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Abstract: This paper presents a method for mosaicking unmanned aerial vehicle (UAV) 
multispectral images. The main purpose of the proposed method is to reduce spatial distortion 
in the mosaicking process and increase robustness and the speed of the operation. Most UAV 
multispectral images have multiple bands, and in every band, ground targets have a variety of 
reflection characteristics that will result in diverse feature quality for feature matching. In this 
research, an information entropy-based evaluation method is used to select the optimal band 
for feature matching among the UAV images. To produce more robust matching results for the 
following alignment step, the evaluation method takes the contrast and spatial distribution of 
the feature points into consideration at the same time. In most common image mosaicking 
processes, the digital orthophoto map (DOM) is generated to achieve maximum spatial 
accuracy. During this process, the original image data will experience considerable irregular 
resampling, and the process is also unstable in some circumstances. The alignment step uses a 
simplified projection model that treats the ground as planar is provided, by which the 
alignment parameters are applied directly to the images instead of generating 3D points, to 
avoid irregular resampling and unstable 3D reconstruction. The proposed method is proved to 
be more efficient and accurate and has lower spectral distortion than state-of-the-art 
mosaicking software. 

Keywords: Unmanned Aerial Vehicle; image mosaicking; multispectral; feature matching; 
optimal band 

 

1. Introduction 

Unmanned Aerial Vehicle (UAV) remote sensing is blooming for its low-cost, high 
resolution, and great flexibility. In such a situation, UAV multispectral remote sensing has 
become a new hot spot topic for researchers in the remote sensing community. UAV remote 
sensing can be used in fields such as photogrammetry, vegetation monitoring, and disaster 
management [1–3]. Agriculture is a main application area of vegetation monitoring based on 
UAV multispectral remote sensing. For example, Honkavaara used a Fabry-Perot 
Interferometer-based (FPI) spectral camera to monitor the growth of crops [4]; Gomez-Candon 
[5] used a quadcopter and a consumer-level digital camera to estimate the status of wheat 
growth; Sona [6] captured data of bare land and land with vegetation cover and evaluated the 
application potential of these data. However, most of these researches are based on consumer-
level RGB cameras, and they does not have NIR bands, which greatly limits the vegetation 
characterization processes. Some consumer-level digital cameras can be modified to capture NIR 
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data, but the spectral performance is limited. Thus, it is necessary to capture multispectral data 
using multispectral cameras that have more than three bands [7]. Moreover, studies on the 
corresponding data processing methods are required in UAV remote sensing applications. 

UAVs mainly work in a relatively low altitude and, as a result, the area that a single image 
can cover is relatively small. Consequently, image mosaicking is an important technique for 
utilizing UAV multispectral image data. In the process of UAV image mosaicking, accurate 
position and pose relations among images need to be determined. The process recovering 
positions and the poses of images is called the geometric correction. The geometric correction 
can be divided into image-to-map correction and image-to-image correction. Image-to-map 
correction registers the images in question to existing reference data, such as the Digital Surface 
Model (DSM) [8–11] or Ground Control Points (GCPs) [12,13]. Image-to-image correction 
recoveries position and pose relations of images using tie points among the images [14–16], and 
is widely used in UAV data processing methods [17]. However, the image textures are usually 
weak or repetitive in most vegetated areas such as farmlands, which make it difficult to generate 
sufficient correct tie points. Generally speaking, ground objects have diverse reflective 
characteristics with various wavelengths of light and, thus, bands of one image may have 
various levels of feature richness. Therefore, to choose the right band for feature matching is 
significant for quality geometric correction and image mosaicking.  

On the other hand, existing geometric correction methods such as SFM-based 3D 
reconstruction work on the regular RGB images and pay more attention to the geometric 
accuracy of the mosaicking results [2,3], thus, the correcting process is very computationally 
expensive. For vegetation monitoring tasks like agricultural applications, the adequate spectral 
performance needs to be considered seriously [18]. However, the characteristics of multispectral 
image data are not well considered in these methods. The SFM-based 3D reconstruction methods 
involve considerable irregular resampling [19], which may cause significant spectral distortion 
to the image data. Thus, it is significant and necessary for the UAV multispectral image 
mosaicking process to keep the original spectral information as much as possible and promote 
the efficiency of the geometric correction process.  

In this paper, we will come up with a new method to determine the optimal band for feature 
matching so as to obtain sufficient correct tie points on the UAV multispectral images in 
agricultural areas. In order to avoid computationally expensive 3D reconstruction and irregular 
resampling, we put forward a simplified projection model, which can speed up and satisfy 
requirements of UAV multispectral image mosaicking in most agricultural areas.  

2. Related Research 

Image-to-image correction is widely used in UAV image mosaicking processes and can be 
divided into feature matching and transformation estimation [16]. 

