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Abstract: Continuous satellite-derived leaf area index (LAI) time series are critical for modeling
land surface process. In this study, we present an interpolation algorithm to predict the missing
data in LAI time series for ecosystems with high within-ecosystem heterogeneity, particularly
heterogeneous grasslands. The algorithm is based on spatial-temporal constraints, i.e., the missing
data in the LAI time series of a pixel are predicted by the phenological links with other pixels.
To address the uncertainties in the construction and selection of reference curves in a heterogeneous
landscape, the algorithm constructs a reference dataset for each missing data in the LAI time series
from all pixels showing very strong linear phenological links with the target pixel within a region.
We also use an iterative process to update the available spatial-temporal constraints. We tested the
algorithm with an eight-day composite Moderate Resolution Imaging Spectroradiometer (MODIS)
LAI product in the Songnen grasslands, Northeast China in 2010 and 2011. The validation dataset
was generated based on high quality time series by artificially adding data gaps. The algorithm
achieved high overall interpolation accuracies with high coefficient of determination R2 (>0.9) and
low root mean square error (RMSE) (<0.2) in both dry (2010) and wet (2011) years. The algorithm
showed advantages in predicting missing data for different seasons and proportions of missing data
versus the algorithm that uses regional average LAI curve as a reference. These results suggest that
the proposed algorithm could more effectively characterize spatial-temporal constraint information
in heterogeneous grasslands for temporal interpolation.

Keywords: leaf area index; time series; MODIS; temporal interpolation; spatial-temporal constraints;
vegetation phenology; heterogeneous landscape; semi-arid grasslands

1. Introduction

As a key biophysical variable that controls terrestrial ecosystem processes (e.g., exchange of
energy, water, and carbon), leaf area index (LAI) time series are critical for ecosystem and climate
modeling [1–3]. Global high temporal resolution (four or eight days) LAI products are being produced
with the Terra and Aqua MODIS observations. Although the released LAI products are multiday
composited to minimize the effects of abiotic factors, there are still low quality data mainly due to
persistent cloud, high aerosol, and snow cover during the composite period, as well as the limitations
of the LAI retrieval method [4]. These low quality data in the LAI time series masks the real canopy
dynamics and hinders its continuous monitoring, for example in the monitoring of phenological
events [5,6].
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A number of satellite-derived time series reconstruction methods have been developed, for
instance, the Savitzky–Golay filter [7], the Fourier analysis [8–11], the wavelet transform [12–14],
and function fitting [15,16]. These algorithms have shown their efficiencies for smoothing time series in
diverse ecosystems [17–22]. However, they may not perform well for time series with less high-quality
observations. The abilities of these algorithms for reconstructing time series are limited by insufficient
temporal information.

Filling gaps in the time series of a pixel by using spatial and temporal constraints around the pixel
(ecosystem-dependent interpolation, EDI) is an alternative strategy [23–28]. The basic assumption
behind the EDI method is that in a region with limited surface variation, pixels belonging to the
same ecosystem generally show strong phenological links because of the similar climate and soil
conditions, and the missing data in the time series of a pixel can be filled based on the links with other
pixels [23]. To some degree, the EDI method could overcome the lack of temporal information in a
gap by introducing spatial information. The key issue of the EDI method is to construct and select
appropriate reference time series. In [23], multiscale (from 0.5◦ × 0.5◦ to 10◦ × 10◦) average surface
albedo time series for an ecosystem were generated as candidates. The selection of reference time
series depends on its match degree with the target pixel. While in [25] the best successfully fitted LAI
curve with asymmetric Gaussian function within a window was selected as reference time series. The
window can vary from about 10 km × 10 km to 1◦ × 1◦. If successfully fitted LAI curve was not found,
then the MODIS tile level average LAI time series for the same ecosystem was used. It is reasonable
for homogeneous ecosystems to select only one reference curve from other pixels or regional average
curve in [23,25]. However, these algorithms are likely to show limitation in ecosystems with high
within-ecosystem heterogeneity. For example, degraded grasslands may exhibit significantly diverse
phenological behaviors due to different community compositions even within a small region with
similar climate conditions. Hence, the regional average curve or a curve from surrounding pixel
may not strongly correlate to the seasonal curve of the target pixel. In this case, the strategy to select
reference curve in [23,25] will bring in uncertainties in predicting missing data. Vegetation continuous
field has been used to reduce the influence of within-ecosystem heterogeneity in [24]. However, the
addressed heterogeneity in [24] is mainly caused by mixed pixel (vegetation and bare soil). The strategy
is not suitable for pixel-level heterogeneity because the vegetation continuous field cannot characterize
the heterogeneity caused by vegetation communities (e.g., degraded grasslands at different succession
stages). On the other hand, it can be argued that a reference time series from function fitting may
not be appropriate for middle-high latitude or alpine grasslands. First, growing season is generally
short in these ecosystems. Second, vegetation growth in grasslands generally does not show an ideal
S-shape due to its sensitivity to environmental factors, especially drought. Although more complex
functions have been employed to consider stress conditions [29,30], the limited number of high-quality
observations from multiday composite product in an annual time series may not support a statistically
reliable fitting to the improved logistic functions or the asymmetric Gaussian function [31]. If neither
the fitted nor the average time series is used, there may not exist a complete LAI time series that can be
selected as reference for a pixel because each LAI time series may have missing data. This requires a
more flexible strategy to predict the missing data.

