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Abstract: Point cloud filtering is an essential preprocessing step in 3D (three-dimensional) LiDAR
(light detection and ranging) point cloud processing. The filtering of mobile LiDAR scanning point
clouds is much more challenging due to their non-uniform distribution, the large-scale of missing data
areas and the existence of both large size objects and small land features. This paper proposes a new
filtering method that combines range constraint, slope constraint and angular position constraint
to filter ground surface points from mobile LiDAR point clouds. Firstly, a cylindrical coordinate
system (CCS) is established for each block of mobile LiDAR point clouds and three attributes of
mobile LiDAR points, i.e., the angular position attribute (AA), longitudinal distance attribute (LA)
and range attribute (RA), are computed. Then, the mobile LiDAR point clouds are structured into
a grid according to the AA and LA. Finally, the point clouds are filtered by a single cross-section
filter (SCSF) using range constraint and slope constraint, followed by a multiple cross-section filter
(MCSF) using range constraint and angular position constraint. Five datasets are used to validate the
proposed method. The experimental results show that the proposed new filtering method achieves
an average type I error, type II error, and total error of 1.426%, 1.885%, and 1.622%, respectively.
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1. Introduction

Mobile LiDAR scanning (MLS) is a state-of-the-art form of three-dimensional (3D) spatial data
acquisition technology and has been widely used in road surface mapping [1], tunnel mapping [2],
and road inventory [3], etc. The usage of MLS data can be mainly divided into two categories:
topographical mapping of the road corridor and road object information extraction. In topographical
mapping of the road corridor, ground surface points should be extracted from the raw MLS data.
In road object information extraction, ground surface points are first obtained (for road marking
extraction) or removed (for traffic sign and pole-like object extraction) to reduce the data volume and
facilitate object extraction. In both categories of MLS data usage, ground surface point filtering plays
an important role in data processing.

Many filtering algorithms have been proposed to cope with the ground surface point filtering
problem of 3D LiDAR point clouds. The existing filtering methods can mainly be categorized into four
groups: (1) slope-based filtering methods; (2) morphology-based filtering methods; (3) surface-based
filtering methods; and (4) segmentation-based filtering methods. Vosselman [4] first proposed the
slope-based filtering method, in which a point is classified as a ground point if all of the points within
a distance threshold have a height difference smaller than the allowed maximum difference. Instead
of using the same filter kernel for an entire dataset, Sithole [5] modified the slope-based filtering
method in such a manner that the threshold varied with respect to the slope of the terrain and better
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performance was achieved in steep areas. Local slope in [4] was refined by the local linear regression
criterion in [6]. The minimum height was first found in the neighborhood and points were assigned to
the ground if their heights were compatible with the linear regression criterion. Then the approximate
DEM (digital elevation model) was calculated according to the weighted mean of the ground points.
Finally, the points with distances to the approximate DEM that met the threshold criterion were
classified as final ground points.

The morphology-based filtering methods conduct morphological operations on the point clouds
and use the height difference between points before and after morphological operations to judge whether
the point is a ground point or not. The morphological operator “opening” was applied several times with
different window sizes to filter ground points from airborne LiDAR scanning (ALS) data by Kilian et
al. [7]. A window was moved over the dataset and weights depending on the window size were assigned
to points higher than the deepest point in the applied window. The ground surface was interpolated
under the consideration of the weights. Zhang et al. [8] developed a progressive morphological filter to
remove non-ground points from ALS data. By gradually increasing the window size, non-ground points
were removed progressively. Chen et al. [9] developed a similar progressive morphological filter but the
slope was no longer assumed as constant. Pingel et al. [10] implemented a morphological filter with a
linearly-increasing window and simple slope thresholding. Mongus et al. [11] filtered ground surface
points from ALS data with features mapped from differential morphological profiles.

There are two types of surface-based filtering methods: surface interpolation methods and
progressive TIN (triangulated irregular network) densification (PTD) methods. Kraus and Pfeifer [12]
and Pfeifer et al. [13] used the full ALS data with equal weights to interpolate an initial surface, and the
weight of each point was then updated based on the distance to the interpolated surface. The surface
was iteratively interpolated until the weights of all points remained unchanged. Points within the
buffer of the final interpolated surface were classified as ground points. An active shape model that
acts like a rubber cloth with elasticity and rigidity was used to model the ground surface in [14,15].
The model was fitted by minimizing the energy function and any points within the buffer of the
fitted model were accepted as ground surface points. Similar to the active shape model method,
cloth simulation was used to interpolate the ground surface in [16]. Hu et al. [17] interpolated thin
plate spline surfaces toward the ground in their adaptive surface filter (ASF). Bending energy was
embedded in ASF to self-adapt the filter threshold automatically. Axelsson [18] proposed a PTD
method to separate ground surface points from non-ground surface points. The seed ground points
were used to create an initial TIN structure, and the points meeting distance and angle criteria were
added to densify the TIN progressively. A two-step progressive TIN densification method was
proposed by Sohn and Dowman [19]. In the downward densification step, four corner points were
first chosen and triangulated, then the lowest points in each triangle were added to the triangulation.
The downward densification process was repeated until no more points were found beneath each
triangle. In the upward densification step, a buffer was defined for each triangle. The point within
the buffer that forms the flattest tetrahedral was added to the triangulation. The final TIN represents
the ground surface. Zhang and Lin [20] improved the traditional PTD filter by adding segmentation
using smoothness constraint (SUSC) between TIN construction and densification to preserve ground
points in areas with steep terrain. Zhao et al. [21] improved the traditional PTD filter by combining it
with a morphological method to provide more ground seed points, adding simulated ground points
to improve the quality of the initial TIN and performing downward densification before upward
densification to deal with slope variations.