Feature matching is a key step in image mosaicking. Scale invariant feature transform (SIFT) 
[20] is a feature descriptor that is invariant to image scaling and rotation in most cases and also 
has tolerance to illumination and 3D camera viewpoint change. It is widely used in various kinds 
of applications that need to match features between images, including image mosaicking. Other 
feature-matching algorithms such as PCA-SIFT [21], SURF [22], and ORB [23] are also applied to 
various fields depending on their characteristics. However, Mikolajczyk and Schmid [24] have 
proved that SIFT-based descriptors have a better performance than other descriptors in image 
feature-matching. 

UAV multispectral images usually have multiple bands, and the selected band used in 
feature matching has an obvious influence on the matching result directly [25,26]. As the ground 
targets have various reflection characteristics, the environmental conditions, such as the 
atmosphere and the relative positions of the sun, the targets, and the sensor may also change. 
Thus, an optimal band for feature matching may vary among flights. Most current research 
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simply uses the methods for regular RGB images, or directly designates a band without careful 
selection. For example, Navia [27] discussed the application of UAV multispectral image 
mosaicking techniques in the agriculture field and raised a mosaicking method based on the 
Lucas-Kanade-matching algorithm [28] . However, this research was based on a camera that was 
modified from a consumer-level RGB camera that had only three bands, and choosing an 
optimal band to conduct feature matching was not discussed. Du [29] directly used the NIR band 
for feature matching, and the variation of feature quality among images was not taken into 
consideration. For the mosaic data from the AISA Eagle hyperspectral sensor, YK Han [30] used 
the SIFT matching result to select the optimal band for feature matching. The weakness of this 
research is that the optimal band is known after the feature points of all the bands are extracted 
and matched, and the spatial distribution and quality of the feature points are not taken into 
consideration. 

The transformation estimation uses the matched point pairs to estimate the transformations 
among the images. In the process, the projection model is needed to describe the motion of the 
camera. For most regular frame cameras, the model is the perspective projection model. By using 
the perspective projection model, the camera motion can be restored from the image matching 
results, and the 3D positions of the matched points can also be estimated if necessary. In some 
studies, the affine transformation is used to simplify the estimation process [29]. In the method, 
affine transformation, the eight-parameter projective model, and the thin-plate spline model 
were applied to characterize the locations and poses of the images. However the affine 
transformation used in the research work was a general affine transformation that includes some 
unnecessary transformation for UAV multispectral images, and how to choose an optimal band 
to perform feature matching in the feature matching step was not well discussed. Li [31] 
combined viewport reselection and SFM to mosaic UAV multispectral images. In sparse 
farmland, this algorithm could improve spatial accuracy by distinguishing crop canopy and 
ground, but the loss of spectral accuracy was still not considered. 

3. Methodology 

3.1. Selecting the Optimal Band for Feature Matching 

In our proposed method, SIFT is used to match feature points. Since feature matching 
algorithms such as SIFT mainly work on a single band grayscale image, it is necessary to select 
one optimal band for feature matching by evaluating all the bands of the image data. The way 
to evaluate the quality of a band for feature matching is based on the low-contrast point kick-
out method in SIFT. The following equation is used in SIFT to describe the local contrast level of 
a keypoint.  ( ) = + 12  (1) 

where  is the first term of the Taylor expansion of the scale-space function ( , , ), and  is 
the offset of the extremum from the sample point. By computing the average ( )  of the 
keypoints, the feature richness and quality of an image can be evaluated. When comparing the 
average ( ) of each band, the band that has the bigger average ( ) is more suitable for feature 
matching.  

However, the purpose of matching images is to reconstruct the accurate positions and poses 
of UAV images. If the spatial distribution of the feature points is non-homogeneous, the process 
of solving the positions and poses of the images may be unstable. The spatial distribution of the 
feature points also needs to be considered, besides the average quality value. The information 
entropy-based equilibrium degree [32] is often used to describe the distribution of a point set: 



Remote Sens. 2017, 9, 962  4 of 21 

 

= = −∑ ∑ ∑
 

(2) 

where  is the number of points in the -th sub area of the image, ∑  is the total point 

number in the image, and  is the number of sub areas. = −∑ ∑ ∑  is the 

information entropy of the point set when the image is divided into  sub areas, and =  
is the maximum of the information entropy. The unit of  is nat (natural unit) when using . 

As Figure 1 shows, to calculate the equilibrium degree, the image is divided into many sub 
areas. Since the aspect ratio of the image data is 5 to 4, the image can be split into 20 square sub 
areas, namely, in this case, = 20 . The product of the average ( )  of the points and the 
information entropy-based equilibrium degree is used to describe the feature quality of a 
greyscale image in Equation (3). 