In this study, we improved the EDI method proposed by Moody et al. [23] to address the
uncertainties in interpolating missing data in satellite-derived LAI time series for heterogeneous
landscape, particularly heterogeneous grasslands. We refer to the algorithm as the Enhanced
Ecosystem-Dependent Interpolation (EEDI). The EEDI algorithm constructs a reference time series set
for each missing data in the time series of a pixel from pixels showing very strong phenological links
with the target pixel within a region. An iterative process is adopted to update the spatial-temporal
reference information. Performance of the EEDI algorithm was compared with the EDI algorithm that
directly uses a regional average LAI curve as reference [23].
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2. Materials and Methods

2.1. Test Area

The algorithm was tested with grasslands in the Songnen plain, Northeast China. Due to the
human activities, climate, geology, and terrain conditions, these mid-latitude semi-arid grasslands
are salinized and alkalized at various degrees [32–34]. As a result, the Songnen grasslands are
at different succession stages with diverse community compositions and, hence, show a typically
heterogeneous landscape. We selected a 100 km × 100 km window in the Songnen plain as the test
area (Figure 1a). Grasslands were extracted from the MODIS Collection 5 Land Cover-type product
with the International Geosphere Biosphere Programme (IGBP) classification scheme. There are about
15,000 grasslands pixels in the test area. The distribution of the growing season’s mean LAI in 2011
displays the heterogeneity of the grasslands in the test area (Figure 1b).
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Figure 1. Land cover types (a) and growing season mean leaf area index (LAI) of grasslands (b) for the
test area in 2011.

2.2. MODIS LAI Product

For this analysis we selected the MODIS Collection 6 combined Terra and Aqua LAI product
(MCD15A2H) because it is considered to have the highest quality among the MODIS LAI products [4].
The MCD15A2H product uses both Terra and Aqua reflectance observations as inputs to estimate
daily LAI at 500 m spatial resolution, and an eight-day composite is performed to reduce the noise
from abiotic factors [4]. To evaluate the performance of our algorithm for years under different
meteorological conditions, we selected the LAI data in 2010 and 2011. Annual precipitations in the test
area between these two years are significantly different (about 320 mm and 450 mm in 2010 and 2011,
respectively). For each year, data only from late April (day of year 113) to mid-October (day of year
289) were analyzed because during other period vegetation is under dormancy and snow cover often
exists in the area. Consequently, there are 23 available images per year.

2.3. Algorithm Development

An overview of the algorithm is provided in Figure 2. In general, the algorithm includes two
major steps: (1) preprocessing of raw LAI time series with the aid of quality flags, and (2) filling gaps
using the phenological links between the LAI time series of the target pixel and the reference pixels.



Remote Sens. 2017, 9, 968 4 of 12
Remote Sens. 2017, 9, 968  4 of 12 

 

 

Figure 2. Flow chart of the Enhanced Ecosystem-Dependent Interpolation (EEDI) algorithm. 