The segmentation-based filtering methods classify a segment rather than a single point as
ground or non-ground based on local geometrical relations such as height, slope or curvature in
the neighborhood. Brovelli et al. [22,23] proposed a method to filter ALS data according to the edges
detected in the interpolated DSM (digital surface model). The points inside the convex hull determined
by the edge cells were classified as objects in case their height was greater than or equal to the
computed mean edge height. Tóvári and Pfeifer [24] extended the point-based filtering method [12] to
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a segmentation-based method to achieve better performance. The raw ALS data were first segmented
into segments by region growing, and then a surface interpolation method similar to [12] was used to
interpolate the ground surface.

The filtering algorithms mentioned above were mainly developed for ALS data. Compared with
ALS data, MLS data have a much higher point density, which usually greatly decreases the efficiency of
filtering algorithms. Besides, the point density of MLS data is not uniform in the data extent because
of the different scanning distances, making it confusing to determine the window size and grid size
in morphology-based and surface-based filtering algorithms, respectively. In some works [25,26], the
authors attempted to calculate the MLS point density accurately to minimize the influence of the
non-uniform distribution on MLS data processing. Last but not least, large-scale missing data areas exist
inside the MLS data extent because of occlusion. The interpolation of large-scale missing data areas
decreases the reliability of data, especially when ground points are mixed with points from vegetation
and buildings [4]. Filtering algorithms for MLS data considering the data characteristics are needed.

However, fewer filtering methods are designed specifically for MLS data, taking into consideration
the data characteristics. Wu et al. [27] proposed a method to extract ground surface points from MLS
data by organizing data into vertical profiles. Candidate ground points were extracted from the
vertical profiles by an alpha shape algorithm and ground points were refined by an elevation variance
filter. Nurunnabi et al. [28] proposed a locally-weighted regression technique to fit the ground surface
iteratively. Points within the specific height buffer of the final fitted ground surface were identified
as ground surface points. Zhou et al. [29] proposed a scanline-based segmentation method to filter
ground surface points from an ordered MLS point cloud.

In contrast to intentionally filtering ground surface points, in some works the ground points
are extracted or removed first in order to identify road object information from MLS data. In these
works, the points on the pavement are extracted or eliminated, leaving the ground points outside
the pavement unhandled. For example, Guan et al. [30] proposed a method to extract road surface
points using curbstone information on both sides of the road. Zheng et al. [31] removed the points on
or around the ground by a piecewise elevation histogram segmentation method. These methods are
mainly designed to extract or remove the points inside the road pavement, and they are not suitable
for applications requiring full ground surface points within the data extent.

Besides filtering ground surface points from MLS data, in some works, the authors try to label
the point clouds or classify the whole point clouds into different categories directly. Usually, ground
surface points represent one of the categories. Yang and Dong [32] proposed a shape-based method
to segment the MLS point clouds of urban scenes into different objects. Luo et al. [33] proposed
a patch-based semantic labeling framework to label each point of colorized mobile LiDAR point clouds.
Both semantic labeling and direct classification are much more challenging and time-consuming due
to the scene complexity and the huge volume of MLS point clouds.

This paper proposes a new filtering method specifically designed to filter ground surface points
from MLS data. In our method, a cylindrical coordinate system is established for each block of the
mobile LiDAR point cloud and three attributes of mobile LiDAR point clouds, i.e., angular position
attribute (AA), longitudinal distance attribute (LA) and range attribute (RA), are first computed. Then,
the MLS point clouds are structured into a grid according to AA and LA. The MLS point clouds are
quasi-uniformly distributed and large-scale missing data areas are avoided in such a grid. Unlike the
existing filtering methods that use slope differences or elevation differences between ground surface
points and non-ground surface points, the single cross-section filter (SCSF) using range constraint
and slope constraint, and the multiple cross-sections filter (MCSF) using range constraint and angular
position constraint are designed to filter ground surface points from MLS data.

The remainder of this paper is organized as follows. The datasets used to validate the proposed
filtering method are first described in Section 2, followed by the detailed description of the proposed
filtering method. Section 3 presents the experimental results, and the proposed filtering method is
discussed in Section 4. Finally, Section 5 concludes this paper.
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2. Materials and Methods

2.1. MLS Datasets

The mobile LiDAR point cloud data for the Jincheng highway in Beijing, China were collected
by a mobile LiDAR system equipped with a RIEGL VUX-1 laser scanner. The speed of the mobile
LiDAR system during data acquisition was about 40 km/h. The angular step width of laser scanning
was 0.02◦ and the distance between two scan lines was about 0.06 m. The total data coverage was
about 57 km (Figure 1). For convenience, five subsets with different ground surface types and different
non-ground objects were selected as the test data from the whole dataset (Figure 1).
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Figure 1. The collected mobile LiDAR (light detection and ranging) scanning (MLS) point clouds and
five test subsets. The point clouds of the five subsets are colored by elevation.