= ( ) ∙ 	 = ( ) ∙ −∑ ∑ ∑
 (3) 

where  is the number of the keypoints that can be detected, and ( ) = ∑ ( )  is the 
sum of local contrast levels of the keypoints.  

 
Figure 1. Image sub areas created from original image. 

For a set of images, the average  of the -th band can be computed using Equation (4): 

= 1
 (4) 

where 	  is the feature quality of the -th band in the -th image, and  is the 

number of images that used to evaluate . To reduce the time consumption of evaluating 
the  of every band, the evaluation can be performed not on all the images. A subset of all 
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the images can be used depending on the total number of images, for example, selecting one 
image out of every two to five images. The band that has the highest  is considered to 
have better performance in the feature matching process. 

In the following experiments, we discovered that the value  could be used to pick 
up an optimal band to perform feature matching efficiently. However, it is highly possible that 
some individual images will have a different optimal band rather than the  indicated. 
Taking this situation into consideration, a dynamic matching strategy is used. For a certain 
image pair, we denote the matched point pair set as ; if the size of the matched point pairs ( ) are less than a threshold , the optimal band only for these two images will be re-
evaluated, and the two images will be re-matched using the new optimal band. The new 
matched point pair set is ; if ( + ) exceeds , the matching process of these two 
images is completed and the matching result is + . If ( + )  is still less than , 
the matching process will be going on using the second band in the re-evaluating result, until ( + … )	exceeds , or all the bands of the two images have been matched. 

3.2. The Simplified Projection Model 

Limited by cost and weight, the inertial measurement unit (IMU) sensors on the UAVs have 
difficulty in providing accurate pose data for the image mosaicking. After feature matching, we 
have to restore the accurate positions and poses of the images using matching results. 
Fortunately, the GPS coordinates and pose data can be used for initializing the process. For most 
frame cameras, the projection model is [33]: 

= = −−−   

where , ,  is the position of the projection center, , ,  is position of the ground 
point, and , ,  are the image space coordinates. R is the rotation matrix that represents the 
rotations around the roll, pitch, and yaw axes of the camera, and can be written as: 

= = 0 −0 1 00 1 0 00 −0 − 000 0 1 ,  

 and  is the interior parameters of the camera. 
Using this model, the 3D positions of the ground points and the 6-DOF poses (3D positions 

and 3-Axis rotations) of the camera will be reconstructed at the same time. The time complexity 
of this process will be around ( ) to ( ) [34]. Considering that farmlands usually have a 
lower elevation variation, and the main purpose of capturing UAV multispectral data is to 
analyze the status of crop growth, the model can be simplified to reduce time consumption and 
avoid irregular resampling at the same time. First, in the rotation matrix, , ,  represent the 
roll, pitch, and yaw of the image, respectively. The image rotation around the roll and pitch axes 
will cause inconsistent scale variation around the image; this will lead to severe spectral 
distortion during resampling. Due to the fact that most UAV multispectral remote sensing 
systems can stabilize the camera in these two axes, we can treat  and  as zero and consider 
the two matrices  and  as the identity matrix, like: 

= = 0 −0 1 00 1 0 00 −0 − 000 0 1= 1 0 00 1 00 0 1 1 0 00 1 00 0 1 − 000 0 1 = − 000 0 1=  
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The projection model can be written as: 

= − 000 0 1 −−−   

For flat areas such as farmlands, −  can be approximated to the UAV flying height of 
. At the same time, since our research is mainly focused on the image mosaic, not calibration, 

we treat the images as being already calibrated, and then the  only has 
0 001  left. The 

model can be further simplified as: 

= 0 00 00 0 1 − 000 0 1 −−   

The image captured by the camera is planar, so  is a fixed value, and the equation can be 
re-written as: = cos − sinsin cos −−  (5) 

According to (5), the coordinate of the ground point can be calculated using: = + += − +  (6)

After feature matching, for every matched point pairs, two ground coordinates ( , ) 
and ( , )	 can be calculated using (6). Since the two points represent the same ground 
point, the correct exterior orientation elements should let the distance between( , ) and ( , )	 be minimum. For all the matched point pairs, the correct exterior orientation 
parameters should satisfy Equation (7): 

min − + −  (7) 

Replace , , ,  using (6); the Equation (7) will only relate to the exterior 
orientation elements of the images and the coordinates on the images of the matched point pairs. 
By solving (7) with non-linear least square algorithms such as the Levenberg-Marquardt 
algorithm, the correct exterior orientation elements of images can be extracted.  

