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Abstract: The aim of this study was to compare the impact of whole milk supplementation on gut
microbiota and cardiometabolic biomarkers between lactose malabsorbers (LM) and absorbers (LA).
We performed a pair-wise intervention study of 31 LM and 31 LA, 1:1 matched by age, sex, body
mass index, and daily dairy intake. Subjects were required to add 250 mL/day whole milk for four
weeks in their routine diet. At the beginning and the end of the intervention period, we collected
data on gut microbiota and cardiometabolic biomarkers. Whole milk supplementation significantly
increased Actinobacteria (P < 0.01), Bifidobacterium (P < 0.01), Anaerostipe (P < 0.01), and Blautia
(P = 0.04), and decreased Megamonas (P = 0.04) in LM, but not LA. Microbial richness and diversity
were not affected. The fecal levels of short-chain fatty acids (SCFAs) remained stable throughout the
study. Body fat mass (P < 0.01) and body fat percentage (P < 0.01) reduced in both groups, but the
changes did not differ between groups. No significant differences in other cardiometabolic markers
were found between LM and LA. When compared with LA, whole milk supplementation could
alter the intestinal microbiota composition in LM, without significant changes in fecal SCFAs and
cardiometabolic biomarkers.
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1. Introduction

Milk has been commonly regarded as an essential component of a balanced diet, since it is
rich in high-quality protein, calcium, as well as plenty of health-promoting bioactive components,
such as whey peptides, conjugated linoleum acid, oligosaccharides, and immunoglobulin [1].
Previous prospective studies suggested that milk consumption was significantly associated with
a lower risk of obesity [2], hypertension [3], type 2 diabetes [4], and cardiovascular disease [5].
In humans, the ability to digest lactose, which is the main carbohydrate present in milk, depends on
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the levels of the enzyme lactase-phlorizin hydrolase (LPH) in the small intestine, which decline rapidly
after weaning in a majority of humans. Lactose malabsorption occurs when there are not enough LPH
to hydrolyze ingested lactose in them. Under this condition, undigested lactose is generally fermented
by colonic microbiota into short-chain fatty acids (SCFAs) and gases (CO2, H2, and CH4), which
could lead to abdominal bloating, abdominal pain, diarrhea, and other uncomfortable symptoms [6].
Although previous evidence suggested that even the severe lactose malabsorbers (LM) could tolerate
the lactose in 240 mL milk per day [7], lactose malabsorption was proposed to account for low dairy
intake in many populations [8,9]. For instance, the prevalence rate of lactose malabsorption is up to
80% in the Chinese population [10]. According to the results of the 2010–2013 China Nutrition and
Health Surveillance, the average dairy consumption was only 24.7 g/day in Chinese adults [11], which
is much lower than the recommendation of 300 g/day [12].

In lactose malabsorbers, the undigested lactose and products derived from its fermentation in the
colon could be energy sources of some gut bacterial species and alter the gut microbiota composition,
so the impact of milk intake on the gut microbiota composition may be different in subjects with and
without lactose malabsorption. Lactose was demonstrated to have the capacity to stimulate the growth
of putatively beneficial genera, such as Bifidobacterium in LM, but not in lactose absorbers (LA) [13].
However, intervention studies are sparse to examine the board-spectrum response of microbiota
community to lactose/milk stimulation, including both expected cross-feeding interaction and changes
in the gut environment [14]. Additionally, accumulating evidence has suggested that alternations in gut
microbiota composition could affect host lipid and glucose metabolism via SCFAs production through
carbohydrate fermentation, and then contribute to metabolic disease [15,16]. Consequently, milk intake
may lead to changes in the cardiometabolic profiles through the alternations in gut microbiota in LM.
However, to our best knowledge, no previous study has comprehensively investigated the effects of
milk intervention on the gut microbiota composition and cardiometabolic health, according to lactose
absorption status.

Therefore, in the current study, we aimed to investigate the potentially differential effects of whole
milk supplementation on the gut microbiome and cardiometabolic biomarkers in LM and LA.