2.3.1. Extracting High Quality LAI Data 

The MODIS MCD15A2H product includes two data quality control layers (a general layer and a 
detailed layer) that provide valuable information to extract high quality observations from the 
original LAI time series. A summary of the selected items from the quality layers for determining 
high quality data are given in Table 1. Observations in LAI time series flagged as cloud, cloud 
shadow, cirrus, and snow are first removed. The five-level confidence score provided by the general 
layer evaluates the reliability of LAI value in terms of the used LAI retrieval method. In this study, 
only LAI estimated from the main method, i.e., the Look-Up Table (LUT) method [35], is identified 
as high quality. Since the input reflectance data (MOD09GA and MCD09GA) of the MCD15A2H LAI 
product are atmospherically corrected, effects of low and average aerosol on LAI estimation are 
considered to be negligible. The effect of high aerosol should be taken into account because it may 
not be completely removed in the atmospheric correction process. Unfortunately, flags of average 
and high aerosol are provided together in the detailed quality layer. We, therefore, developed an 
alternative strategy to determine if an observation in LAI time series is contaminated by high 
aerosol. As high aerosol generally results in an abnormally low NDVI value, an observation 
contaminated by high aerosol will, therefore, show a drop in an LAI time series. Hence, if an 
observation is at a trough in an LAI time series and is flagged as average or high aerosol, it is 
considered to be affected by high aerosol. Furthermore, if several neighboring observations have the 
same LAI value during the growing season (LAI > 0.3), only the first one is identified as high quality 
because change in grasslands is generally rapid. An observation with extremely high LAI value, 
i.e.,	LAI > μ + 3 × σ, here μ is the mean and σ is the standard deviation of an LAI time series, is 
considered as noise. Such abnormal high value may be caused by sensor disturbances [17]. All data 
identified as low quality are removed, and will be predicted with the reserved high quality data. In 

Figure 2. Flow chart of the Enhanced Ecosystem-Dependent Interpolation (EEDI) algorithm.

2.3.1. Extracting High Quality LAI Data

The MODIS MCD15A2H product includes two data quality control layers (a general layer and
a detailed layer) that provide valuable information to extract high quality observations from the
original LAI time series. A summary of the selected items from the quality layers for determining
high quality data are given in Table 1. Observations in LAI time series flagged as cloud, cloud shadow,
cirrus, and snow are first removed. The five-level confidence score provided by the general layer
evaluates the reliability of LAI value in terms of the used LAI retrieval method. In this study, only LAI
estimated from the main method, i.e., the Look-Up Table (LUT) method [35], is identified as high
quality. Since the input reflectance data (MOD09GA and MCD09GA) of the MCD15A2H LAI product
are atmospherically corrected, effects of low and average aerosol on LAI estimation are considered to
be negligible. The effect of high aerosol should be taken into account because it may not be completely
removed in the atmospheric correction process. Unfortunately, flags of average and high aerosol
are provided together in the detailed quality layer. We, therefore, developed an alternative strategy
to determine if an observation in LAI time series is contaminated by high aerosol. As high aerosol
generally results in an abnormally low NDVI value, an observation contaminated by high aerosol
will, therefore, show a drop in an LAI time series. Hence, if an observation is at a trough in an LAI
time series and is flagged as average or high aerosol, it is considered to be affected by high aerosol.
Furthermore, if several neighboring observations have the same LAI value during the growing season
(LAI > 0.3), only the first one is identified as high quality because change in grasslands is generally
rapid. An observation with extremely high LAI value, i.e., LAI > µ+ 3 × σ, here µ is the mean and
σ is the standard deviation of an LAI time series, is considered as noise. Such abnormal high value
may be caused by sensor disturbances [17]. All data identified as low quality are removed, and will
be predicted with the reserved high quality data. In addition, time series with too few high quality
observations (less than 30%, eight points in this study) are discarded.
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Table 1. Items of quality flags for identifying high quality data.