The result resolved by the Levenberg-Marquardt algorithm corresponds to local minima. 
To increase the robustness and speed of the algorithm, the GPS coordinates and pose data are 
used to initialize the algorithm. In fact, what Equation (7) solves is the accurate relative positions 
and poses between the images; the actual georeference can be obtained using the method 
described in our previous work [35].  can be found from the datasheet of the sensor. Since the 
UAV is able to maintain a steady flying height,  can be estimated by the average altitude of the 
whole working trajectory; for every image, the DOF (degree of freedom) of the exterior 
orientation parameters can be reduced from 6 to 3. This modification can promote the robustness 
of the model and reduce the time consumption remarkably. After estimating the locations of the 
ground points and the exterior orientation elements of the images, the images are transformed 
using the exterior orientation elements instead of the locations of the points. For one single 
image, such a transformation can be kept the same in every part of the image so that the irregular 
resample can be reduced. 



Remote Sens. 2017, 9, 962  7 of 21 

 

3.3. Estimation of the Possible Overlapping Relations 

To match a set of images, we may have to try every possible combination of image pairs to 
find possible overlapping relations if the spatial relations among the images are unknown. The 
time complexity of this process is ( ), and the actual time consumption will increase quickly 
with the number of UAV images. In fact, every single image only has overlapping relations with 
surrounding images, and only these image pairs need to be matched. So when matching one 
image with others, it is necessary to restrict the match attempt only to the adjacent images. 

As mentioned above, most UAV multispectral systems can stabilize the rotation of the 
camera around the pitch and roll axes, so the camera can be kept vertical to the ground. The 
footprint can be treated as a rectangle, and the long side is  and the short side is . When having 
overlapping relations, the longest center distance  for such two rectangles is √ + . 
Obviously, setting √ +  as the threshold for trying to match two images may cause a lot 
of false positives, so we tightened the restriction to . If the center distance  of the two 
images satisfies the following equation, it is assumed these two images are close enough to have 
an overlapping relation, and the matching processing of these two images will be tried in the 
feature matching step. 2 tan 2 (8) 

where  is the height of the camera from the ground and  is the field of view (FOV) of the 
camera. Since we treat the flying trajectory as planar,  can be set with the average of all the 
heights of the images. As shown in Figure 2, using the distance threshold to restrict matching 
attempts can significantly improve the efficiency of the matching process. 

 
Figure 2. Estimating possible overlapping relations using distance threshold. One dot represents one 
image. For a certain image represented by the red dot, all the images in the circle of radius  are 
supposed to have possible overlapping relations with the image represented by the red dot. 

3.4. The Workflow of the Proposed Method 

The complete workflow of the proposed method is shown in Figure 3. The original image 
data and the GPS/pose data are captured by the UAV. The proposed image mosaicking process 
is composed of four steps:  

Step 1. In the pre-processing stage the GPS/pose records, and original images are processed 
separately. The GPS/pose data are used to estimate potential overlapping relations using the 
distance-based method described above. The original images are used to find the optimal band 
for feature matching. The detailed steps are: 
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1. Pickup sample images according to a fixed interval, such as every three or five images for 
feature quality estimation. 

2. Divide every band image into several sub areas as close to the square as possible. 
3. Detect SIFT feature points on all the bands of the images. 
4. For every band of each frame of the image, calculate the   using Equation (3). 
5. Calculate the  of each band among all the sample images using Equation (4). 
6. The band that has the highest   will be used for feature matching. 

Step 2. In the feature matching step, the optimal band that was chosen in Step 1 is used to 
match the image pairs that have potential overlapping relations. For every pair of images, the 
matching steps are: 

1. Try matching the two images using the optimal band selected in Step 1. The matched point 
pair set is . 

2. If ( )  is less than  (in this research  is set to 30), redo the optimal band 
evaluation according Step 1 on only these two images, and use the new optimal band to re-
match the image pair. The new matched point pair set is . 

3. If ( + ) is still less than , continue matching with the band that has the second 
highest  in the re-evaluation result until ( + … )exceeds , or every 
band of the two images is matched. 

Step 3. In the alignment step the matched results are used to compute the accurate position 
and pose of the images. Every pair of matched points corresponds to two images (j1, j2). The two 
points positions on the two images are ,  and , . The exterior orientation parameters 
of the two images are , ,  and , , . Substitute them into Equations (6), then 
get ,  and ,  Then, the Levenberg-Marquardt algorithm is used to find the 
accurate exterior orientation parameters of all the images that satisfy Equations (7). In fact, this 
process is a global Bundle Adjustment, since the Bundle Adjustment can handle “almost any 
predictive parametric model [36]”. In order to make the process stable and fast, the GPS/pose 
data are used to initialize the exterior orientation parameters for the LM-algorithm. 

Step 4. In the blending step, the accurate exterior orientation parameters are applied to all 
the bands of all the images at the same time. Then, the resampled images are blended together. 
In our research, the blending algorithm described in reference [37] is used to blend the resampled 
images.  