Different ground surface types and non-ground objects were contained in the selected test data.
Figure 2 illustrates the cross-section views of the five datasets. The selected five subsets all have
flat road pavements with moving cars on them (the pavements lie inside the red boxes in Figure 2).
Besides a flat road pavement, Subset 1, Subset 3 and Subset 4 contain gently sloping ground surfaces,
while Subset 2 and Subset 5 contain steep ground surfaces ( 1© in Figure 2b and 2© in Figure 2e,
respectively). All five subsets contain trees and cars, especially Subset 1 and Subset 2. Lamps exist in
Subset 1. Buildings exist in Subset 1 and Subset 4. Power lines exist in Subset 2, Subset 3 and Subset 5.
The details of the five selected subsets of data are described in Table 1.
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Figure 2. Cross-section views of the five datasets: (a) Subset 1; (b) Subset 2; (c) Subset 3; (d) Subset 4;
(e) Subset 5. Roads are inside the red boxes in (a–e).

Table 1. The details of the five subset datasets.

Dataset Length (m) Number of Points
(million)

Ground Surface
Type

Typical Non-Ground
Objects

Subset 1 295 14.2 Flat Gentle
Large numbers of trees
Large numbers of cars

Lamps, buildings

Subset 2 140 4.7 Flat Steep
Large numbers of trees
Large numbers of cars

Power lines

Subset 3 290 9.3 Flat Gentle Large number of trees Cars,
power lines

Subset 4 270 9.6 Flat Gentle Large numbers of trees Cars,
buildings

Subset 5 320 9.6 Flat Steep Trees, power lines Cars,
overpass road

Besides x, y, and z coordinates, a precise GPS (global positioning system) timestamp is another
attribute of each MLS point. The trajectory data, including a precise GPS timestamp and the position
and attitude of the mobile LiDAR system platform at that time point, are delivered together with the
MLS point clouds.
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2.2. Computation of MLS Point Cloud Attributes

In order to compute the attributes of the MLS point clouds, i.e., AA, LA and RA, the cylindrical
coordinate system was used. AA, LA and RA correspond to the angular position, longitudinal distance
and radial distance in cylindrical coordinate system, respectively.

The cylindrical coordinate system can be seen as an extension of a two-dimensional (2D) polar
coordinate system. In a polar coordinate system, a point on a plane is determined by a distance from
a reference point (origin) and an angle from a reference direction [34]. The distance from the reference
point is called the radial distance, and the angle from the reference direction is called the angular
position (angular coordinate, or azimuth). Figure 3a is an illustration of a polar coordinate system.
In Figure 3a, A is the reference direction and O is the reference point (origin). The coordinates of point
K1 in the polar coordinate system is determined by the radial distance from O to K1 (ρ1) and the angle
from OA to OK1 (ϕ1). The coordinates of point K2 are determined by the distance from O to K2 (ρ2)
and the angle from OA to OK2 (ϕ2).

A 3D cylindrical coordinate system combines the 2D polar coordinate system with an additional
z-axis vertically or L-axis horizontally (this paper uses the L-axis horizontally) [35]. To construct a 3D
cylindrical coordinate system, the reference plane R should first be obtained. On the reference plane R,
the reference direction A and the reference point O are specified to construct a polar coordinate system.
The longitudinal axis L starts from reference point O and is perpendicular to the reference plane R,
pointing in the positive direction. Figure 3b is an illustration of a 3D cylindrical coordinate system.
In Figure 3b, T is an assistant plane that contains point C and is parallel to the reference plane R. The
intersection of T and longitudinal axis L ( O′ in Figure 3b) is the reference point of the polar coordinate
system on plane T, and the reference direction is the same as that in plane R. The position of point C in
a 3D cylindrical coordinate system can be denoted by the ordered triplet (ρ, ϕ, d), in which ρ and ϕ are
the radial distance and angular position in the polar coordinate system, respectively, while d is the
longitudinal position distance between the assistant plane T and reference plane R.
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coordinate system (b).

MLS point clouds are usually divided into blocks and the points are ordered by timestamp in
each block. To establish a cylindrical coordinate system for each block, the plane that contains the first
point P1 (earliest on timestamp) and is perpendicular to the trajectory data is selected as reference
plane R. The intersection of reference plane R and the trajectory data is defined as the reference point
(origin) O, and the z-direction is defined as the reference direction A. In this way, the polar coordinate
system in the reference plane is established. The longitudinal axis L of the 3D cylindrical coordinate
system starts at reference point O and is perpendicular to the reference plane R, with the direction
along the trajectory direction as the positive direction.
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Since the trajectory of MLS point cloud data can hardly be a straight line and the longitudinal axis
L will not be parallel to the trajectory data, the conventional cylindrical coordinate system illustrated in
Figure 3b should be modified to adapt it to the attributes of the computation of MLS point clouds. First,
the assistant plane T used to figure out the cylindrical coordinates of point C will no longer be parallel
to the reference plane R. Instead, T is redefined as the plane that contains point C and is perpendicular
to the trajectory data. The intersection of plane T and trajectory data is the reference point (origin)
of the polar coordinate system on plane T. The z-direction is still the reference direction of the polar
coordinate system on plane T. In this way, the radial distance and the angular position of a point in an
MLS point clouds can be computed. Second, the longitudinal position d is not the distance between
plane T and plane R, but the trajectory length between plane R and plane T. Figure 4a is an illustration
of the cylindrical coordinate system used to compute the attributes of MLS point clouds.
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As mentioned above, AA, LA and RA correspond to the angular position, longitudinal distance
and radial distance in a cylindrical coordinate system, respectively. To compute the attributes of a
point P of MLS point clouds, denoted by (t, x, y, z), the Cartesian coordinates of the reference point O′

