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Abstract: Methane is an important greenhouse gas due to its high warming potential. While 
quantifying anthropogenic methane emissions is important for evaluation measures applied for 
climate change mitigation, large emission uncertainties still exist for many source categories. To 
evaluate anthropogenic methane emission inventory in various regions over the globe, we extract 
emission signatures from column-average methane observations (XCH4) by GOSAT (Greenhouse 
gases Observing SATellite) satellite using high-resolution atmospheric transport model 
simulations. XCH4 abundance due to anthropogenic emissions is estimated as the difference 
between polluted observations from surrounding cleaner observations. Here, reduction of 
observation error, which is large compared to local abundance, is achieved by binning the 
observations over large region according to model-simulated enhancements. We found that the 
local enhancements observed by GOSAT scale linearly with inventory based simulations of XCH4 
for the globe, East Asia and North America. Weighted linear regression of observation derived and 
inventory-based XCH4 anomalies was carried out to find a scale factor by which the inventory 
agrees with the observations. Over East Asia, the observed enhancements are 30% lower than 
suggested by emission inventory, implying a potential overestimation in the inventory. On the 
contrary, in North America, the observations are approximately 28% higher than model 
predictions, indicating an underestimation in emission inventory. Our results concur with several 
recent studies using other analysis methodologies, and thus confirm that satellite observations 
provide an additional tool for bottom-up emission inventory verification. 

Keywords: methane emission inventory; GOSAT XCH4; Lagrangian model; greenhouse gases; 
anthropogenic emission 

 

1. Introduction 

Atmospheric methane (CH4) is an important anthropogenic greenhouse gas which contributes 
about 20% of the total radiative forcing from greenhouse gases, second only to carbon dioxide (CO2) 
[1]. Methane is released to the atmosphere by both natural and anthropogenic sources, and is 
depleted by oxidation with hydroxyl radical (OH) in the troposphere, oxidation with drier soil and 
by photolysis in the stratosphere. Anthropogenic emission contributes approximately 50–65% of the 
global methane budget [2]. Due to the large radiative forcing, reducing anthropogenic CH4 emission 
is important for mitigation of potential impact of global warming (e.g., [3]). The atmospheric CH4 
level has drastically increased since the industrial revolution [4], and its growth rate exhibits large 
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interannual variability over recent few decades [5], the causes of which are not fully understood on a 
global scale (e.g., [2,5,6]). In addition, in the context of recent slowdown in global warming, 
atmospheric methane variability and the anthropogenic contribution to this variability is 
particularly important [7,8]. Recent studies [9,10] indicated the plausible causes (such as decline in 
OH radicals or increase in biogenic emissions) of renewed growth rate in the past decade. On 
regional spatial scales, CH4 emission estimates from bottom-up and top-down approaches differ 
considerably (e.g., [11–15]). Bottom-up emission inventories often have large uncertainties owing to 
the uncertainties in the information on source intensity, activity and other statistical data. For 
example, Karion et al. [16] have found through aircraft observations that EPA (United States 
Environmental Protection Agency) and EDGAR (Emission Database for Global Atmospheric 
Research) underestimate the CH4 emissions from oil and natural gas sector in their analysis on a 
spatial scale of few hundred kilometers over southern United States. Similarly, differences between 
EPA and EDGAR in various emission sectors are discussed in Maasakkers et al. [17]. Turner et al. 
[18] applied a 50 km resolution inverse model utilizing GOSAT data over North America to 
conclude that EPA emission inventory is underestimating emissions by some sectors. Further, since 
the emission of methane from anthropogenic sources are highly variable within same source 
category, the quantification is much more difficult than anthropogenic emission of CO2 which are 
deduced from better known fuel use data.  

