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Abstract: Accurate and timely estimation of forest structural parameters plays a key role in the
management of forest resources, as well as studies on the carbon cycle and biodiversity. Light
Detection and Ranging (LiDAR) is a promising active remote sensing technology capable of providing
highly accurate three dimensional and wall-to-wall forest structural characteristics. In this study,
we evaluated the utility of standard metrics and canopy metrics derived from airborne LiDAR
data for estimating plot-level forest structural parameters individually and in combination, over a
subtropical forest in Yushan forest farm, southeastern China. Standard metrics, i.e., height-based
and density-based metrics, and canopy metrics extracted from canopy vertical profiles, i.e., canopy
volume profile (CVP), canopy height distribution (CHD), and foliage profile (FP), were extracted from
LiDAR point clouds. Then the standard metrics and canopy metrics were used for estimating forest
structural parameters individually and in combination by multiple regression models, including
forest type-specific (coniferous forest, broad-leaved forest, mixed forest) models and general models.
Additionally, the synergy of standard metrics and canopy metrics for estimating structural parameters
was evaluated using field measured data. Finally, the sensitivity of vertical and horizontal resolution
of voxel size for estimating forest structural parameters was assessed. The results showed that,
in general, the accuracies of forest type-specific models (Adj-R2 = 0.44–0.88) were relatively higher
than general models (Adj-R2 = 0.39–0.77). For forest structural parameters, the estimation accuracies
of Lorey’s mean height (Adj-R2 = 0.61–0.88) and aboveground biomass (Adj-R2 = 0.54–0.81) models
were the highest, followed by volume (Adj-R2 = 0.42–0.78), DBH (Adj-R2 = 0.48–0.74), basal area
(Adj-R2 = 0.41–0.69), whereas stem density (Adj-R2 = 0.39–0.64) models were relatively lower. The
combination models (Adj-R2 = 0.45–0.88) had higher performance compared with models developed
using standard metrics (only) (Adj-R2 = 0.42–0.84) and canopy metrics (only) (Adj-R2 = 0.39–0.83).
The results also demonstrated that the optimal voxel size was 5 × 5 × 0.5 m3 for estimating most
of the parameters. This study demonstrated that canopy metrics based on canopy vertical profiles
can be effectively used to enhance the estimation accuracies of forest structural parameters in
subtropical forests.

Keywords: forest structural parameter; LiDAR; canopy metric; canopy vertical profile;
subtropical forest

1. Introduction

Forested ecosystems are spatially dynamic and continuously changing and therefore comprise
complex and heterogeneous forest structures [1,2]. Forest structure, defined as the spatiotemporal
arrangement of structural components in specific vertical and horizontal spatial patterns within a
forest stand [3–5], is recognized as both a product and driver of forest biophysical processes [6]
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and represents important forest information, which is useful for guiding multi-functional forest
management [7]. Forest structural parameters (e.g., tree height, volume, biomass or stem density
etc.) provide considerable information on the spatial and temporal distribution of forests as well
as structural properties, and are considered critical components of forest inventory [8] and reliable
diversity indicators across forest successional stages [3]. So obtaining spatially continuous estimates of
forest structural parameters is valuable for supporting long-term sustainable forest management [9].

Subtropical forests are distributed in a transition zone between tropical and temperate zones,
i.e., the region lying largely from 23.5◦ to 40◦ latitude in the northern or southern hemispheres [10].
Subtropical forests consist of both subtropical humid and subtropical dry forests, which have unique
ecological characteristics when compared to tropical and temperate regions [11]. Subtropical forests,
which account for approximately 9% of the world’s forest area [12], are considered a carbon sink
contributing to global forest carbon sequestration, and have high species richness, complex structure of
forest, high biodiversity and high net ecosystem productivity (NEP) [11]. Quantitative measurements
of forest structural parameters of subtropical forests are required to understand forest ecological
mechanisms, promote regional ecological developments, maintain biodiversity and enhance regional
carbon balance [13].