2. Materials and Methods

Prior to initiating the study, the study design and consent form were reviewed and approved by
the Ethics Committee of the School of Public Health, Tongji Medical College, Huazhong University
of Science and Technology (approval No. 12012015). The study was registered at clinicaltrials.gov
(NCT02798718).

2.1. Study Participants

This study was a 1:1 pair-wise matching intervention study in lactose absorbers and malabsorbers.
At the beginning, 233 participants were voluntarily recruited from Tongji Medical College of
Huazhong University of Science and Technology. The inclusion criteria included healthy volunteers
aged ≥18 years, Han population, and average dairy intake less than one serving during the past year.
We then excluded the participants with a history of acute or chronic gastrointestinal disorders, any
known metabolic disease (diagnosed diabetes, hypertension, or cardiovascular disease), consumption
of antibiotics or probiotics within the preceding month, use of medications or dietary supplements that
could influence glucose or lipids metabolism, pregnancy or lactation, excessive alcohol consumption,
significant body weight variation in the past three months, or a known allergy to milk.

Then, 227 eligible participants underwent a hydrogen breath test after lactose administration
to examine the presence of lactose malabsorption. Written informed consent was obtained from all
the participants before participating. This test was performed with a hydrogen breath test analyzer
(Shenzhen Zhonghe Headway Bio-Sci & Tech Co., Ltd., Shenzhen, China). Briefly, after a standardized
low-carbohydrate dinner and a 12-h fast, the end-expiratory breath H2 was determined before and at
30-min intervals after a 25-g lactose load for the ensuing 3 h. Eating, smoking, and exercising were
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not allowed throughout the test. A rise of 20 ppm in breath H2 over basal values was considered as
an indication of lactose malabsorption [17]. Finally, 31 LA and 31 LM were recruited by 1:1 pair-wise
matching with age (±3 years), sex, body mass index (BMI) (±10%), and the average dairy intake
(<125 g/day, 125–250 g/day) for the intervention study. The details of participant recruitment are
shown in Supplementary Figure S1.

2.2. Milk Intervention and Dietary Intake Assessment

In one-week run-in phase, all of the participants were required to maintain their initial diet. In the
following four-week intervention, they were further instructed to add extra one box of 250 mL whole
milk (Mengniu Dairy (Group) Co., Ltd., Hohhot, China) in their routine diet per day. All of the subjects
were instructed to maintain their usual physical activity throughout the entire study. The participants
were asked to return the empty milk package to assure compliance.

To quantify macronutrient composition, individuals were instructed to complete a three-day food
record (including two weekdays and one weekend day) at the end of run-in and intervention periods.
Before start of the study, the participants were instructed by investigators how to weigh and record
their food intake. The dietary records were checked, in the case of missing data, and analyzed by the
investigators. Energy and nutrient intake were calculated according to the “Chinese Food Composition
Tables” [18].

2.3. Cardiometabolic Biomarkers Measurement

Anthropometric and biochemical measurements were conducted at the beginning and end of
the intervention period. Body composition was measured by bioelectric impedance analysis using
Inbody 720 (BIOSPACE CHINA Inc., Shanghai, China). Body weight (kg) and body height (cm), were
measured with standardized techniques. BMI (kg/m2) was calculated as body weight divided by the
square of height. Waist circumference, hip circumference, and blood pressure were measured with
standardized techniques.

Fasting blood samples were drawn from an antecubital vein into heparinized tubes in the morning
after a 12-h fast. Plasma was separated in a 4 ◦C centrifuge and stored at −80 ◦C until analysis.
Fasting plasma glucose (FPG), total cholesterol (TC), triglycerides (TG), low-density lipoprotein
cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C) were analyzed by colorimetric
enzymatic methods using commercial kits (BioSino Bio-Technology & Science Inc., Beijing, China).
Fasting plasma insulin (FPI) and C-peptide were analyzed with ELISA kits (Mercodia AB, Uppsala,
Sweden). C-reactive protein (CRP) was determined with ELISA kits (R&D Systems, Inc., Minneapolis,
MN, USA). Malondialdehyde (MDA) was measured according to the thiobarbituric acid method with
commercial kits (Jiancheng Bioengineering Institute, Nanjing, China). Intraassay variation for FPG,
TC, TG, LDL-C, HDL-C, FPI, C-peptide, CRP, and MDA ranged from 0.9% to 5.5% and interassay
variation ranged from 1.2% to 6.5%. Homeostasis model assessment of insulin resistance (HOMA-IR)
was calculated from fasting glucose and insulin while using the following formula [19]:

HOM-IR = [FPI (mU/L) × FPG (mmol/L)] ÷ 22.5 (1)

2.4. Fecal Samples Collection and DNA Extraction

Participants were instructed to collect their stool using aseptic swabs and were sealed dung cup
before and after the intervention study. Uncontaminated samples were collected and immediately
stored in a provided cooler, then frozen at −80 ◦C within 30 min. DNA extraction was performed
using a QIAamp Fast DNA Stool Mini Kit (Qiagen, Valencia, CA, USA). The concentration of bacterial
DNA was measured using Nanodrop 2000 (Thermo Scientific, Wilmington, NC, USA).
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2.5. 16S Ribosomal RNA Gene Sequencing

The V3-V4 region of the bacteria’s 16S ribosomal RNA (rRNA) gene was amplified with
barcode-indexed primers (338F and 806R) by thermocycler Polymerase Chain Reaction (PCR system
(GeneAmp 9700, ABI, Hampton, NH, USA) using FastPfu Polymerase. Amplicons were purified using
AxyPrep DNA GelExtraction Kit (Axygen Biosciences, Union City, CA, USA), then quantified using
QuantiFluor-ST (Promega, Madison, WI, USA). Sequencing was performed using the Illumina MiSeq
platform (Illumina, San Diego, CA, USA).

2.6. Fecal Microbiota Analysis

The 16S rRNA sequencing data were processed using the Quantitative Insights Into Microbial
Ecology platform (QIIME, Boulder, CO, USA, V.1.7.1) [20]. Raw sequencing reads were demultiplexed
and filtered. Chimeras were removed and the operational taxonomic units (OTUs) were with 97%
homology were generated using USEARCH [21]. The identified taxonomy was aligned with Ribosomal
Database Project Classifier [22] and Greengenes reference database (V.13.8). To ensure an even sampling
depth, all of the samples were rarefied to the lowest read number. Alpha and beta diversity metrics
were calculated in QIIME using the rarefied OTU table. Beta diversity was estimated using weighted
and unweighted UniFrac distances between samples and was visualized with principal coordinate
analysis (PCoA).

2.7. Fecal SCFA Analysis

Fecal samples (0.5 g) were homogenized after addition of 5 mL of ultrapure water and centrifuged
at 4000 rpm for 10 min at 4 ◦C. The supernatant fluid (600 µL) was mixed with 120 µL 25% phosphoric
acid, homogenized and centrifuged at 12,000 rpm for 10 min at 4 ◦C. Then, the supernatant was
filtered through a Millex-GS 0.22-mm syringe filter unit (Millipore, Burlington, MA, USA). The filtrate
was mixed with 2-ethylbutyrate (DRE, Altshausen, Germany) as the internal standard with 1 mM.
A mixed-SCFA standard solution was prepared by using analytical quality (>99% purity) reagents
(Sigma-Aldrich, Bornem, Belgium). SCFAs were quantified with an Agilent 6890N gas chromatograph
coupled with an Agilent 5975B mass spectrometer (Agilent Technologies Santa Clara, CA, USA).
The capillary GC column was an Agilent HP-INNOWAX 30 m × 0.25 mm, 0.25 µm film thickness, with
helium as the carrier gas at a constant flow rate of 2.8 mL/min. The GC oven temperature program was
as follows: initial temperature 72 ◦C, then to 170 ◦C at 13 ◦C/min, to a final temperature 230 ◦C, where
it was held for 5 min, at 30 ◦C/min. The temperatures of the injector, transfer line, and detector were
set at 200 ◦C, 280 ◦C, and 220 ◦C, respectively. The total run time was 14.54 min. Acetate, propionate,
and butyrate were quantified with appropriate calibration curves obtained using internal standard
quantitation. The Varian MS workstation software (version 6.6) was used for data acquisition and
processing. The interday and intraday coefficient of variances ranged from 4.6% to 8.7%.