In the past decades, studies on the atmospheric CH4 variability and the inverse estimation of 
CH4 flux were mainly based on ground-based measurements and data from aircraft and ship 
observations (e.g., [12,19,20]). Since the surface measurement network of CH4 is sparse, satellite 
observations have been extensively used to understand the variations of atmospheric CH4 associated 
with intense local activities (e.g., [21]) due to the advantage of their large spatial and temporal 
coverage. Among them, the Greenhouse gases Observing SATellite (GOSAT) has been providing 
column-averaged dry-air mole fractions of atmospheric CH4 (XCH4) since its launch in 2009 [22]. 
GOSAT is a joint mission of the Japanese Ministry of the Environment (MOE), the Japan Aerospace 
Exploration Agency (JAXA) and the National Institute for Environmental Studies (NIES). XCH4 is 
retrieved from the Short-Wavelength InfraRed (SWIR) solar spectra observed by Thermal And Near 
infrared Sensor for carbon Observation–Fourier Transform Spectrometer (TANSO–FTS) instrument 
[22,23] with a single scan accuracy of more than 2% at 100–1000 km spatial resolution [24].  

Considering the sparsity of the ground-based observation networks and the necessity for wide 
spatial and temporal coverage, satellite observations such as from GOSAT can be an additional or 
alternative tool for estimation and monitoring of anthropogenic greenhouse gas emissions (e.g., 
[25–29]) by emission hotspots such as megacities and power plants and other intensive sources such 
as biomass burning [21,30]. Therefore, there is an emerging interest in the use of space-based 
observation of greenhouse gases for estimation and verification of their emissions. Here in this 
paper, we report an analysis method using GOSAT satellite observation of XCH4 and a 
high-resolution atmospheric transport model to derive local anthropogenic abundance from GOSAT 
observation and EDGAR emission inventory, and to statistically model the agreement between 
them. 

2. Data 

2.1. GOSAT XCH4 Observations 

This study utilized the National Institute for Environmental Studies GOSAT Short Wavelength 
InfraRed XCH4

 

Level 2 product (NIES SWIR L2 v02.21) during a period of June 2009 to December 
2012. The retrieved XCH4 data have been validated using XCH4 observations at selected Total 
Column Carbon Observation Network (TCCON) sites and reported to have mean bias of −5.9 ppb 
and mean standard deviation of 12.6 ppb [20]. The data processing and related information can be 
found in GOSAT Data Archive Service (GDAS) website, https://data2.gosat.nies.go.jp/. 
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2.2. CH4 Emission Inventory 

For the high-resolution transport modeling, the CH4 emission data used are the anthropogenic 
emission inventory (Emission Database for Global Atmospheric Research (EDGAR) v4.2 FT2010, 
[31] for the period 2009–2010 at 0.1° resolution. For the years 2011 and 2012, the data are scaled using 
the global total value of those years as reported by EDGAR. This scaling is justified better for global 
analysis because it is supposed to improve representing the emissions for those years instead of 
using emission for 2010 for other years. To check the effect of scaling, we have compared the 
emission in 2010 with that prepared by scaling data for 2009 (Figure S3). The sectors considered in 
the EDGAR database are: energy use, industrial processes, solvents, agriculture and waste. The 
anthropogenic emissions did not include forest/peat fire. To account for the contribution from 
wetland emission and soil sink of methane, model simulated values were adjusted in the 
observations. For this, we used fluxes from Vegetation Integrative SImulator for Trace gases model 
(VISIT) [32]. 

2.3. Meteorological Data Used for Transport Simulations 

The meteorological data used for the Lagrangian transport simulation are from Japanese 
Meteorological Agency (JMA) Climate Data Assimilation System (JCDAS) [33]. The required 
parameters, such as three-dimensional wind fields, temperature and humidity, were provided at 
1.25 × 1.25° spatial resolution and 40 vertical hybrid sigma-pressure levels and the temporal 
resolution of input is 6 h. 