Traditionally, forest structural parameters are assessed by conventional field inventories, which
is time-consuming, costly and limited in spatial extent [2,14]. As a promising earth observation
technique, remote sensing has shown great potential for providing multi-scale, multi-dimensional
and multi-temporal earth surface information [15] for instantaneous, quantificational and accurate
measurements of spatially continuous wall-to-wall properties of forest structure over large-scale areas
in lieu of time-consuming and labor-intensive inventory [16]. Furthermore, integrating information
from remotely sensed data with a high level of precision and temporal consistency has been recognized
as having the ability to describe forest biophysical properties and effectively enhance the performance
of forest structure estimations [17].

Estimates of forest stand structural parameters have been derived from optical remote sensing
data for several decades [17,18]. However, passive remote signals are generally reflected or absorbed
in the uppermost canopy layers and tend to “saturate”, especially in dense forest(i.e., high canopy
closure), limiting the ability to characterize vertical structure [19,20]. Similarly, Radar (Radio Detection
and Ranging) technology also reveals the aforementioned data saturation problems, due to noise
introduced by terrain, surface moisture and other factors [20,21]. Conversely, as a promising active
remote sensing technology, Light Detection and Ranging (LiDAR) can be used to directly estimate a
spatially explicit three-dimensional (3D) canopy structure with submeter accuracy by transmitting
short laser pulses and receiving returned signals [22,23]. Furthermore, LiDAR systems have the ability
to overcome the data saturation problems in optical or Radar remote sensing, as a laser beam can
strongly penetrate through even dense and multilayered forest canopies to the earth’s surface [24].

Means et al. (2000) [25] estimated forest structural parameters, i.e., tree height, basal area, and
volume, using airborne LiDAR data over a Douglas-fir-dominated temperate forest in the Western
Cascades of Oregon. They found that the estimation of tree height predicted by the metrics of height
percentiles and resulted in R2 values of 0.93–0.98. The R2 values were 0.94–0.95 and 0.95–0.97 for basal
area and volume, which were predicted using the metrics of height percentiles and canopy densities as
independent variables. Silva et al. (2016) [26] predicted and mapped volume using LiDAR metrics
in Eucalyptus plantations in tropical forests (located in São Paulo, Brazil), and found that volume
(Adj-R2 = 0.84) was well predicted by the coefficient of variation of return height and the 99th height
percentile from LiDAR. Tesfamichael and Beech (2016) [27] used height-related metrics (e.g., height
percentiles, maximum height) and canopy density metrics to estimate plot-level structural attributes
(i.e., mean height, maximum height, crown diameter and aboveground biomass) over a savanna
ecosystem region located in the south western part of Zambia, and resulted in R2 values of 0.48–0.95.
However, these studies often include height and density predictors with little physical justification for
model formulation. Moreover, they usually neglected a mechanism to summarize complex canopy
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characteristics into simple parameters, which can potentially be used for estimates of forest structural
parameters in different forest conditions [14,28], and the standard metrics (i.e., height-based and
density-based metrics) tend to be strongly inter-correlated, and depend on forest conditions, plot
sizes, point cloud density and geometrical distributions of point clouds etc. [29–33], and a large subset
of these metrics are linked to only a few forest stand characteristics. Thus, these metrics generally
have a relatively low transferability and are limited in describing the vertical heterogeneity of forest
structure [24].