2.8. Quantitative Polymerase Chain Reaction (qPCR)

PCR amplification and detection were conducted in 96-well plates with PrimeScriptTM RT reagent
kit (TAKARA BIO INC., Dalian, China) on a DNA Engine Opticon 2 fluorescence detection system
(BIO-RID, Hercules, CA, USA). Samples were run with a final volume of 25 µL, containing 0.4 µM of
each primer and 2 µL of the respective template DNA. The specific primers for Bifidobacterium forward
CTCCTGGAAACGGGTGG and reverse GGTGTTCTTCCCGATATCTACA [23]. Amplifications were
done with the following temperature profiles: one cycle at 95 ◦C (30 s), 40 cycles of denaturation at
95 ◦C (5 s), 61 ◦C (30 s), and 72 ◦C (45 s), and a final one cycle of 94 ◦C (5 min). Quantification was
done by using standard curves made from know concentrations of plasmid DNA, which was prepared
according to Sabine et al. [24].
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2.9. Statistical Analysis

All the data were expressed as the mean ± standard error of the mean (SEM). Dietary energy
and nutrients intake were analyzed using Student’s paired t-test. For cardiometabolic biomarkers,
baseline differences were evaluated using a Student’s unpaired t-test. Between-group differences
were analyzed using a two-factor repeated measures analysis of variance (ANOVA) with time (pre,
post) and group (LM, LA) as the factors. In the case of a significant time effect being shown,
post-hoc analyses with Bonferroni correction were applied to identify significant within-group
differences. The Kolomogorov-Smirnov test was performed to test the normality of distribution.
If skewed distribution, data was logarithmically transformed. Statistics were performed with SPSS
24.0 (IBM, Brussels, Belgium).

For phylum- or genus-level microbiota groups, comparisons between two groups were evaluated
with Mann-Whitney tests, within-group differences were analyzed using Wilcoxon signed-rank tests,
between-group differences were evaluated using a linear mixed model with package “lme4” taking
into account of repeated measurements, group, gender, and BMI. Data of qPCR were expressed as
logarithmically transformed. ANOVA with Turkey post-hoc analysis was applied to compare the alpha
diversity between and within groups. Beta diversity was assessed based on unweighted and weighted
UniFrac distances and its significance was determined using permutation-based ANOVA with the use
of the Adonis function in the “vegan” package. P values were corrected for multiple comparisons using
the Benjamini-Hochberg procedure. Enterotyping on the basis of Partitioning Around Medoids with
Jensen-Shannon divergence was conducted on a combined genus-abundance matrix of all samples [25].
Besides, the optimal number of cluster was determined by the Calinski–Harabasz Index. Statistics were
performed using R version 3.3.3. A two-tailed P < 0.05 was considered to be statistically significant.
A corrected false discovery rate (FDR) < 0.2 was considered as significant [26].

3. Results

A total of 62 subjects, 31 LA and 31 LM, participated in the intervention study. There were
44 men and 18 women with an average age of 24.7 ± 0.3 years and an average body mass
index of 22.0 ± 0.4 kg/m2. No subjects dropped out of the study during the intervention period
(See Supplementary Figure S1). No significant differences were found between LA and LM at the
baseline (Table 1). No adverse events and gastrointestinal discomforts were reported during the entire
study. Energy and macronutrient intake, as assessed by self-reported three-day food records, remained
stable throughout the study, but calcium intake significantly increased in all of the participants
following the whole milk intervention (See Supplementary Table S1).
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Table 1. Baseline characteristics of subjects with and without lactose malabsorption 1.