GPS and 
Pose Record

Original
Image Data

Feature Match

Image Alignment Using 
Simplified Model

              Blend

Result

Choose Best Band for 
feature matching Using 

information entropy 
based Evaluate Method

Band1 Band2 Band3 BandN

Find Possible 
Overlapping 

Relations
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Figure 3. The workflow of the proposed method. 

4. Datasets 

A Tetracam Mini-MCA6 multispectral camera onboard the AF25b UAV platform is used to 
capture the UAV multispectral image in Beitun city, Xinjiang, China. The camera has six bands, 
including three visible and three NIR bands, and can capture 1280 × 1024 pixels images with a 
horizontal field of view (FOV) of 38.26 degrees. The sensor dimension of the MiniMCA6 is 6.66 
mm × 5.32 mm, and the focal length of the lenses is 9.6mm. The example images captured by the 
MiniMCA6 are shown in Figure 4, and the specification of the MiniMCA6 is listed in Table 1. 
The UAV system was used to acquire two datasets in the study area, as shown in Figures 5 and 
6. One dataset has 412 shots and contains urban land, bare land, farmland, and a waterbody, and 
the other dataset has 223 shots and contains farmland and roads. The main crop in the study 
area is popcorn. The first dataset will be called the dataset-urban, and the other one will be called 
the dataset-popcorn in the following sections. 

 
Figure 4. Six image bands of MiniMCA6 camera; the feature quality of each band has significant 
differences. 

 

Table 1. Band Parameters of MiniMCA6. 

Band Wave Length-Band Width (nm) Name Relative Exposure (%) 
Band1 550-10 Green 70 
Band2 490-10 Blue 127 
Band3 680-10 Red 100 
Band4 720-10 NIR 100 
Band5 800-10 NIR 80 
Band6 900-20 NIR 100 
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Figure 5. Overview of the dataset-urban. 

 
Figure 6. Overview of the dataset-popcorn. 

5. Experiment Results 

5.1. Selection of the Optimal Band for Feature Matching 

Based on the evaluation method described in 3.1, the feature quality evaluation is conducted 
among the two datasets. In order to reduce the time consumption on evaluation, one out of every 
three images is used to perform the evaluation on the dataset-urban, and the evaluating results 
are illustrated in Figures 7 and 8; the average Q-Values of each band of the two datasets are 
presented in Table 2. 
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Figure 7. Q-value of dataset-urban; band3 has the best performance, and the other bands also have 
good performance. 

For the dataset-urban, band3 has the highest Q-Values among all the images, which means 
band3 (the red band) can provide better performance in the matching process all the time. 
Considering that the dataset-urban covers a large area of urban land and bare land, the 
evaluation result is reasonable. For the dataset-popcorn, things are a little bit complicated. As 
we can see in Figure 6, the test site of the dataset-popcorn is mostly farming land, and the image 
texture is relatively weak. Although band3 still has higher global average Q-Values, band5 
performs better, and band3 performs much worse in some images. The green band (band1) 
performs not as well as the red band (band3) in the farming areas because the red band can have 
a higher contrast level between vegetation and bare land and provide feature points that have a 
much higher quality. Using only one certain band for feature matching may be not suffice to 
handle such a complex situation well. The flexible matching strategy of the proposed method 
can get a steady matching result for further processes. 

 
Figure 8. Q-value of dataset-popcorn. Band3 has the best performance but is not stable. In some 
images, the NIR band has better performance. 

Table 2. Comparison of average Q-Values for each band. 

Dataset Name Band1 Band2 Band3 Band4 Band5 Band6 
Dataset-urban 88.931 57.232 141.191 31.346 13.180 6.365 

Dataset-popcorn 27.063 15.183 54.798 20.561 38.970 15.472 
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The Q-Value and the number of matched point pairs in the dataset-popcorn are listed in 
Table 3. The correlation coefficient of these two sets of values is 0.7470, which means the Q-Value 
and the number of matched pairs have a significant correlation with the confidence > 0.9. The 
correlation coefficient result proved that the Q-value was an efficient way to select the optimal 
band for feature matching. 

Table 3. Q-Value and number of matched point pairs, dataset-popcorn. 

 Band1 Band2 Band3 Band4 Band5 Band6 
Q-Value 27.063 15.183 54.798 20.561 38.970 15.472 

Matched PointPairs 29506 26703 31751 20130 29288 23003 

5.2. Mosaicking Results 

The mosaicking results in the RGB mode of the two datasets, dataset-urban and dataset-
popcorn, using our proposed method, are displayed in Figures 9 and 10 respectively. Figures 11 
and 12 are mosaicking DOM results generated by the Pix4Dmapper [38]. The experiment was 
performed on a computer that has Core i7-2600 CPU, 16GB RAM. 