Canopy vertical profiles, defined as the distributed curves about the characteristic of forest
structural components as a function of height above ground, are intimately linked to the vertical
distributions of forest structural elements (e.g., foliage, branches, trunks etc.), and have strong potential
in enhancing the theoretical explanations of vertical forest structure [4,34,35]. Canopy vertical profiles
are important descriptors of forest structure. Lefsky et al. (1999) [36] developed an approach termed
“canopy volume models (CVM) ” to characterize three-dimensional (3D) volumetric structure of forest
canopies by quantifying the differences in the total volume and spatial organization of the tree foliage,
and this approach is beneficial to distinguish specific volumetric canopy architecture. They found
relatively high accuracies (R2 = 0.52–0.91) for estimating forest structural parameters using the metrics
derived from canopy vertical profiles (i.e., canopy volume profiles (CVP) and canopy height profiles
(CHP)). Lovell et al. (2003) [37] used airborne and terrestrial LiDAR data to derive foliage profiles
(FP) and estimated effective leaf area index (LAI) in temperate forests located in southern Australia.
They found that results compared with LAI derived from classified hemispherical photographs with
agreement within 8%. Coops et al. (2007) [38] refined the CVM approach to adapt discrete return
LiDAR data. In addition, a Weibull fitting approach was conducted to fit FP profiles and further obtain
relevant LiDAR metrics, and finally a number of forest structural parameters (i.e., mean height, basal
area) (R2 = 0.65–0.85) were estimated. Hilker et al. (2010) [39] assessed and compared canopy metrics
derived from canopy vertical profiles using airborne and terrestrial LiDAR data. The results showed
that airborne and terrestrial LiDAR were both able to accurately determine canopy height (absolute
error of height was less than 2.5 m) and LAI (R2 = 0.86–0.90). However, most previous studies that
estimate forest structural parameters using canopy metrics derived from canopy vertical profiles were
conducted in temperate, tropical and boreal forests, and published studies of the subtropical forests
are few.

In this study, the standard metrics and canopy metrics derived from airborne LiDAR data are used
to estimate plot-level forest structural parameters (i.e., mean diameter at breast height, Lorey’s mean
height, stem density, basal area, volume, and aboveground biomass) individually and in combination
over a north subtropical secondary forest in southern Jiangsu Province, China. The objectives of
this study are: (1) to derive two suites of canopy metrics, i.e., canopy volume (CV) metrics and
Weibull-fitted (WF) metrics, using voxel-based CVM and Weibull fitting approaches separately; and (2)
to assess the capability of standard metrics and canopy metrics based models and combination models
for estimating forest structural parameters and to evaluate the accuracies of the models; and (3) to
explore the optimal horizontal and vertical resolution of voxels for the predictive models.

2. Materials and Methods

An overview of the workflow for calculating plot-level forest structural parameters estimation is
shown in Figure 1. Firstly, a 1-m Digital terrain model (DTM) was created by the last return points.
The data was filtered to remove the above-ground returns, and then the DTM was created by calculating
the average elevation from the remaining (ground) LiDAR returns within a cell. Cells that contain no
points are interpolated by neighboring cells. The point cloud was then normalized against the ground
surface height. Secondly, standard metrics (i.e., height-based (HB) metrics and density-based (DB)
metrics) and canopy metrics (i.e., canopy volume (CV) metrics and Weibull-fitted (WF) metrics) were
extracted. The suite of canopy volume (CV) metrics was derived by a voxel-based CVM approach,
and another suite of WF-metrics was derived by calculating α (scale) and β (shape) parameters of
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Weibull function fitting to canopy height distribution (CHD) and FP. Thirdly, the estimation capability
of standard metrics-based (SM) models, canopy metrics-based (CM) models and combination models
were examined for estimating forest structural parameters separately. Finally, the accuracies of the
models were assessed and validated by field measured data.
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Figure 1. An overview of the workflow for forest structural parameters estimation. DTM: Digital
Terrain Model.