in plane T, denoted as (x0, y0, z0), are obtained by making PO′ perpendicular to the trajectory. The
timestamp t of point P is used to find out the trajectory data between t − dt and t + dt so as to obtain
the reference point in the polar coordinate system more efficiently. Then the RA of P (denoted as ρ) can
be obtained by calculating the Euclidean distance between point P and reference point O′, according
to Equation (1). As illustrated in Figure 4b, the AA of P (denoted as ϕ) can be estimated by the RA
and the z difference between P and O′ through the trigonometric function as described in Equation (2).
The LA of P is calculated by accumulating the distance from O to O′ along the trajectory.

ρ =
√
(x0 − x)2 + (y0 − y)2 + (z0 − z)2, (1)

ϕ =

 acos
(

z−z0
ρ

)
on the right side of trajectory

2π − acos
(

z−z0
ρ

)
on the left side of trajectory

. (2)

2.3. Filtering Method

The attributes of MLS point clouds, i.e., AA, LA and RA, are first computed according to
Section 2.2. Then, a point in the MLS point clouds is denoted as (t, x, y, z, ρ, ϕ, d) where t, x, y, z, ρ, ϕ, d
denotes timestamp, x coordinate, y coordinate, z coordinate, range attribute, angular position attribute,
and longitudinal distance attribute, respectively. In order to improve the efficiency of the filtering
algorithm, a grid is first constructed to establish the connectivity between the MLS points based on



Remote Sens. 2017, 9, 958 8 of 19

AA and LA. In the constructed grid, a column is a cross-section of the road. To extract the ground
surface points, a single cross-section filter (SCSF) using range constraint and slope constraint is first
applied to each cross-section. By using SCSF, most of the non-ground points will be filtered out. To
refine the ground surface points, multiple cross-sections are used to fit the local surface. The points
with an angular position smaller than the minimum angular position or larger than the maximum
angular position of that cross-section and the points with a range far away from the fitted local surface
are filtered out. The workflow of the filtering method proposed in this paper is illustrated in Figure 5.
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2.3.1. Grid Construction

A grid g is constructed to establish the connectivity between MLS points based on angular position
attributes and longitudinal distance attributes. The grid g is constructed by the following three steps:

• Finding the minimum angular position ϕmin and the minimum longitudinal distance dmin.
• Determining the angular resolution Ra and distance resolution Rd.
• Assigning the MLS point P(t, x, y, z, ρ, ϕ, d) to the grid cell with row index cellrow and column

index cellcol computed using Equations (3) and (4). If more than one point is assigned to the same
grid index, the point with largest range attribute is preserved.

cellrow = Floor[
ϕ− ϕmin

Ra
], (3)

cellcol = Floor[
d− dmin

Rd
]. (4)

Since the angular step-width of a LiDAR scanner during a project will seldom be changed, the
point clouds are quasi-uniformly distributed along the angular position direction even though the
angular position is not strictly the same as the scanning angle in laser scanner data acquisition geometry.
Besides, as MLS point clouds are usually divided into small blocks and the speed of the platform
during a block can be regarded as steady, the MLS points are also quasi-uniformly distributed along
the longitudinal distance direction. Compared with the grid created in the XY horizontal plane, the
advantage of the grid created in this paper based on the angular position attribute and the longitudinal
distance attribute is that the point clouds are quasi-uniformly distributed in the grid and large-scale
missing data areas are avoided in such a grid. Figure 6 is an illustration of mobile LiDAR point clouds
and the grid created based on the angular position attribute and the longitudinal distance attribute.
Figure 6a shows MLS point clouds colored by elevation, while Figure 6b shows the established grid
based on the angular position attribute and the longitudinal distance attribute colored by range
attribute. In Figure 6b, white cells represent empty cells. It can be seen from Figure 6b that only a few
empty cells exist in the grid, which indicates that the point clouds are quasi-uniformly distributed in
such a grid and no large-scale empty cells exist in such a grid.
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Figure 6. MLS point clouds and the corresponding grid created based on the angular position attribute
and the longitudinal distance attribute: (a) MLS point clouds colored by elevation (points with low
elevation are colored in blue, points with high elevation are colored in red and white areas are those
occluded by cars); (b) the grid created based on the angular position attribute and the longitudinal
distance attribute colored by range attribute (cells with small range attribute are colored in blue, cells
with large range attribute are colored in red and empty cells are colored in white).