Parameters LM (n = 31) LA (n = 31) P

Gender (Male/Female) 22/9 22/9 1.00
Age (years) 24.7 ± 0.4 24.8 ± 0.4 0.86
Height (cm) 170.0 ± 1.4 169.6 ± 1.4 0.86
Weight (kg) 62.8 ± 2.2 64.5 ± 2.1 0.58

BMI (kg/m2) 21.6 ± 0.6 22.3 ± 0.6 0.42
Waist-hip ratio 0.81 ± 0.01 0.82 ± 0.01 0.57
DBP (mmHg) 75.6 ± 1.1 75.7 ± 1.7 0.98
SBP (mmHg) 115.9 ± 1.9 116.2 ± 2.4 0.92

FPG (mmol/L) 5.14 ± 0.06 5.15 ± 0.07 0.89
FPI (mU/L) 5.72 ± 0.63 5.86 ± 0.64 0.91
HOMA-IR 1.30 ± 0.15 1.36 ± 0.16 0.89

TG (mmol/L) 0.74 ± 0.07 0.86 ± 0.06 0.09
TC (mmol/L) 4.22 ± 0.15 4.19 ± 0.22 0.93

LDL-C (mmol/L) 2.52 ± 0.14 2.39 ± 0.14 0.51
HDL-C (mmol/L) 1.32 ± 0.06 1.40 ± 0.08 0.40

Dairy intake (servings/day) 0.51 ± 0.12 0.58 ± 0.13 0.34
∆H2 (ppm) 73.8 ± 7.3 11.7 ± 0.8 <0.01

1, LM lactose malabsorbers, LA, lactose absorbers, BMI, body mass index, DBP, diastolic blood pressure, SBP, systolic
blood pressure, FPG, fasting plasma glucose, FPI, fasting plasma insulin, HOMA-IR, homeostasis model assessment
of insulin resistance, TG, triglycerides, TC, total cholesterol, LDL-C, low-density lipoprotein cholesterol, HDL-C,
high-density lipoprotein cholesterol.