Items Flags of High Quality Data 1

Five-level confidence score Main method used, best result possible (no saturation);
Main method used with saturation

Cloud Significant clouds not present (clear)
Cloud shadow No cloud shadow detected

Cirrus No cirrus detected
Snow/Ice No snow/ice detected

1 For detailed description on the quality flags, please refer to the user’s guide of Moderate Resolution Imaging
Spectroradiometer (MODIS) leaf area index (LAI) product (https://lpdaac.usgs.gov/sites/default/files/public/
MODIS/docs/MODIS-LAI-FPAR-User-Guide.pdf).

2.3.2. Temporal Interpolation of LAI Time Series with Phenological Links

The following steps are developed to predict the missing data in the LAI time series of a pixel
(ti , LAIi), where ti is time, LAIi is the LAI value, i = 1, 2, . . . , n. n is 23 in this study.

Step 1: For a missing LAIi at ti, the algorithm searches pixels that have high quality LAI at
ti within a given search radius around the target pixel. In heterogeneous landscape, searching all
available pixels within a region is a solution to increase the chance of finding pixels that have strong
phenological links with the target pixel. The search radius in this study is 25 km. This search range is
close to a typical climate modeling grid of 0.05◦. We refer to the LAI time series of the searched pixels
in this step as candidate time series for the target pixel.

Step 2: Linear regression is performed between the target pixel’s time series and each candidate
time series with all of the matching high quality data pairs throughout a time window. The generated
linear functions are used to quantify the phenological links between the target pixel and the candidate
pixels. A small time window can capture local variations but may not provide sufficient points to
support reliable and stable regression. Since the growing season is short in our test area, the time
window in this study covers the whole growing season, i.e., from t1 to t23. In addition, regression
will not be performed under two conditions: First, the number of the high quality data pairs is less
than 30% (eight points). This is to avoid generating a regression function with low statistical power,
although it may show high coefficient of determination. Second, the difference between ti and the
nearest point to ti in the high quality data pairs is greater than 16 days. The criterion is formulated to
ensure that the local variations in LAI near ti are considered in the regression.

Step 3: A regression function with the coefficient of determination R2 > 0.95 is considered
as successful regression. A successful regression means the candidate time series show strong
phenological links with the target pixel’s time series, and the candidate time series are selected as
one of the reference time series. To reduce uncertainties in estimating LAIi, the following calculations
are only performed if there are more than 20 successful regressions. For each successful regression,
the algorithm predicts an LAI value by Equation (1):

LAIPi = a ∗ LAIRi + b (1)

where a and b are the slope and intercept of the regression function, respectively. LAIRi is the LAI
value at ti of the reference time series, and LAIPi is a predicted LAI value at ti. The final LAI value at
ti is averaged from the predicted LAI values with all successful regression functions.

Step 4: A new LAI dataset that has less missing data can be generated after performing the above
three steps for all pixels in the region. The new dataset is then examined to determine whether there
are remaining missing data. If missing data are found for a pixel, steps 1–3 are re-executed for this pixel.
This iterative process is important in our algorithm to update the available spatial-temporal constraint
information for a pixel. The iterative process is terminated until it reaches a given condition, such as an
iteration times or no missing data is found. To avoid significant error accumulation, the initial iteration
times in this study is two. If there are more than 10% incomplete time series within the region after the

https://lpdaac.usgs.gov/sites/default/files/public/MODIS/docs/MODIS-LAI-FPAR-User-Guide.pdf
https://lpdaac.usgs.gov/sites/default/files/public/MODIS/docs/MODIS-LAI-FPAR-User-Guide.pdf
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two iterations, another iteration with relaxed criteria is then performed. In this iteration, the required
number of successful regression is pulled down to ten. After the iterative process has been terminated,
the remaining incomplete time series with more than 15 points are interpolated by the cubic spline
interpolation. The other incomplete time series are not further processed.

2.4. Algorithm Validation and Comparison

We adopt the strategy that uses high quality time series to generate validation dataset by artificially
creating data gaps [19,20,28]. This is a widely used strategy to quantify the performance of time series
reconstruction algorithms. We first randomly selected about 50% high-quality time series (more than
80% (18) high quality observations) in the test area as validation time series. We then randomly
removed 1–14 high quality observations from each validation time series to create validation dataset
with different proportions of missing data. We made sure the selected LAI time series after this process
still contain more than eight high quality observations. These removed observations were used as
validation data and their LAI values will be predicted by our algorithm. Interpolation accuracies were
evaluated by directly comparing the predicted LAI with the original LAI for different proportions
of missing data (PMD) and seasons of missing data (SMD) for each year. Four indicators were used:
the R2, root mean square error (RMSE), slope, and intercept of the linear regression between the
predicted LAI and the validation data. The R2 and RMSE are the major evaluation indicators.