2.3.2. Single Cross-Section Filtering (SCSF)

As illustrated in Figure 7, there are two typical types of road cross-section: (1) road cross-sections
with a roadside slope lower than the pavement; and (2) road cross-sections with a roadside slope
higher than the pavement. O in Figure 7a,b represents the origin of the polar coordinate system used
to compute the three attributes of MLS point clouds and the blue lines of dashes represent the range
attributes of the MLS point clouds. In Figure 7a, the ground surface and objects between 2© and 3© are
occluded. The range attributes of points from 1© to 2© and from 3© to 4©will keep increasing obviously.
In Figure 7b, the range attributes of points from 1© to 2© will keep increasing obviously. For points
between 2© and 3© in Figure 7b, if the next point is outside the circle which centers at O with a radius
equal to the range attribute of the current point, the range attributes of the points will keep increasing.
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Figure 7. Two typical types of road cross-section: (a) road cross-section with roadside slope lower than
the pavement; (b) road cross-section with roadside slope higher than the pavement.

In the constructed grid g, a column is a cross-section of the road. For the points of a cross-section,
the range attributes of the ground surface points on both sides of the minimum range point (the point
with minimum range attribute in the cross-section) will keep increasing. Figure 8 is an illustration of
a cross-section taken from real data. As illustrated in Figure 8b, the range attributes of the ground
surface points on both sides of the minimum range point keep increasing. This characteristic can be
used to filter ground surface points from MLS point clouds cross-section by cross-section.
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To filter out non-ground surface points in the nth cross-section, we first found the kth point
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After filtering using the range constraint, the slope constraint is further applied to each
cross-section since with the slope constraint it is easy to filter out points on vertical objects and
building roofs. The kth point with minimum ρ is undoubtedly regarded as a ground surface point.
Then the slope constraint is accomplished by two steps: (1) from ϕk
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2.3.3. Multiple Cross-Section Filtering (MCSF)

In SCSF, not all points that satisfy Equation (5) are ground surface points. Figure 9b is an
illustration of the result of SCSF. All points in Figure 9b satisfy Equation (5): the green points are
ground surface points but the purple and black points are not ground surface points. There are two
main types of non-ground points that exist in the result of SCSF: (1) the tree points or vegetation points
in the margin of the cross-section (black points in Figure 9b); and (2) the tree points or vegetation
points between ground surface points (purple points in Figure 9b).
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Figure 9. Multiple cross-section filtering: (a) True ground surface points; (b) The result of a single
cross-section filter (SCSF); (c) Filtering out the non-ground surface points from the result of the SCSF
by the fitted ground surface using multiple cross-sections.

The marginal non-ground surface points in the nth cross-section could be eliminated by the
angular position constraint. If the minimum angular position of ground point ϕmin(n) and the
maximum angular position of ground point ϕmax(n) of the nth cross-section are known, the marginal
points could be eliminated by eliminating the points with an angular position less than ϕmin(n) and
greater than ϕmax(n) (the red dash line in Figure 9c). The non-ground surface points between ground
surface points could be eliminated by comparing the range attribute with the true surface range in the
same grid cell. The range of non-ground surface points is smaller than the true surface range.

The range of the true surface of a cross-section can be fitted by the nearby N1 cross-sections.
For the ith grid cell in the nth cross-section, the fitted range is the maximum range of the ith grid
cell of all the N1 nearby cross-sections. That means ρi

fn
can be obtained by Equation (7). Then the

fitted range is filtered by SCSF and the range of the filtered-out grid cell is interpolated by the nearby
grid cell using linear interpolation. The minimum ground point angular position ϕmin(n) and the
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maximum ground point angular position ϕmax(n) of the nth cross-section is estimated by the nearby
N2 fitted ground surface cross-sections according to Equations (8) and (9). The non-ground surface
points between ground surface points could be eliminated in two steps: (1) for the ith point between
ϕk

n and ϕmax(n), if ρi
n is smaller than the range of the (i − 1)th grid cell in the fitted ground surface,

the point is classified as a non-ground point and eliminated; and (2) for the ith point between ϕk
n and

ϕmin(n), if ρi
n is smaller than the range of the (i + 1)th grid cell in the fitted ground surface, the point

is classified as a non-ground point and eliminated. The criteria for eliminating non-ground surface
points between ground surface points is described in Equation (10).

ρi
fn
= max{ρi

f
n− N1

2

, . . . , ρi
f
n+ N1

2

}, (7)

ϕmin(n) = max
{

ϕmin
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2

)
, . . . , ϕmin

(
n +

N2
2

)}
, (8)

ϕmax(n) = min
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n− N2

2

)
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(
n +

N2
2

)}
, (9){

ρi
n < ρi+1

fn
(ϕi

n ≤ ϕk
n)

ρi
n < ρi−1

fn
(ϕi

n > ϕk
n)

. (10)

3. Results

The five datasets described in Section 2.1 were filtered by the method proposed in this paper.
The outlier points with high or low height values were removed manually before filtering. In grid
construction, the angular resolution Ra was set the same as the scanning angular step width (0.02◦)
and the distance resolution Rd was set the same as the distance between two consecutive scan lines
(0.06 m). The slope threshold Ts was set to 45◦. In the MCSF, the number of nearby cross-sections
used to interpolate the true ground surface points was set to 50 (about 3 m) and the number of nearby
fitted cross-sections used to estimate minimum and maximum angular position of a cross-section
was 250 (about 15 m). In order to compare the performance of the proposed filtering method with
other filtering algorithms, the five datasets were also filtered by progressive morphological filtering
(PMF) [8] and cloth simulation filtering (CSF) [16].

