | | | s, vegetable | es (12%) | - | Meat (4.7%) | | | - Roti canai, thosai, sandwiches, sweet potatoes (11%) - Cakes/local pastries (4%) NR – not reported ^{*} Calculated from Food Balance Sheet data