2.1. Study Area

This study was conducted in Yushan Forest, a state-operated forest and national park located near
the town of Changshu in Jiangsu Province, southeastern China (120◦42′9.4”E, 31◦40′4.1”N). The total
site area is approximately 1260 ha, which covers approximately 1140 ha of forests. Topographically,
the site’s mountain terrain extends from northwest to southeast and the ridge line is more than
6500 m, with the elevation range between approximately 20 and 261 m above sea level. This site
is situated in the north-subtropical monsoon climatic region with an annual mean temperature of
15.4 ◦C, and precipitation of 1047.7 mm, and annual mean relative humidity of approximately 80%.
The highest monthly precipitation occurs from June to September. The soil type in Yushan is composed
mainly of mountain yellow-brown earth. The forest in Yushan belongs to the north-subtropical
mixed secondary forest with three main forest types: conifer-dominated, broad-leaved dominated and
mixed forests. The dominant broad-leaved tree species include Oriental oak (Quercus variabilis Bl.),
Chinese sweet gum (Liquidambar formosana Hance) and Sawtooth oak (Quercus acutissima Carruth.) of
deciduous broad-leaved trees species, mixed with other evergreen broad-leaved tree species including
Camphorwood (Cinnamomum camphora (L.) Presl.) and Chinese holly (Ilex chinensis Sims.). The
primary coniferous forests are dominated by evergreen coniferous tree species, including Masson
pine (Pinus massoniana Lamb.), Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.), slash pine
(Pinus elliottii Engelm.) and Japanese Blackbark Pine (Pinus thunbergii Parl.). Figure 2 shows an
overview of the study site and distribution of sample plots and Figure 3 shows the field photos
of three forest types.
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Figure 3. Examples of the three main forest types in study site. (a) Coniferous forest; (b) broad-leaved
forest; (c) mixed forest.

2.2. Data Acquisition and Pre-Processing

2.2.1. LiDAR Data

Small footprint airborne LiDAR data were acquired on 17 August 2013 using a Riegl LMS-Q680i
sensor flown at 900 m above ground level, with a flight speed of 55 m·s−1 and a flight line side-lap of
≥60%. The sensor recorded returned waveforms of laser pulse with a temporal sample spacing of 1 ns
(approximately 15 cm). The LiDAR system was configured to emit laser pulses in the near-infrared
band (1550 nm) at a 360 kHz pulse repetition frequency and a 112 Hz scanning frequency, with a
scanning angle of ±30◦ from nadir and a swath of 1040 m. The dataset had an average beam footprint
size of 0.45 m (nadir) in diameter. The average ground point distances of the dataset were 0.49 m
(flying direction) and 0.48 m (scanning direction) in a single strip, with pulse density of approximately
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5.06 pulse m−2. The final extracted point clouds and associated waveforms were stored in LAS 1.3
format (American Society for Photogrammetry and Remote Sensing, Bethesda, MD, USA).

In order to obtain the relative height of trees, raw point cloud data were first filtered by removing
outliers. The data were filtered to remove non-ground points using an algorithm adapted from Kraus
and Pfeifer (1998) [40], which was based on a method of linear least-squares interpolation, and then the
data were smoothed by the median filter (moving square windows of size 5 × 5 m). After filtering the
non-ground points, a 1-m Digital terrain model (DTM) was created by calculating the average elevation
from the ground points within a cell (cells that contain no points were filled by interpolation using
neighboring cells). Then, the point cloud was then normalized against the ground surface height and
extracted for each plot. Point clouds for all plots (n = 51) were finally extracted using the coordinates
of the lower left and upper right corners.

2.2.2. Field Data

The field data for the study site were collected from June to August in 2012 and in August of 2013.
Throughout the Yushan study region, a total of 51 square sample plots (30 × 30 m) were established,
covering the forest type, dominant species compositions, age classes, and site indices, according to
an historical forest resource inventory data (2012). All plots were divided into broad-leaved forest
(n = 14), coniferous forest (n = 14), and mixed forest (n = 23). The centers of each plot and plot
corners were located using Trimble GeoXH6000 Handheld GPS (Trimble, Sunnyvale, CA, USA) units
equipped with a dual frequency GNSS antenna, and corrected with high precision real-time differential
signals received from the Jiangsu Continuously Operating Reference Stations (JSCORS), resulting in a
submeter positional of accuracy of less than 0.5 m [41]. The plot directions and inclined angles were
recorded by forest compass, and the border lengths were measured by PI tape. For all live trees with a
diameter at breast height (DBH) over 5 cm, tree type, diameter, height, height to crown base, crown
width in both cardinal directions, crown class, and crown transparency were measured. DBH was
measured on all trees using a diameter tape. Heights of all trees were measured using a Vertex IV
hypsometer (Haglöf, Långsele, Sweden). Crown widths were obtained by measuring the average of
two values measured along two perpendicular directions from the location of the tree top. In addition,
small trees (DBH < 5 cm) and dead wood were also tallied for total stem density, but not used in
biomass calculations.