As we can see in Figures 9 and 10, the results generated by our proposed method have no 
obvious distortion and malposition. This suggests that the proposed method can generate 
visually satisfactory results for both datasets. The flexible matching strategy and the simplified 
model enable the proposed method to get enough correct matches for the image alignment. 
Because the transformation of each image only depends on the image elements of the exterior 
orientation, the side and corner area can be utilized efficiently in mosaicking. On the contrary, 
Pix4Dmapper needs the 3D point cloud to generate the DOM, which means only the area inside 
the outermost 3D points can be used. As shown in Figure 13, in the mosaicking result of the 
dataset-urban generated by the Pix4Dmapper, the bottom left area has a slight malposition. For 
the dataset-popcorn, the Pix4Dmapper can produce a visually satisfactory result. Besides the 
significant distortion, the result of the Pix4Dmapper also has significant local breakages. Some 
examples are shown in Figure 14. These breakages are also caused in the sensitive 3D-
reconstruction process. According to the official document of the Pix4Dmapper [39], the 
Pix4Dmapper is not quite in favor of MiniMCA6 because of the slow rolling shutter of 
MiniMCA6. 

 
Figure 9. Image mosaic of the dataset-urban using the proposed method. The side and corner areas 
are efficiently used. 
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Figure 10. Image mosaic of the dataset-popcorn using the proposed method. The land cover type is 
mainly croplands and has limited feature level. 

 
Figure 11. Image mosaic of the dataset-urban using Pix4Dmapper. The side and corner areas have 
considerable losses. 

 
Figure 12. Image mosaic of the dataset-popcorn using Pix4Dmapper. 

 
(a) (b) 

Figure 13. Close-up views of the malposition in the result by Pix4Dmapper. (a) The result generated 
by the proposed method; (b) the result generated by Pix4Dmapper. Areas in the white ellipses are the 
malposition parts. 
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(a) (b) 

Figure 14. Comparison of local mosaicking results of the two methods. The upper two regions are 
from the dataset-urban, the lower two regions are from the dataset-popcorn. (a) by the proposed 
method; (b) by Pix4Dmapper.  

As shown in Figure 14, obvious geometric and spectral distortions in the transitional areas 
between the adjacent images can be observed in the mosaicking result by the Pix4Dmapper, 
indicating that the mosaicking result by our proposed method can produce the result that has a 
much better geometrical quality of the UAV MiniMCA6 image stitching.  

6. Assessments and Discussion 

6.1. Assessment of Processing Efficiency 
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To compare processing speeds, we divided the dataset-urban into several subsets that have 
different sizes. The size of each subset and the computing time by our method and the 
Pix4Dmapper are listed in Table 4. The time consumption of the Pix4Dmapper increased 
dramatically with the scale of the dataset. Meanwhile, the time consumption of our proposed 
method has a nearly linear growth. This is because the Pix4Dmapper tried to match all images 
exhaustively and recover the 3D structure of the ground surface. These two processes are time-
expensive. In the comparison of the complicatedness of the models, the sparse 3D reconstruction 
process will take more time than the alignment process in the proposed method and, 
furthermore, the dense 3D reconstruction will take much longer than the sparse 3D 
reconstruction. On the contrary, the proposed method spent much less time in the reconstruction 
process by incorporating the simplified projection model. The implementation of the proposed 
method has not used GPU acceleration so far in the experiment, and the deeply optimized math 
library Numpy [40] has been used to perform the matrix operations. In the future, to implement 
the proposed method with GPU acceleration is indeed attractive. 

Table 4. Comparison of time consumption in the mosaicking of the dataset-urban. 

Dataset Size Proposed Method (Time in S) Pix4Dmapper (Time in S) 
147 449 960 
254 1047 3720 
362 2117 11400s 

6.2. Accuracy Assessment 

Assessment of the mosaicking results can be done in two aspects: spatial and spectral 
accuracy. Higher spatial accuracy means the mosaicking leads to less geometric distortion while 
higher spectral accuracy means the mosaicking operation can keep better the spectral 
information from original images at each pixel location. 

A SPOT 5 satellite image of Beitun city was used as a reference for assessing spatial 
accuracy. The satellite image is the 2.5 m resolution SPOT full-color image, captured on 21 
November 2014. The matching points are selected manually and used to calculate the spatial 
root mean square error (RMSE). The matching points are illustrated in Figure 15. 

 
(a) (b) 

Figure 15. Selection of matching points in spatial accuracy assessment. (a) By the proposed method; 
(b) by Pix4Dmapper. 