3. Methods 

The method is similar to estimating anthropogenic emission signature in GOSAT XCO2 due to 
Large Point Sources proposed by Janardanan et al. [26]. This study utilizes a Lagrangian Particle 
Dispersion Model, FLEXPART [34,35] with EDGAR anthropogenic methane emission inventory 
(spatial resolution 0.1 × 0.1°) to simulate (see Section 3.1) XCH4 abundance (ΔXCH4,sim) caused by 
local anthropogenic emissions at all GOSAT satellite observation locations with valid retrieval data. 
Spatial resolution of the emission inventory and the tracer transport simulations are selected to be 
approximately at the size of GOSAT surface observation footprint of about 10 km, to avoid loss of 
information due to spatial smoothing by transport model. We then subtract from the observations 
the influence due to wetland emissions and sink in the soil using model simulated values. Based on 
the model estimates of XCH4 abundance, we separate satellite observations as substantially 
influenced by anthropogenic emissions (ΔXCH4,sim > 1 ppb) and those from relatively cleaner 
background (ΔXCH4,sim < 1 ppb). Observed enhancements (ΔXCH4,obs) were computed as difference 
of observations from polluted regions from the regional background, which is defined as the 
monthly average of observations with low (ΔXCH4,sim < 1 ppb) simulated contribution from 
anthropogenic sources in each 10 × 10° region (see Section 3.2). To reduce the stochastic errors 
associated with each satellite observation, we average the observed (ΔXCH4,obs) and simulated XCH4 
(ΔXCH4,sim) anomalies into 2 ppb bins depending on simulated values. Thus the single scan random 
error can be reduced proportional to the inverse square root of the number of observations averaged 
in that bin (see supplementary information). To find how well the observed enhancements agree 
with the anthropogenic CH4 emission inventory, we perform a weighted linear regression, BLUE 
estimator (best linear unbiased estimator) (with weightage inversely proportional to the standard 
error in mean ΔXCH4,obs in each bin [36]) with observed XCH4 abundance as dependent variable and 
simulated enhancements as independent variable. The upper limit of 20 ppb in regression analysis is 
to avoid bins with large standard error in the average ΔXCH4,obs, due to the diminishing number of 
observations. Most of the observations having high contribution from anthropogenic sources come 
within this upper limit. The regression coefficient (slope value) thus obtained indicates the factor by 
which the observations compare with the inventory-based estimates. 
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3.1. Atmospheric CH4 Transport Simulation 

We calculated the fraction of XCH4 due to the anthropogenic emissions for all GOSAT 
observations for a period from June 2009 until December 2012 using FLEXPART and EDGAR 
emissions. In this, 10,000 particles were released from the geographic locations of GOSAT 
observations and transported two days with the time inverted three-dimensional wind fields. The 
meteorological input to the model was from JCDAS [33] reanalysis. The time integral of particle 
density below the mixing height in an emission grid cell gives the sensitivity of the XCH4 at the 
observation location to the emission in that grid [37]. The area integral of the emission sensitivity 
corresponding to an observation multiplied by the CH4 flux gives the XCH4 at the observation 
location [38]. To correct for the influence of natural fluxes on XCH4, we simulated FLEXPART in the 
same way. The simulated values were then subtracted from the GOSAT observations (XCH4,cor in 
Equation (1)) before any analysis is carried out. 

3.2. Correction for Terrain Related Bias in XCH4 

As methane is removed from the troposphere due to reaction with OH radicals and depletion in 
the stratosphere, and its concentration in stratosphere is low due to long residence time [39], the 
contribution of stratospheric fraction to the total column methane becomes important and causes 
lowering of XCH4 over high terrains [25]. To remove the influence of terrain height on XCH4, we 
establish a quadratic polynomial regression between terrain height and XCH4 in each region (Figure 
S1). This fit is subtracted from the XCH4 data to compensate for influence of terrain height on 
analysed XCH4 data.  

3.3. ΔXCH4 from GOSAT 

GOSAT XCH4 observations (in ppb) are used for estimating the XCH4 enhancements due to 
anthropogenic emissions (ΔXCH4,obs) relative to observations in surrounding cleaner areas. For this, 
we consider the observations where model simulated enhancements due to anthropogenic emissions 
(ΔXCH4,sim) exceed 1 ppb to have anthropogenic CH4 emission signature, and the rest of the 
observations as clean background observations. As a first step, we remove the terrain related bias in 
XCH4 and we subtract the fractional influence of natural fluxes on XCH4 (influence of wetland 
emission and soil sink) by subtracting the model-simulated values (with natural fluxes) from the 
observations (corrected value designated as XCH4,cor). The XCH4 enhancement relative to the clean 
surrounding observations is calculated as the difference between corrected observations and a clean 
background value XCH4,bg. 