Several forest structural parameters were assessed in this study, including mean DBH, Lorey’s
mean height (i.e., the basal area weighted height), stem density, basal area, volume and aboveground
biomass. In addition, aboveground biomass of each tree was calculated by means of the species specific
allometric equations from local or nearby province [42–47] (Appendix A (Table A1)), and the tree-based
calculation results were summed within each plot to determine plot-level forest aboveground biomass.
Plot-level volume was similarly calculated using provincial species specific volume equations of
individual trees, which were based on DBH as predictor variables. A summary of plot-level forest
structural parameters data is presented in Table 1.

Table 1. A summary of plot-level forest structural parameters data.

Parameters
Coniferous Forest (n = 14) Broad-Leaved Forest (n = 14) Mixed Forest (n = 23)

Range Mean SD Range Mean SD Range Mean SD

DBH/cm 8.08–19.22 12.62 2.53 11.63–20.99 15.32 3.29 10.58–19.69 13.90 2.51
hLorey/m 4.47–12.97 9.50 2.00 7.70–18.52 11.35 2.75 7.79–14.18 10.79 1.71
N/(ha−1) 656–3167 1690.64 643.15 322.00–1833.00 1126.00 428.55 689.00–2344.00 1431.78 438.40

G/(m2·ha−1) 6.97–34.07 23.08 6.79 12.11–28.10 21.92 3.89 16.84–35.37 23.98 4.46
V/(m3·ha−1) 32.19–178.08 116.53 34.75 90.62–212.45 132.77 32.30 82.78–187.91 131.98 28.67

AGB/(Mg·ha−1) 11.02–127.39 69.74 27.76 32.03–219.67 94.28 44.93 49.65–141.73 89.36 25.95

Notes: DBH: Mean diameter at breast height; hLorey: Lorey’s mean height; N: Stem density; G: Basal area; V: Volume;
AGB: Aboveground biomass.
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2.3. Derived Metrics

2.3.1. Canopy Volume Model Approach

A voxel-based CVM approach was applied for point cloud data to derive metrics in this study.
The canopy spaces were first organized as a matrix composed of voxels (5 × 5 × 0.5 m3), and these
voxels were classified as either “filled” or “empty” volume depending on the presence or absence of
LiDAR points within each voxel. “Filled” voxels were further classified as either “euphotic“ zone,
if they were located in the uppermost 65% of all filled voxels, or as “oligophotic” zone if they were
located below the point, whereas “empty” voxels were located either below (“closed gap”) or above
the canopy (“open gap”) [38]. Open gap, euphotic, oligophotic and closed gap were determined as
four canopy structure classes, with units defined as the volume of each class per unit area. All volume
elements (Open gap, Oligophotic, Euphotic, Closed gap, Filled, Empty) were derived as canopy volume
(CV) metrics using the CVM method and canopy volume profile (CVP) was visualized. Figure 4 shows
the illustration of voxel-based CVM approach. Point clouds of a plot (30 × 30 m2) were voxelized, and
divided into 36 vertical columns of voxels, and each column was further stratified with four canopy
structure classes. All columns of a plot were expanded in a panel and the canopy volume distribution
(CVD) was presented (Figure 4c). Finally, the volume percentages of canopy structure classes of each
height interval (0.5 m) were calculated, resulting in CVP (Figure 4d).
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Figure 4. The illustration of voxel-based canopy volume model. (a) A plot (30 × 30 m2) was stratified
with voxelization and height bin is 0.5 m; (b) a voxel column was stratified in four structure classes
(open gap, euphotic, oligophotic, closed gap) with canopy volume model approach; (c) canopy volume
distribution, which shows the distribution of canopy structure classes after all columns were expanded
in a panel; (d) the canopy volume profile, which was transformed from the canopy volume distribution
diagram, shows the volume percentage of each class of total volume in each height interval.