PMF uses a morphological filter to detect and remove non-ground points. The window size of the
filter is gradually increased and the elevation difference threshold is determined based on the elevation
variations of terrain, buildings and trees. The details of the PMF algorithm can be found in [8]. When
filtering with PMF, the maximum window size, the slope value used to compute the height threshold,
the initial distance, and the maximum distance were set to 20 m, 0.1, 0.05 m, and 0.5 m, respectively.

In CSF, the point clouds are first inverted and then a rigid cloth is used to cover the inverted
surface. The locations of the cloth nodes are determined by analyzing the interactions between the
cloth nodes and the corresponding LiDAR point. Ground surface points are obtained by comparing
the original points with the generated cloth surface. The details of the CSF algorithm can be found
in [16]. When filtering with CSF, the scene types of all the five datasets were set to a steep slope, and
post-processing to handle steep slopes was used. The cloth grid resolution and the distance threshold
were set to 1.3 and 0.02 m, respectively.

Reference ground surface points for the five datasets were created by the ground surface points
filtering method in the commercial software TerraScan and through manual editing. First, the
outlier-removed datasets were filtered by TerraScan. When filtering with TerraScan, the maximum
building size, the terrain angle, the iteration angle and the iteration distance were set to 15 m, 45◦,
6◦, and 0.5 m, respectively. Then the filtering results were manually edited carefully to add ground
surface points and remove non-ground surface points. Finally, the points with a distance smaller than
2 cm (a threshold by which almost all pavement points are classified as ground surface points) to the
surface constructed by the edited ground surface points were all classified as ground surface points.
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The top views and cross-section views of the filtering results created using the proposed method
are shown in Figure 10. Since the MLS points in our filtering method are gridded and only one point
is kept in a grid, many ground surface points are removed in the grid construction step. In order
to evaluate the filtering results more reasonably, the points of filtered ground surface points were
used to construct a TIN surface and the original points within 2 cm of the TIN surface were all
reclassified as ground surface points. It can be seen from the top views in Figure 10 that the proposed
method can correctly classify almost all pavement points as ground surface points and label objects
such as cars above the pavement as non-ground points correctly. From the cross-section views in
Figure 10 it can be seen that the proposed method can extract most of the ground surface points
correctly even in challenging areas such as steep slope areas (Figure 10b2,d2,e2) and under dense
vegetation (Figure 10a2,b2,c2). Non-ground points are seldom accepted as ground surface points in
such natural landscapes.

To evaluate and compare the performance of the proposed method quantitatively, the type I error,
type II error and total error [36] of the filtering results using CSF, PMF, and the proposed method were
calculated based on the created reference data and are shown in Table 2. It can be seen from Table 2 that
the method proposed in this paper achieves the best type I error in three of the five datasets (Subset 1,
Subset 2 and Subset 5), the best type II error in three of the five datasets (Subset 1, Subset 3 and Subset 4)
and the best total error in all five datasets. Compared with CSF, the proposed method performs better
than CSF in type I error and total error in all five datasets. As for type II error, the proposed method
performs better than CSF in gentle slope areas (Subset 1, Subset 3 and Subset 4), while performing
slightly poorer in steep slope areas (Subsets 2 and 5). Compared with PMF, the proposed method
achieves a comparable type I error in Subsets 1 and 3. The proposed method performs better than PMF
for type I error in Subsets 2 and 5, while performing worse in Subset 4. Besides, the proposed method
performs better than PMF in type II error, except in Subset 2. The results indicate that the proposed
method can achieve good results for all the five datasets, and better results are achieved for ground
surfaces with a gentle slope (Subset 1, Subset 3 and Subset 4) than steep ground surfaces (Subsets 2
and 5).
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obtained using the proposed method. (a1,b1,c1,d1,e1) are top views of the filtering results of Subset
1, Subset 2, Subset 3, Subset 4 and Subset 5, respectively; (a2,b2,c2,d2,e2) are cross-section views of
challenging areas in Subset 1, Subset 2, Subset 3, Subset 4 and Subset 5, respectively. The location of the
cross-section views in (a2,b2,c2,d2,e2) are marked by red lines in (a1,b1,c1,d1,e1), respectively.

Table 2. Type I error, type II error and total error of filtering results using cloth simulation filtering
(CSF), progressive morphological filtering (PMF), and the method proposed in this paper.

Dataset
Type I Error Type II Error Total Error

CSF PMF Proposed
Method CSF PMF Proposed

Method CSF PMF Proposed
Method

Subset 1 7.745% 0.872% 0.790% 1.800% 2.172% 0.830% 5.939% 1.267% 0.802%
Subset 2 12.077% 3.318% 1.872% 1.133% 2.811% 3.741% 7.160% 3.090% 2.712%
Subset 3 3.252% 1.270% 1.470% 2.108% 2.699% 1.382% 2.801% 1.833% 1.435%
Subset 4 1.996% 0.470% 1.253% 2.104% 3.300% 1.266% 2.027% 1.283% 1.256%
Subset 5 14.606% 2.342% 1.743% 1.831% 2.566% 2.204% 10.155% 2.420% 1.904%
Average 7.935% 1.654% 1.426% 1.795% 2.710% 1.885% 5.616% 1.979% 1.622%

The computing time for attribute computation and filtering were recorded to analyze the time
complexity of the proposed method. The proposed methods were implemented in C++ and run on an
Intel(R) Core(TM) i7-3770 computer. The time costs are shown in Table 3. The results show that more
than 80% of the time is spent on attribute computation. Finding the origin of the polar coordinates in
attribute computation is time-consuming. However, the time cost is still tolerable, taking the huge
amount of point numbers into consideration.