3.1. Fecal Microbiota

At baseline, the microbiota composition at the phylum and genus level (See Supplementary
Table S2) did not differ between LM and LA. Four-week whole milk supplementation induced
significant alternations in microbiota composition of LM, but not that of LA (Figure 1). At the
phylum level, Actinobacteria dramatically increased in LM (1.86 ± 0.67%, P < 0.01, FDR < 0.01). At the
genus level, Bifidobacterium determined by Illumina 16S rRNA gene sequencing steep increased in
LM (1.72 ± 0.62%, P < 0.01, FDR < 0.01), which was mirrored by qPCR analysis. Besides, there were
a significant increase in Anaerostipe (0.77 ± 0.19%, P < 0.01, FDR < 0.01) and Blautia (0.90 ± 0.48%,
P = 0.04, FDR = 0.11), and a significant decrease in Megamonas (4.11 ± 2.02 %, P = 0.04, FDR = 0.11)
in LM. Between-group analysis highlighted the significant interaction of lactose absorption status
and whole milk supplementation on Actinobacteria (P for interaction = 0.02), Bifidobacterium (P for
interaction = 0.03), Anaerostipe (P for interaction = 0.02), Blautia (P for interaction < 0.01), and Megamonas
(P for interaction < 0.01). No significant variations in microbiota diversity were found within and
between the groups throughout the entire study (Figure 2).
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Figure 1. Alternations in gut microbiota composition following four-week supplementation of whole
milk in lactose malabsorbers (LM) and absorbers (LA). (a–f), The relative abundance of Actinobacteria
(a), Bifidobacterium assessed using Illumina 16S rRNA gene sequencing (b) and quantitative real-time
Polymerase Chain Reaction (c), Anaerostipes (d), Blautia (e), and Megamonas (f) before and after 4-week
supplementation of whole milk in LM (n = 31) and LA (n = 29, two participants were excluded during
the gut microbiota analysis owing to antibiotics consumption during the intervention period for upper
respiratory tract infection). Data are presented as Mean ± SEM (*, P < 0.05, **, P < 0.01, ***, P < 0.001
for within-group difference; #, P < 0.05 and ###, P < 0.001 for between-group difference).
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Figure 2. Gut microbiota diversity remained stable throughout the entire study. (a–c), α-Diversity,
illustrated by Chao1 index (a), Simpson index (b), and Shannon index (c), of lactose malabsorbers
(LM, n = 31) and absorbers (LA, n = 29). (d,e) Principal coordinate analysis based on unweighted
(d) and weighted (e) UniFrac analysis of the microbiota communities in LA at baseline (red) and week
4 (blue), and LM at baseline (yellow) and week 4 (green). Box represents the interquartile range, the
line inside represents the median, whiskers represent 10–90 percentiles, “+” represents outliers that are
past the ends of the whiskers.
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Fecal communities were then clustered into Bacteroides and Prevotella enterotypes (Figure 3).
Although the sample distribution over enterotypes was not affected by he lactose malabsorption status
(P = 0.43) or whole milk supplementation (P = 0.84), shifts in the gut microbiota composition differed
between enterotypes (Figure 3). At the phylum level, Actinobacteria merely increased in LM with
Bacteroides enterotype (1.66 ± 0.69%, P = 0.02, FDR = 0.02), but not in LM with Prevotella enterotype.
Similarly, at the genus level, a similar trend was observed in Bifidobacterium (1.56 ± 0.65%, P < 0.01,
FDR = 0.07).
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Figure 3. Enterotypes stratification and changes in gut microbiota and clinical variables by enterotypes.
(a) The first two principal coordinates of Jensen-Shannon distances based on the relative abundance
profiles at the genus level. (b) Relative abundance of bacterial taxa characteristic of each enterotype.
Box represents the interquartile range, the line inside represents the median, whiskers represent
10–90 percentiles, “+” represents outliers that are past the ends of the whiskers. (c) Sample distribution
over enterotypes before and after whole milk supplementation in lactose malabsorbers (LM) and
absorbers (LA). (d) Comparisons of changes in the microbiota abundance in LM and LA with different
enterotypes (LM with Bacteroides enterotype, n = 24; LA with Bacteroides enterotype, n = 18; LM with
Prevotella enterotype, n = 7; LA with Prevotella enterotype, n = 11). Data are presented as Mean ± SEM
(*, P < 0.05, and **, P < 0.01).

3.2. Fecal Short-Chain Fatty Acids Concentrations

Fecal acetate, propionate, and butyrate concentration did not significantly differ within and
between the groups (Figure 4).
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Figure 4. Fecal concentrations of short-chain fatty acids before and after whole milk supplementation
in lactose malabsorbers (LM) and absorbers (LA). Fecal acetate (a), propionate (b), and butyrate
(c) concentrations before and after four-week supplementation of whole milk in LM (n = 31) and LA
(n = 31).

3.3. Body Composition and Cardiometabolic Markers

Although body weight and BMI remained unchanged during the intervention study, body fat
mass (P = 0.03 for LM; P < 0.01 for LA) and the proportion of body fat (P = 0.02 for LM; P < 0.01
for LA) significantly decreased in both groups (Table 2). Changes in body composition did not
differ between LM and LA. No significant within- or between-group differences were observed in
blood pressure, FPG, FPI, C-peptide, TG, TC, LDL-C, HDL-C, CRP, and MDA. Change in LDL-C
was inversely associated with a change in Blautia abundances among LM (P = 0.01), but no shifts
in the cardiometabolic biomarkers were associated with alternations in the relative abundance of
Bifidobacterium, Anaerostipes, and Megamonas (See Supplementary Tables S3–S6).

Table 2. Body composition and cardiometabolic biomarkers before and after whole milk
supplementation in subjects with or without lactose malabsorption 1.