Notably, an appropriate voxel volume size for CVM in this study was been considered because
various voxel sizes likely change the distributions and proportions of canopy structure classes. Thus,
this study also investigated the influence of various voxel sizes on the accuracies of the models. Given
the average beam footprint size of 0.45 m, average ground point distances of 0.49 m (flying direction)
and 0.48 m (scanning direction) and pulse density of approximately 5.06 pulse·m−2, horizontal
resolutions of 1 m to 10 m were chosen (which were multiples of the footprint size and average ground
point distances). Vertical resolutions of 0.5 m and 1 m were chosen to correspond to roughly three
and six sampling intervals of the returned waveform. A sensitivity analysis was performed using
CV-metrics (i.e., Open gap, Oligophotic, Euphotic, Closed gap, Filled, Empty).
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2.3.2. Weibull Fitting Approach

Canopy height distributions (CHD), which describe vertical distributions of foliage elements and
non-photosynthetic tissues within canopy spaces, were used to measure the distribution of laser returns
within the 0.3-m bins (i.e., a 30× 30× 0.3 m3 rectangular section) from the ground to canopy top [48,49].
In this study, a two-parameter Weibull density function (PDF) was used to describe CHD on each
plot. As a Weibull model is highly adaptive, ranging from an inversed J-shape to unimodal skewed
and unimodal symmetrical curve, the Weibull model has flexibility in characterizing distributions
of a range of forest attributes [50,51]. The two parameters, i.e., Weibull scale (α1) and Weibull shape
(β1), were derived by the maximum likelihood estimation method. Weibull scale determines the basic
shape of the distribution density curve and Weibull shape controls the breadth of the distribution [52].
Foliage profile (FP) can delineate the vertical distribution of canopy phytoelement (e.g., leaf, stem, twig,
etc.) density above the ground within a forest stand [37]. FP is defined as the total one-sided leaf area
that is involved in photosynthesis per unit canopy volume at canopy height z, and describes changes
in the leaf area distribution with increasing height [53]. FP is highly related to leaf area index (LAI),
which was demonstrated in previous studies [35,54], and the relationship between FP and LAI is:

L(z) =
∫ z2

z1

FP(z)dz, (1)

where L(z) is the cumulative leaf area index (LAIc) from the ground to a given height z; FP(z) represents
the foliage area volume density at height z (is the vertical foliage profile in a thin layer or “slice” through
a canopy as a function of height z); z1 and z2 are different canopy height. A height interval or each
vertical “slice” was 0.3 m. Meanwhile, we assumed that foliage elements in a thin “slice” were very
small so that occlusion can be neglected, and leaves presented Poisson random distribution. Because
airborne LiDAR is incapable of resolving foliage angle distribution, clumping and non-foliage elements,
the foliage profiles derived from airborne LiDAR are referred to here as “apparent” foliage profiles
and effective LAI [37]. In this study, LAI can be indirectly determined from LiDAR by estimating the
derived gap probability in the canopy [37,38], and the gap probability be estimated as the total number
of laser hits up to a height z relative to the total number of LiDAR shots as follows:

L(z) = −ln
(

Pgap(z)
)
= −ln

(
1−

(
#zj
∣∣zj > z

)
N

)
, (2)

where Pgap (z) is a gap probability measurement at height z, #z is the number of hits down to a
height z above the ground, and N is the total number of shots emitted up to the sky. Previous
studies have showed that Weibull distribution function can also delineate vertical foliage profiles
distributions [37,55]. In this study, the Weibull fitted scale parameter (α2) and shape parameter (β2)
were derived from the apparent FP by linking Weibull cumulative function to cumulative projected
foliage area index [37,38]:

L(z) = 1−
(

e−(
1−z/Hmax

α2
)

β2
)

, (3)

where α2 and β2 are fitted parameters, z is the height, and H is the maximum height in a plot.
Moreover, another suite of standard metrics were calculated, including height-based (HD) metrics

(h25, h50, h75, h95, hmean, hcv, hskewness and hkurtosis) and density-based (DB) metrics (d1, d3, d5, d7, d9,
CC2m). A summary of these metrics with corresponding descriptions is shown in Table 2.
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Table 2. The description of LiDAR canopy metrics.