The comparison in Table 5 shows that the proposed method has a smaller RMS error than 
the Pix4Dmapper, even if the latter should theoretically have higher spatial accuracy. This is 
because the 3D reconstruction model has more DOFs. Thus, it is more sensitive to matching 
noise. In local areas, the reconstruction process may be unstable due to the reasons like wrong 
matches or the rolling shutter effect. Since it has experienced simplification, our proposed model 
is more stable with the quality variation of the data. For the dataset-popcorn, despite the fact 
that the Pix4Dmapper generated a visually satisfactory result, the point cloud of the result has 
considerable distortion (Figure 16) and the calibrated camera positions also have major 
distortion because the 3D reconstruction algorithm is more sensitive to image data quality. 
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Without additional information such as the Ground Control Points (GCPs), the error will 
accumulate and finally form the arc of the point cloud shown in Figure 17, especially with 
datasets that have low texture such as the dataset-popcorn. The lack of matched point pairs will 
reduce the chance to correct such errors in the 3D-reconstruction process. On the contrary, the 
proposed method is more robust in such circumstances because of the hypothesis of planar 
ground and flying trajectory. 

Table 5. Comparison of root mean square (RMS) errors with the dataset-urban. 

RMS Proposed Method (pixel) Pix4Dmapper (pixel) 
AVERAGE 12.84 38.89 

MIN 4.34 14.58 
MAX 23.36 80.51 

 
Figure 16. The point cloud for the dataset-popcorn generated by Pix4Dmapper. The point cloud and 
flight trajectory have significant distortion. 

 
Figure 17. Calibrated camera positions by Pix4Dmapper. The blue dots indicate GPS positions from 
the unmanned aerial vehicle (UAV); the green ones are calibrated positions by Pix4Dmapper. 

To evaluate the spectral accuracies of the image mosaic results, a comparative method based 
on feature matching is adopted. Because it is difficult to pick up sufficient points manually to 
perform the spectral comparison. Thus, we just chose several original images from the datasets 
and matched them with the two mosaicking results. The average RMS error of all the bands for 
one pixel is calculated based on the following equation: 

= ∑ −
 (9) 
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where  is the total number of the image bands,  and  is the gray value of the −
 band at a matching point, and the  are the total number of the image bands. In this case, 

the  is equal to six.  
To keep the same point set used to make the comparison, the point pairs that correspond to 

the same points on the original images were used to perform the comparison, i.e., the point pairs 
linked by solid lines in Figure 18. The positions of the original images in the mosaicking results 
are shown in Figure 19: 

 
Figure 18. Matching original image with various results may generate different matched point pair 
sets. Only the common point pairs, as solid lines marked, are used for the comparison. 

 
Figure 19. Positions of original images that were selected for the spectral accuracy assessment. 

Table 6 shows the RMS errors of spectra at the seven areas on the mosaic images generated 
by the proposed method and the Pix4Dmapper. Z-Tests are performed to estimate the 
significance of the diversity of the two sets of the RMS errors. The result indicates that the 
proposed method has a smaller RMS error than the Pix4Dmapper in vegetated areas such as 
farmlands. In the bare soil area (site No.6) the two results have similar performances (| | 1.96). 
Moreover, in the urban area (site No.3), the Pix4Dmapper performed better than the proposed 
method, but the diversity is also not significant. In sites No.1, 2, 4, and 7, the proposed method 
performs better than the Pix4Dmapper, and the diversity has major significance (| | 2.58). In 
site No.5, the performance of the Pix4Dmapper is significantly better than the proposed method. 
Considering the proposed method mainly aims to be used in the farming areas, the result is 
acceptable. The spectral distortion of the mosaicking results is mainly caused by the resample 
process and the blending process. For the proposed method, an image will be resampled using 
the same translation and rotation parameters. On the contrary, the Pix4Dmapper will resample 
the pixels according to the 3D reconstruction results, indicating the resampling parameters will 
vary in different parts of the image, and this process will bring more spectral distortion. 
Considering the agricultural areas always have a smaller elevation variation, the simplified 
projection model of the proposed method may have great potential in agriculture applications. 

Table 6. Comparison of spectral distortion. 
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Sample 
Zone No. 

Matched 
Point 

Number 

RMS 
Error of 
Proposed 
Method 

Standard Deviation 
of RMS Errors 

(Proposed Method) 

RMS Error of 
Pix4Dmapper 

Standard Deviation 
of RMS Errors 
(Pix4Dmapper) 

Z-Test 
Value 

1 321 7.9892 4.6523 8.8905 5.0781 −2.4201 
2 775 6.3240 3.2269 7.8622 4.2996 −7.9659 
3 233 9.4951 5.0966 8.8159 5.0751 1.4414 
4 493 5.9284 3.5761 6.8598 4.0188 −3.8441 
5 452 8.7438 5.0430 7.8676 4.9279 2.6420 
6 634 7.3783 3.7951 7.7523 4.4444 −1.6114 
7 336 6.6388 3.3675 7.6904 3.7820 −3.8064 

For most 3D reconstruction methods, the feature points are used as reference points, which 
will have a lower precision loss in the resampling process. Meanwhile, the proposed method 
applies the same rotation parameter to one single image, which means such a comparison is not 
in favor of the proposed method. Even in such a comparison, the proposed method performs 
better than the state-of-the-art commercial software in agricultural lands. We can conclude that 
the proposed method can realize a lower precision loss in the spectral properties of the target.  