Table 3. Time costs of filtering.

Dataset Attribute Computation (s) Filtering (s) Total (s)

Subset 1 1308.5 227.5 1536.0
Subset 2 278.0 30.7 308.7
Subset 3 729.3 95.1 824.4
Subset 4 882.9 106.6 989.5
Subset 5 817.1 145.4 962.5
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4. Discussion

4.1. Accuracy

The proposed filtering method achieved the best total error in all the five datasets and achieves
the best type I error and type II error in three of the five datasets. The proposed method achieved
inspirational performance even in challenging areas such as steep slope areas and under dense
vegetation. The average type I error (1.462%), average type II error (1.885%) and average total error
(1.622%) of the proposed filtering method were relatively low compared with PMF and CSF. These
results demonstrate that the proposed algorithm can be adapted to the filtering of MLS point clouds in
different terrain types and different scene types.

4.2. Parameter Setting

The angular resolution Ra and the distance resolution Rd in grid construction can easily be set to
the same as the scanning angular step width and distance between two consecutive scan lines. In this
way, at least one point will be contained in a grid cell in its ideal condition and as few points as possible
will be removed due to their falling in the same grid cell.

The number of nearby cross-sections N1 and N2 in MCSF are two parameters that affect the
filtering results. N2 is determined by the maximum length of consecutive trees or buildings that
prevent the LiDAR signal from hitting the ground surface. It is similar to the parameter maximum
building size in the PTD algorithm. In order to filter out the trees and buildings on the margin of
both sides of the road, we intended to set a large N2. It was much harder to choose an optimal
N1, for the true ground surface could not be accurately interpolated with a small N1, while many
ground points will be rejected in steep areas with a large N1 (as illustrated in Figure 11, more ground
points are rejected in Figure 11b,c with the increasing N1). In 3D point cloud filtering, in order to
generate the correct DEM with the filtered ground surface points, a small type II error is preferred,
and having some ground surface points rejected is regarded as tolerable. In order to ensure that as
few non-ground points as possible exist in the filtering result and the land details are kept as much as
possible, we recommend N1 to be set to a value that covers around 3–5 m of the neighborhood.

Remote Sens. 2017, 9, x FOR PEER REVIEW 16 of 19 

 

4. Discussion 

4.1. Accuracy 

The proposed filtering method achieved the best total error in all the five datasets and achieves 
the best type I error and type II error in three of the five datasets. The proposed method achieved 
inspirational performance even in challenging areas such as steep slope areas and under dense 
vegetation. The average type I error (1.462%), average type II error (1.885%) and average total error 
(1.622%) of the proposed filtering method were relatively low compared with PMF and CSF. These 
results demonstrate that the proposed algorithm can be adapted to the filtering of MLS point clouds 
in different terrain types and different scene types. 

4.2. Parameter Setting 

The angular resolution  and the distance resolution 	  in grid construction can easily be set 
to the same as the scanning angular step width and distance between two consecutive scan lines. In 
this way, at least one point will be contained in a grid cell in its ideal condition and as few points as 
possible will be removed due to their falling in the same grid cell. 

The number of nearby cross-sections N1 and N2 in MCSF are two parameters that affect the 
filtering results. N2 is determined by the maximum length of consecutive trees or buildings that 
prevent the LiDAR signal from hitting the ground surface. It is similar to the parameter maximum 
building size in the PTD algorithm. In order to filter out the trees and buildings on the margin of both 
sides of the road, we intended to set a large N2. It was much harder to choose an optimal N1, for the 
true ground surface could not be accurately interpolated with a small N1, while many ground points 
will be rejected in steep areas with a large N1 (as illustrated in Figure 11, more ground points are 
rejected in Figure 11b,c with the increasing N1). In 3D point cloud filtering, in order to generate the 
correct DEM with the filtered ground surface points, a small type II error is preferred, and having 
some ground surface points rejected is regarded as tolerable. In order to ensure that as few non-
ground points as possible exist in the filtering result and the land details are kept as much as possible, 
we recommend N1 to be set to a value that covers around 3–5 m of the neighborhood. 

 
(a) 

 
(b) 

Figure 11. Cont.



Remote Sens. 2017, 9, 958 17 of 19
Remote Sens. 2017, 9, x FOR PEER REVIEW 17 of 19 

 

 
(c) 

Figure 11. Filtering results of the steep area with different N1: (a) filtering result with N1 covers about 
0.5 m of the neighborhood; (b) filtering result with N1 covers about 4.0 m of the neighborhood; (c) 
filtering result with N1 covers about 8.0 m of the neighborhood. 