We compared the EEDI algorithm with the EDI algorithm that uses multiscale regional average
time series as candidate reference time series [23]. The radiuses of the EDI algorithm are 15 km and
25 km in this study. To reduce uncertainties in calculating the regional average time series, the LAI
value of each point in the regional average time series must be averaged from more than 50 pixels.
The regional average time series may also have missing data. If so, cubic spline interpolation is used
to generate a complete reference time series, which is mandatory in the EDI algorithm. For the two
regional average time series, the one shows a stronger phenological link (linear regression with higher
R2) with the time series of the target pixel is selected as reference time series. The missing data were
then predicted with the corresponding linear regression function.

3. Results

3.1. Determination of Iteration Times

Most of the pixels’ LAI time series have 12–16 high quality observations (PMD 30–50%) after
removing the low quality data in both dry and wet years (Figure 3). In 2011, about 79% and 93% pixel’s
time series were completely filled (23 points) after the first and second iterations, respectively. Iterative
process was therefore terminated after the two iterations for data in 2011. In 2010, the proportions
were about 60% and 75%, respectively. The last iteration with the relaxed criteria only produced
another 6% complete time series in 2010. The results suggest that three iterations for this region is
appropriate. The incomplete time series after three iterations are more likely to belong to a unique
ecosystem, have suffered disturbance, or be contaminated by noise. Therefore, they did not exhibit
strong phenological links with other time series within the region.

3.2. Effects of PMD on Interpolation

The overall accuracies of the two algorithms are provided in Figure 4. The EEDI algorithm
achieved good performance in both dry (2010) and wet (2011) years with R2 > 0.9 and RMSE < 0.2.
Furthermore, the distributions of the points in Figure 4a,c were close to the 1:1 line. The EDI algorithm
showed lower performance as indicated by all of the four metrics. In addition, the RMSE values were
higher in 2011 than that in 2010 for both the two algorithms. This may be due to the higher mean LAI
value in 2011. Figure 5 provides an example of the gap filled LAI time series of a pixel in 2011 by the
two algorithms.
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Figure 6 represents the effects of PMD on the interpolation performance. For the EEDI algorithm,
all PMD levels showed high accuracies except for the PMD 60–70% in 2010 (slope < 0.8, intercept > 0.1).
The linear functions for most PMD levels were close to the 1:1 line with 0.9 < slope < 1.1
and 0 < intercept < 0.1. For the EDI algorithm, no PMD level showed higher R2 or lower RMSE than that
of the EEDI algorithm. Most of the corresponding regression functions had slope < 0.9 and intercept > 0.1.
Furthermore, we found that the accuracies of low PMD levels were not necessarily higher than that of
high PMD levels for both of the two algorithms. This may be related to the heterogeneity pattern of the
grasslands in the test area.
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3.3. Effects of SMD on Interpolation

We also compared the accuracies of the two algorithms from the aspect of seasons. We separated
the validation dataset into two parts based on the dates of the validation data: spring–autumn (day of
year 113–151, 244–289) and summer (day of year 152–243). Spring and autumn are evaluated together
because grasslands generally show inverse but similar behaviors in the two seasons. The EEDI
algorithm achieved high R2 in both spring–autumn and summer (Figure 7). In contrast, the EDI
algorithm did not perform well especially in spring–autumn with much lower R2 than the EEDI
algorithm. Here, we found a significant advantage of the EEDI algorithm, i.e., predicting missing
data in spring and autumn, which is challenging for the EDI algorithm. In spring and autumn,
the heterogeneous grasslands are likely to exhibit more significantly different phenological behaviors
than that in summer. A regional average curve could not explain this heterogeneity and, therefore,
results in high uncertainties in predicting LAI value in spring and autumn. This promotion is expected
to be helpful to more accurately extract the start and end of growing season with LAI data.
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4. Discussion

To address the uncertainties in interpolating missing data of satellite-derived LAI time series
caused by the construction and selection of reference time series in heterogeneous grasslands,
we developed an improved algorithm that uses more flexible spatial-temporal constraints information.
The algorithm achieved high performance in both dry and wet years in the test area, which shows
typical heterogeneous landscapes.