Parameters
LM (n = 31) LA (n = 31)

P
Pre Post Pre Post

Weight (kg) 62.8 ± 2.2 62.5 ± 2.2 64.5 ± 2.1 64.0 ± 2.2 0.55
BMI (kg/m2) 21.6 ± 0.6 21.5 ± 0.6 22.3 ± 0.6 22.2 ± 0.6 0.60

Body fat mass (kg) 13.6 ± 1.1 12.3 ± 1.1 * 13.9 ± 1.2 12.9 ± 1.1 ** 0.54
Lean mass (kg) 27.4 ± 1.0 28.2 ± 1.1 28.5 ± 1.1 28.6 ± 1.1 0.25

Body fat (%) 21.5 ± 1.2 19.5 ± 1.3 * 21.4 ± 1.4 19.9 ± 1.3 ** 0.56
DBP (mmHg) 75.6 ± 1.1 74.5 ± 1.2 75.7 ± 1.7 78.6 ± 1.6 0.15
SBP (mmHg) 115.9 ± 1.9 114.4 ± 1.7 116.2 ± 2.4 112.9 ± 2.0 0.47

FPG (mmol/L) 5.14 ± 0.06 5.20 ± 0.06 5.15 ± 0.07 5.28 ± 0.07 0.45
FPI (mU/L) 5.72 ± 0.63 6.22 ± 0.59 5.86 ± 0.64 5.48 ± 0.53 0.78
HOMA-IR 1.30 ± 0.15 1.45 ± 0.15 1.36 ± 0.16 1.22 ± 0.14 0.39

C-peptide (nmol/L) 0.45 ± 0.03 0.44 ± 0.03 0.45 ± 0.04 0.43 ± 0.03 0.84
TG (mmol/L) 0.74 ± 0.07 0.77 ± 0.07 0.86 ± 0.06 0.92 ± 0.09 0.85
TC (mmol/L) 4.22 ± 0.15 4.08 ± 0.14 4.19 ± 0.22 3.88 ± 0.16 0.93

LDL-C (mmol/L) 2.52 ± 0.14 2.52 ± 0.13 2.39 ± 0.14 2.50 ± 0.13 0.42
HDL-C (mmol/L) 1.32 ± 0.06 1.33 ± 0.07 1.40 ± 0.08 1.36 ± 0.07 0.52

CRP (µg/mL) 0.68 ± 0.22 0.81 ± 0.22 0.80 ± 0.31 0.66 ± 0.20 0.71
MDA (nmol/mL) 4.95 ± 0.19 4.87 ± 0.19 4.92 ± 0.19 4.84 ± 0.15 0.98
1, LM, lactose malabsorbers, LA, lactose absorbers, BMI, body mass index, DBP diastolic blood pressure, SBP systolic
blood pressure, FPG, fasting plasma glucose, FPI, fasting plasma insulin, HOMA-IR, homeostasis model assessment
of insulin resistance, TG, triglycerides, TC, total cholesterol, LDL-C, low-density lipoprotein cholesterol, HDL-C,
high-density lipoprotein cholesterol, CRP, C-reactive protein, MDA, malondialdehyde. *, P < 0.05; **, P < 0.01.
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4. Discussion

In the present study, as compared with LA, four-week 250 mL/day whole milk supplementation
selectively altered gut microbiota composition in LM, especially in those with Bacteroides enterotype,
without significant effects on the overall microbiota richness and diversity. Additionally, no significant
differences were found in alternations in fecal SCFAs or cardiometabolic biomarkers between LM
and LA.

We observed that four-week whole milk supplementation significantly increased the relative
abundances of Bifidobacterium in LM, which was mainly consistent with a previous study, showing the
bifidogenic effects of lactose in healthy LM in western population [13]. Bifidobacterium could utilize
lactose as a preferable energy source rather than glucose [27], and thus the abundance of Bifidobacterium
could increase with higher lactose intake derived from milk supplementation [28]. Bifidobacteria is
believed to play a pivotal role in gut microbiota homeostasis and human health [29]. Several strains
in bifidobacteria have been widely used as probiotics because of both direct and indirect influences
on enhancing immunity, inhibiting the growth of pathogenic bacteria, and treating inflammatory
disease [30]. In our study, the abundance of Anaerostipes and Blautia also increased with whole
milk supplementation in LM. Anaerostipes was a butyrate-production bacteria, and the cross-feeding
relationship between Anaerostipes and Bifidobacterium might account for its alteration [31]. Blautia was
acetogenic and might benefit from the production of hydrogen, a production from lactose fermentation
by Bifidobacterium [32]. Additionally, our results indicated that whole milk supplementation induced
different alternations in microbiota composition across different enterotypes, which was in line with
previous findings that individuals with distinct enterotypes differed in responses to the same diet
intervention [33,34].