bg,4cor,4obs,4 XCHXCHXCH −=Δ  (1) 

To calculate the background mixing ratios, XCH4,bg, we defined regions of 10 × 10° globally and 
estimated the monthly means of corrected observations (XCH4,cor) for locations corresponding to 
simulated XCH4 abundance, ΔXCH4,sim < 1 ppb (when there are at least 10 clean observations in a 
region) in each region. To overcome the limitation of random error associated with GOSAT 
observation and for fitting a regression between observed enhancements (ΔXCH4,obs) and the 
simulated enhancements (ΔXCH4,sim), we aggregated all paired values into 2 ppb bins based on 
simulated values of ΔXCH4,sim. Resulting data are used in regression analysis. 

4. Results and Discussion 

Unlike CO2, methane has no strong localized sources such as power plants, thus strongest 
emissions are concentrated in urban regions, irrigated agricultural lands and regions of high 
livestock density. While the strong diurnally varying CO2 fluxes from photosynthesis are disturbing 
the CO2 field, there is no such strong short-term variability in CH4 emissions. Our results show large 
number of simulated and observed enhancements in the range of 10 to 20 ppb globally. A linear 
relationship between observed and simulated enhancements can be reliably established in the range 
of 1–20 ppb (more than the ~12.6 ppb random error of GOSAT XCH4 [23]), while, for GOSAT XCO2, 
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the range is 0–1 ppm (as discussed in Janardanan et al., 2016 [26]), which is half of the single scan 
random error of 2 ppm XCO2. Thus, compared to CO2, detectable CH4 abundance due to 
anthropogenic sources are more robust. 

The inventory based XCH4 anomalies as simulated by the Lagrangian transport model revealed 
many emission hotspot regions all over the globe. These include northern part of Europe, Middle 
East, northwest and northeast India and Southeast Asia and China. Significant XCH4 abundance is 
also seen over California, Mexico City and eastern parts of the United states (Figure 1). Over East 
Asia, the high XCH4 anomalies are found over central and southeastern provinces of China, where 
the major emission source is rice paddy [40]. In northeastern provinces, having intense livestock and 
coal mining [41], the XCH4 anomalies are high (10–20 ppb in 2° averages). In India, high signals are 
seen over northeastern parts, which correspond to large scale animal agriculture in that region [42]. 
In addition, northwestern and northeastern India, having rice paddy fields, show high anomalies in 
the 2° averages pictures. The locations of high concentrations also coincide with high livestock 
density (e.g., [43,44]). Middle East, Saudi Arabia, Egypt, Iran, etc. showed high XCH4 abundance, 
possibly due to the oil and natural gas exploration in those regions. The region in tropical Africa, 
where we get high anomaly, corresponds to emission due to domestic ruminants and other livestock 
[45]. In South America, high concentration anomalies are found over central eastern parts where 
livestock density is high. Over Europe, regions covering countries like France, Italy, Poland, 
Ukraine, etc. show high CH4 anomalies (Figure 1a). Finland and western parts of Russia also show 
high anthropogenic CH4 concentrations. The European sources are, mainly, extraction of fossil fuel, 
livestock and landfills, while East Asian sources are rice paddies, landfills and livestock [46]. In the 
past decade, coal mining has emerged as a significant source of methane in China, contributing 
around 40% of Chinese methane emissions [41]. Low concentrations in observed XCH4 over elevated 
terrain (for example, over Tibetan Plateau and western United States) reflect in part a larger relative 
contribution of the stratospheric methane depletion to the column-average mixing ratio. (In the 
regression analysis, this bias has been adjusted by polynomial regression method—see Section 3.3).  

A global list of locations having high XCH4 anomaly is given in Table 1. Most of the locations 
are in East Asia. In Table 1, a number of locations where the simulated XCH4 is greater than 10 ppb 
are listed. We can see that almost all of them are in Asian countries. Compared to the inventory 
estimates of XCH4, the observation derived anomalies are noisy (associated with each observation 
and even at spatial aggregations over small regions like 2° grids) (Figure 1b).  