4.3. THE Combination of Multiple Filtering Methods 

Even though many algorithms have been proposed, ground surface point filtering from 3D 
LiDAR point clouds in large-scale complex scenes is still challenging. One of the trends of developing 
filtering algorithms is to combine multiple filtering methods to achieve better performance in 
challenging areas. Zhang and Lin [20] combined a segmentation-based method with a progressive 
TIN-densification method to achieve better performance. Yang et al. [37] combined a segmentation-
based filter with a multi-scale morphological filter to remove large objects and preserve landscape 
details. This paper combines range constraint, slope constraint and angular position constraint to 
filter ground surface points from MLS point clouds and better performance was achieved compared 
with PMF and CSF.  

5. Conclusions 

This research proposed a new method to filter ground surface points from MLS point clouds. In 
contrast to other filtering methods that only use the xyz Cartesian coordinates, our method first 
computes attributes, i.e., the angular position attribute, longitudinal distance attribute and range 
attribute, of MLS point clouds. A grid is then constructed using the angular position attribute and 
longitudinal distance attribute to establish the connectivity between point clouds. Single cross-section 
filtering (SCSF) using the range constraint and slope constraint and multiple cross-section filtering 
(MCSF) using angular position constraint and range constraint are sequentially applied to the 
constructed grid to get the ground surface points. Five datasets were used to validate the performance 
of the proposed method. The experimental results show that the average type I error, type II error, 
and total error of the proposed filtering method in the five datasets were 1.426%, 1.885% and 1.622%, 
respectively. The average type I error, type II error and total error of the proposed filtering method 
are relatively low compared with CSF and PMF. 

The novelty of the method proposed in this paper can be summarized in two thematic blocks. 
Firstly, the computed attributes of MLS point clouds. The angular position attribute, longitudinal 
distance attribute and range attribute provide an alternative for MLS data processing. Besides the 
SCSF and MCSF proposed in this research, some other algorithms may be more convenient and 
effective with the help of the angular position attribute, longitudinal distance attribute and range 
attribute. More algorithms such as pole-like object extraction and tree extraction may be proposed 
with the help of these attributes. Secondly, the SCSF using the range constraint and slope constraint 
and MCSF using the angular position constraint and range constraint. The experiments show that the 
combination of range constraint, slope constraint and angular position constraint can filter ground 
surface points from MLS point clouds effectively. This also provides an alternative to the combination 
of multiple filters to achieve better performance in challenging scenes. 

Future research should find a more efficient algorithm to compute the attributes, since the 
computation is time-consuming at this time. Furthermore, the research should move forward to 

Figure 11. Filtering results of the steep area with different N1: (a) filtering result with N1 covers
about 0.5 m of the neighborhood; (b) filtering result with N1 covers about 4.0 m of the neighborhood;
(c) filtering result with N1 covers about 8.0 m of the neighborhood.

4.3. THE Combination of Multiple Filtering Methods

Even though many algorithms have been proposed, ground surface point filtering from 3D LiDAR
point clouds in large-scale complex scenes is still challenging. One of the trends of developing filtering
algorithms is to combine multiple filtering methods to achieve better performance in challenging areas.
Zhang and Lin [20] combined a segmentation-based method with a progressive TIN-densification
method to achieve better performance. Yang et al. [37] combined a segmentation-based filter with
a multi-scale morphological filter to remove large objects and preserve landscape details. This paper
combines range constraint, slope constraint and angular position constraint to filter ground surface
points from MLS point clouds and better performance was achieved compared with PMF and CSF.

5. Conclusions

This research proposed a new method to filter ground surface points from MLS point clouds.
In contrast to other filtering methods that only use the xyz Cartesian coordinates, our method first
computes attributes, i.e., the angular position attribute, longitudinal distance attribute and range
attribute, of MLS point clouds. A grid is then constructed using the angular position attribute and
longitudinal distance attribute to establish the connectivity between point clouds. Single cross-section
filtering (SCSF) using the range constraint and slope constraint and multiple cross-section filtering
(MCSF) using angular position constraint and range constraint are sequentially applied to the
constructed grid to get the ground surface points. Five datasets were used to validate the performance
of the proposed method. The experimental results show that the average type I error, type II error,
and total error of the proposed filtering method in the five datasets were 1.426%, 1.885% and 1.622%,
respectively. The average type I error, type II error and total error of the proposed filtering method are
relatively low compared with CSF and PMF.

The novelty of the method proposed in this paper can be summarized in two thematic blocks.
Firstly, the computed attributes of MLS point clouds. The angular position attribute, longitudinal
distance attribute and range attribute provide an alternative for MLS data processing. Besides the SCSF
and MCSF proposed in this research, some other algorithms may be more convenient and effective
with the help of the angular position attribute, longitudinal distance attribute and range attribute.
More algorithms such as pole-like object extraction and tree extraction may be proposed with the help
of these attributes. Secondly, the SCSF using the range constraint and slope constraint and MCSF using
the angular position constraint and range constraint. The experiments show that the combination of
range constraint, slope constraint and angular position constraint can filter ground surface points from
MLS point clouds effectively. This also provides an alternative to the combination of multiple filters to
achieve better performance in challenging scenes.

Future research should find a more efficient algorithm to compute the attributes, since the
computation is time-consuming at this time. Furthermore, the research should move forward to
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develop more algorithms such as pole-like object recognition with the help of the computed attributes
proposed in this paper.
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