The spectral distortion reduced by the proposed method can be discussed from two aspects. 
From one aspect, the proposed method completed the mosaicking of the two datasets in a rather 
shorter time than the Pix4Dmapper. This indicates that our proposed method may be a more 
efficient solution to conduct UAV image mosaicking in some emergency response applications 
such as disaster monitoring. From the other aspect, the spectral distortion brought by the 
blending process is not adequately studied in this research. Thus, a blending algorithm with less 
spectral distortion needs to be studied in the future. The lower spectral distortion with a 
conventional blending algorithm also indicates that the modified projection model is necessary 
to reduce the spectral distortion during the mosaicking process; thus, with a better blending 
algorithm, the spectral distortion may be further reduced. 

6.3. The Impact of Altitude Accuracy 

The simplification of the projection model depends on the steadiness of the working altitude 
of the UAV. Because the simplified projection model treats both the ground and the working 
trajectory of the UAV as planar, the unstable altitude of the UAV platform will result in a 
considerable spatial error or an intolerable image misplacement. Unfortunately, the accuracy of 
the GPS altitude is not good enough on most occasions, especially for onboard GPS receivers 
which suffer from severe limits by the weight and cost. So it is necessary to discuss whether the 
low positioning accuracy of the onboard GPS receivers has a strong impact on the result.  

The altitude of a UAV depends on the GPS altitude. But since the GPS altitude is not quite 
reliable and may have a sudden change during the flight, the UAV also uses other sensors such 
as the accelerometer and the gyroscope to keep the pose and the altitude steady. Under this 
circumstance, the unstable GPS altitude can be supposed to vary around the true altitude. 
Therefore, an average of the GPS altitudes of the images is good enough to be an estimation of 
the  in Section 3.2. 

6.4. The Impact of the Alignment of the Bands 

In this research, it acquiesces that the bands of an image are already aligned because the 
alignment between the bands is beyond the topic of this study. However, during the experiment 
it is not possible to ignore this issue. The MiniMCA6 has an exclusive software package to correct 
the offsets between bands according to the factory calibration file. According to the FOV and the 
pixel size of the sensor, it can be calculated that when the UAV works 200 m high above the 
ground, the ground resolution is 108.33 mm. This length is greater than the distance between the 
two farthest lenses. So the offset between the lenses can be ignored.  

6.5. The Impact of the Other Reflection Characteristics of the Ground Targets 
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As we mentioned above, the environmental condition factors such as the atmosphere and 
the relative positions of the sun, the target, and the sensor may also affect the reflective 
properties. These factors indeed have a strong impact on the reflectivity of the ground targets, 
especially in agricultural areas because the plant canopy has anisotropic reflective properties. 
Although the environmental conditions may have an influence on the UAV images, the band 
selection method still can work very well, because the proposed method only evaluates the gray 
scale images of each band and uses the selected optimal band that has the highest average Q-
Value to perform the feature matching of the image mosaicking. On the other hand, the 
environmental conditions mainly affect the remote sensing applications such as crop growth 
monitoring by changing the reflectance. A Teflon board can be used to calibrate the MiniMCA6 
sensor right before every flight for the further applications using the mosaicking results.  

7. Conclusions 

This paper presents a simplified but efficient method for UAV multispectral image 
mosaicking in agricultural applications. In the proposed method, an algorithm for automatic 
image band selection was proposed and used in selecting an optimal band for feature matching, 
and a simplified projection model was also adopted to avoid the computationally expensive 3D 
reconstruction. The simplified projection is able to promote the efficiency of the mosaicking 
process and can reduce the spectral distortion by avoiding the irregular resampling in the 3D 
reconstruction process. The performance of the proposed method was demonstrated through a 
case study in Beitun City, Xinjiang Province, China. Results showed that the proposed method 
performed well on the two datasets and achieved better mosaicking results than the state-of-the-
art commercial software Pix4Dmapper. The resultant mosaicked images by our proposed 
method have less spectral distortion and higher spatial accuracy, and the mosaicking process 
consumed much less time than the Pix4Dmapper package.  

The limitation of this study is that the spectral distortion of the image blending process is 
not well considered. An image blending algorithm producing less spectral distortion has to be 
studied in future work. The evaluation process for feature matching will be very time consuming 
if the onboard sensor has a large number of bands (e.g., the hyperspectral sensor); thus, in future 
work, we should consider how to reduce the band number by merging bands or band selection 
based on the spectral features of the ground targets. Using GPU to accelerate the mosaicking 
process is also an attractive direction to study in the future.  
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