However, many locations characterized by high XCH4 in simulations are also marked by high 
XCH4 anomalies in observations as well. Mainly, pockets of high observed anomalies are seen over 
Asia, Europe, and South and North Americas, which match with the anthropogenic source regions 
in these regions, as also shown in more simple analysis by Buchwitz et al. [28]. Since the observed 
XCH4 anomalies are noisy, a direct comparison with the simulated XCH4 abundance is difficult. 
Therefore, aggregating these enhancements based on simulated abundance at equal intervals (2 ppb 
bins) over whole region helps reducing the spread in the data proportionally to the square root of 
the number of observations in each bin. The data uncertainty is estimated as single scan random 
error of 12.6 ppb (as established by GOSAT validation) divided by square root of observation 
number in each bin (Supplementary Materials). 

To relate the observation-derived and inventory-based XCH4 anomalies, after aggregating the 
enhancements in each 2 ppb bin based on simulated values, we fit a linear regression between them 
(i.e., observation derived enhancements as a function of simulated enhancements). The regression is 
carried out to a maximum XCH4 abundance of 20 ppb only, considering the decreasing number of 
observations in each bin and the growing error in binned values (Figure S2). We examined large 
regions where anthropogenic methane emissions are large, based on information from bottom-up 
emission inventory. The large continental regions having significant emission from anthropogenic 
sources are North America, East Asia, Europe and the Middle East. In this analysis, we selected 
North America and East Asia based on their contribution to global emissions and availability of 
large number of useful satellite observations. We have found good correlation between the observed 
and model simulated XCH4 abundance due to anthropogenic activities over the globe, East Asia and 
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North America. For the global case, the model–observation regression gives a regression coefficient 
(slope) of 1.15 ± 0.03 (R2 = 0.97; Figure 2). The error in slope estimate includes both the uncertainty in 
the bin averages and departure of data from the regression fit. For East Asia, the regression slope is 
0.70 ± 0.05 (R2 = 0.96) and for North America it is 1.28 ± 0.01 (R2 = 0.65; Figure 2). In our analysis, 
North American regions show the largest difference between the GOSAT observed and EDGAR 
based XCH4 anomaly, compared to other regions. The regression slope shows around 28% deviation 
from unity. This shows a mismatch between observations based and inventory based XCH4 
anomalies over northern America and thereby a potential underestimation in the emission 
inventory. This result is in agreement with recent studies by Miller et al. [12] and Turner et al. [18] 
who showed anthropogenic CH4 emission in North America is underestimated by 30–50%, 
attributable to oil and natural gas and livestock emissions. Over the East Asian region, the 
model–observation mismatch is approximately 30%, emission being higher than suggested by 
observation derived enhancements. This result is in agreement with recent studies by Thompson et 
al. [47] and Patra et al. [48]. The overestimation is reported to be in different source sectors over East 
Asia; for example, Turner et al. [15] have indicated that the Chinese coal emission of CH4 is 
overrepresented in EDGARv4.2 by a factor of 2.  

 
Figure 1. The simulated (a); and GOSAT observed (b) XCH4 anomaly (ppb) (ΔXCH4,sim and 
ΔXCH4,obs, respectively) aggregated at 2° grid for a period 2009–2012. The grids with simulated XCH4 
abundance greater than 5 ppb in average are shown. The regions used in analysis are marked as 
rectangles in upper panel. 

Finally, there is a concern that omission of some GOSAT observations from analysis may 
happen due to large underprediction of emissions by inventory or transport model errors. It should 
be noted that this analysis approach is not sensitive to emission underprediction in the order of 50% 
in relatively small fraction of grid points, as it would lead to effectively increasing detection 
threshold by a factor of 2 for those grid points. In the current setting, the threshold of 1 ppb allows 
detecting rather small emissions, and number of omissions at lower emission range is expected to be 
small compared to the bulk of the data that contribute to regression analysis in the range of 0–20 
ppb. 
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Figure 2. The regression between modeled (EDGAR, x-axis) and observed (GOSAT, y-axis) XCH4 
abundance for: (a) the Globe; (b) East Asia; and (c) North America. The inset values (m) are the 
regression coefficient (unit less) with the associated estimation error. The light shading represents the 
standard error in each bin. The colored lines show the regression model and the grey lines show the 
identity line. 