The major differences between our algorithm and the previous algorithms [23,25] include: (1)
multiple reference LAI time series are used, and they are missing data-dependent. There is no
mandatory requirement of a complete LAI time series as reference; (2) only very strong phenological
links are selected to provide more reliable references to more accurately predict missing data, and (3)
an iterative process is employed. The iterative process is critical to update spatial-temporal constraint
information for an LAI time series, particularly time series with high PMD. Benefiting from the above
improvements, our algorithm showed advantages in predicting missing data for all PMD levels.

Although the EEDI algorithm showed relatively high overall accuracies with R2 > 0.9 and
RMSE < 0.2, efforts are still needed to further reduce the uncertainties. In general, the uncertainties
of the interpolation may be mainly derived from (1) the remaining low quality LAI in the input data
and (2) the used phenological links. Although we performed a quality check to remove low quality
data with the help from the quality flags and some empirical criteria, there may still remain some
low level noise mainly derived from high aerosol and the LAI retrieval method. Stricter criteria are
needed to provide higher quality inputs. Some statistical approaches in temporal or frequency domain,
for example the wavelet analysis and the best index slope extraction algorithm (BISE) [36], may be
useful to further check noise before interpolation. The phenological links used in our algorithm are
linear functions with R2 > 0.95. However, it is difficult for the time series of some pixels to up to a
strict linear relation. In [25], the quadratic polynomial function was used to construct phenological
links. Nevertheless, using only nonlinear function can also introduce uncertainties when the link is
approximately linear. Combining both linear and nonlinear links is one possible way to construct more
reliable spatial-temporal constraints. On the other hand, although the iterative process is important
for time series with high PMD, more iterative times may also generate uncertainties in estimating
phenological links. In the test area, most time series were completely interpolated after two to three
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iterations. The interpolation accuracies suggest that these iterative times are acceptable. Instead of
generating spurious results, it is reasonable to discard the incomplete time series after three iterations
or more than 90% time series have been completed within a region. Furthermore, the phenological
links are constructed using a temporal window covering the whole growing period to obtain more
stable regression. Some local variations in the time series may not be fully considered because each
point in the time series has equal contribution to the regression. Further studies may adjust temporal
window or introduce weight to address this issue [37]. Using reference information from multiyear
data has been suggested in several studies [24,25,38]. Its usefulness for semi-arid grasslands that show
high interannual variability is currently not clear and needs to be investigated.

A complete LAI time series generated by any interpolation algorithm may contain low level
noise caused by the input data and the algorithm. In [27], the Savitzky–Golay filter [7] was applied
to the addressed MODIS LAI time series by the temporal-spatial filter interpolation method [24].
We recommend this two-step strategy to obtain smoother LAI time series, which is required for the
extraction of vegetation phenology.

The algorithm is demonstrated to be effective to produce gap filled MODIS LAI time series for
grasslands with high within-ecosystem heterogeneity. It should be emphasized that the algorithm
was only designed for pixel-level heterogeneous landscape. Subpixel-level heterogeneity was not
considered. Although the algorithm is developed especially for grasslands, it may also be applicable
to other heterogeneous landscapes that show obvious seasonality with appropriate adjustments.

5. Conclusions

An algorithm for interpolating missing data in LAI time series for heterogeneous grasslands is
presented based on spatial-temporal constraints. Considering the difficulty in constructing an ideal
reference LAI time series for a pixel in such ecosystems, we developed a flexible strategy to select
reference LAI time series and fill the gaps with an iteration process based on all available time series
showing very strong phenological links with the target pixel. The interpolation results of our algorithm
agreed with the validation data. Compared with the algorithm using a regional average reference
time series, our algorithm can more accurately predict missing LAI value for different seasons and
proportions of missing data. Future efforts may focus on improving the interpolation accuracy by
incorporating multiyear time series or nonlinear phenological links.
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