There were no significant changes in the fecal levels of SCFAs following four-week
supplementation of whole milk, despite the significant changes in several SCFA-producing microbiota
taxa. One potential explanation for this might be conversion among SCFAs through microbial
cross-feeding, in particular, from acetate to butyrate [35], which was mainly metabolized in the colon to
supply energy for colonocytes [36]. But, some studies suggested that fecal butyrate significantly
increased following 8-week intervention of undigested carbohydrate intervention, but did not
following four-week intervention [15]. Therefore, relative short intervention duration might be another
reason accounting for the unchanged fecal concentrations of SCFAs in this study, and long-term studies
are needed to further verify this finding in the future.

In this study, whole milk supplementation did not significantly affect the cardiometabolic
biomarkers, except slight decreases of body fat mass and body fat percentage in LM and LA.
Several intervention studies suggested that consumption of dairy products might have a beneficial
effect on cardiometabolic factors [37–40]. A meta-analysis of randomized controlled trial elucidated
that dairy products reduced body fat mass in short-term intervention studies, but not in long-term [37],
which well supported the results of our study. A possible explanation might be the differential
compliance with the intervention protocol between short and long trials [41].

In our study, the marked microbial changes in LM did not affect carbiometabolic biomarkers.
Previous studies showed that Bifidobacteria improved diabetes induced by high-fat diet [29,42]
but we did not observe any association between Bifidobacterium and carbiometabolic biomarkers.
When compared the Bifidobacterium of our study population with that of other population, we
found the baseline abundance of Bifidobacterium was markedly lower in our study population, but it
reached slightly higher abundance after whole milk population as compared to this healthy, untreated
population [26,43]. Therefore, one reason for lack of effects on the cardiometabolic biomarkers in LM
may be the significant but small increase as well as inconsistent pattern of increase. Our observations
indicated that moderate whole milk supplementation (250 mL/day) had no adverse cardiometabolic
effect in LM, compared with LA. Accordingly, it is possibly acceptable for LM to consume moderate
whole milk per day for health promotion, which would draw more attention in the countries of high
prevalence of lactose malabsorption.
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There are several strengths of the current study. To our best knowledge, no previous study
has comprehensively compared the effects of whole milk supplementation on the gut microbiota
composition and its crucial metabolites (SCFAs) and cardiometabolic biomarkers in LM and LA. We also
investigated the possible different responses to whole milk in subjects with different enterotypes.
Our study also has certain limitations. Firstly, we did not include a group without whole milk
intervention, so the potential effects of non-treatment factors could not be excluded. However, the 1:1
pair-wise design allowed us to evaluate the different effects of whole milk supplementation between
LM and LA. Secondly, we did not control the diet of the participants, but added whole milk to the
initial diet. However, total energy and macronutrients intake was not different between two groups,
and the effects of changes in diet could be excluded. Thirdly, four weeks may be relative short to
observe changes in cardiometabolic biomarkers of healthy adults aged from 20–30 in this study, whose
cardiometabolic biomarkers maintain a relatively steady state. Long-term studies or studies in the
participants of different metabolic statuses are needed to replicate our findings and precisely assess
the effect of milk on cardiometabolic outcomes.

5. Conclusions

In conclusion, when compared with LA, 250 mL/day whole milk supplementation could alter the
intestinal microbiota composition in LM, without alternations in fecal SCFAs and metabolic biomarkers.
It may be acceptable to include moderate milk as a part of the routine diet of LM, as a suggestion to
personalize milk consumption, and thereby enhance the levels of dietary calcium intake and improve
health. Further studies are warranted to confirm our findings and clarify the underlying mechanisms.
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