Table 1. List of high XCH4 anomalies (>10 ppb) simulated (ΔXCH4,sim) and derived from GOSAT 
observations (ΔXCH4,obs) over different regions over the globe averaged over 2° grid cells. The central 
latitude and longitude are given. 

Longitude 
(Degree) 

Latitude
(Degree) obs,4XCHΔ  (ppb) sim,4XCHΔ  (ppb) Region 

−119 33 21.39 24.44 Los Angeles (USA) 
73 41 21.02 13.88 Ferghana valley (Uzbekistan) 
77 43 11.54 13.20 Umnugovi (Mongolia) 
105 31 58.47 12.43 Ningxia (China) 
107 31 55.30 13.97 Dazhou (China) 
107 35 18.63 10.46 Baoji (China) 
109 35 28.00 11.27 Xian (China) 
111 35 14.01 10.71 Yuncheng (China) 
111 37 13.74 17.16 Shanxi (China) 
113 35 29.90 20.67 Zhengzhou (China) 
113 37 16.39 40.80 Changzhi, Shanxi (China) 
115 33 28.46 16.39 Zhoukou, Fuyang (China) 
115 35 26.59 21.78 Puyang, Shangqiu (China) 
117 33 23.49 12.82 Bengbu (China) 
117 39 22.13 11.65 Tianjin (China) 
119 31 42.80 16.65 Xuancheng (China) 
119 33 38.34 11.93 Huai’an (China) 
119 35 18.14 16.20 Junan (China) 
119 37 15.97 20.48 Weifang, Dongying (China) 
129 51 14.26 13.82 Belogorsk (Russia) 
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5. Conclusions 

In this study, we present a method to extract the information on anthropogenic methane 
emissions from the global observations of XCH4 by GOSAT. Using a high resolution transport model 
with anthropogenic methane emission inventory, we calculate the XCH4 abundance at GOSAT XCH4 
observation locations over the globe for 2009–2012. Using these inventory based estimates, we select 
the GOSAT XCH4 observations influenced by emission from anthropogenic sources, where the 
threshold for marking observations as polluted is 1 ppb in simulated value (XCH4,sim). XCH4 
anomalies due to anthropogenic sources are calculated as the departure of each observation from 
clean background value. The pair of XCH4 abundance thus obtained from observations and 
simulations were aggregated in 2 ppb bins and compared. The aggregation into bins helps overcome 
the limitation of error associated with each observation and reduces the influence of noise to 
observations. The paired data thus obtained over a given region and time, when subjected to error 
weighted linear regression analysis, give a scaling factor between the observation and inventory 
based XCH4 abundance, which will be indicative of the potential biases in the bottom-up inventories. 
Using this method, we can establish a linear relation between the observation-derived XCH4 
abundance due to anthropogenic sources and those calculated using bottom-up inventories over 
large regions. In this analysis ,we have found linear relations between the model and observation 
over the analysis regions but have opposite biases in bottom-up emissions over East Asian and 
North American regions. A significant difference of about 28% (emission underrepresented in 
inventory) between the observed XCH4 abundance and inventory-based estimates is found over 
North American continent. This is consistent with other studies using inversion with satellite and 
ground-based methane observations. Over East Asia, anthropogenic methane emission is 
overestimated in the inventory by approximately 30% as suggested by the regression slope of that 
region, as has been reported by recent studies. Therefore, given large number of GOSAT 
observations over a region and time, this statistical technique could be a promising tool for methane 
emission verification at regional scales using GOSAT observations. 

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/9/9/941/s1, Figure 
S1: Dependence of XCH4 on terrain height over various analysis domains. Figure S2: Number of GOSAT XCH4 
observations used in each 2 ppb bin and the associated standard errors. Figure S3: Percentage difference of 
EDGAR CH4 emission for 2010 and that prepared for the same year by scaling 2009 emission by global total 
reported by EDGAR. 
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