LiDAR Metrics Description

Standard metrics

Height-based

Percentile heights (h25, h50, h75 and h95) The percentiles of the canopy height distributions
(25th, 50th, 75th and 95th) of first returns.

Mean height (hmean) Mean height above ground of all first returns.

Coefficient of variation of heights (hcv) Coefficient of variation of heights of all
first returns.

Skewness and Kurtosis of heights
(i.e., hskewness and hkurtosis)

The skewness and kurtosis of the heights of
all points.

Density-based
Canopy return density (d1, d3, d5, d7 and d9)

The proportion of points above the quantiles
(10th, 30th, 50th, 70th and 80th) to total number
of points.

Canopy cover above 2 m (CC2m) Percentages of first returns above 2 m.

Canopy metrics

Canopy volume

Filled and Empty zones of CVM
(i.e., Filled and Empty)

The voxels contained point clouds and voxels
contained no point clouds within canopy spaces.

Open and Closed gap zones of CVM
(i.e., Open gap (OG) and Closed gap (CG))

The empty voxels located above and below the
canopy respectively.

Euphotic and Oligophotic zones of CVM
(i.e., Euphotic (Eu) and Oligophotic (Oligo))

The voxels located within an uppermost
percentile (65%) of all filled grid cells of that
column, and voxels located below the point in
the profile

Weibull-fitted
α1 and β1 parameter of Weibull distribution The scale parameter α and shape parameter β of

the Weibull density distribution fitted to CHD.

α2 and β2 parameter of Weibull distribution The scale parameter α and shape parameter β of
the Weibull density distribution fitted to FP.

2.4. Metrics Selection and Statistical Analysis

All of the LiDAR metrics in Table 2 were used to analyze pair-wise relationships among different
forest structural parameters (DBH, Lorey’s mean height, stem density, basal area, volume and AGB)
by Pearson’s correlations (r). Then the metrics with low correlations (r < 0.2) were excluded and
candidate metrics were used in the regression analysis. In the multiple regression analysis, all of
the dependent variables and independent variables were transformed using the natural logarithm to
improve linearity and corrected for bias using a bias correction factor (BCF) [56]. Some studies have
applied log transformations to both dependent variables and independent variables for estimations of
forest parameters [57,58]. Multiple regression models including forest type-specific (coniferous forest,
broad-leaved forest, and mixed forest) models and general models of all plots were then established.
Both stepwise variable selection and the maximum coefficient of determination (R2) improvement
variable selection techniques were applied to select the metrics to be included in the models [59].
Independent variables were left in the model using an F-test with a p < 0.05 significance level. The
standard least-squares method was used [60].

To ensure that the independent variables were not highly correlated, multicollinearity was
evaluated using Principal Component Analysis (PCA) based on the correlation matrix. Models with
condition number (k) lower than 30 were accepted to ensure that there was no serious multicollinearity
in the selected models [57]. The best fitting models were then selected based on the lowest Akaike
information criterion value [61]. The accuracies of predictive models were evaluated using adjusted
coefficient of determination (Adj-R2), Root-Mean-Square Error (RMSE), which has been transformed
back to original scale, and relative RMSE (rRMSE), which are defined as the percentage of the ratio
of RMSE and the observed mean values. In this study, dummy variables (or class variables) were
added to the selected models as the dependent variables to assess whether these models differ between
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forest types [62]. Once the best models were chosen, leave-one-out cross-validation was performed to
evaluate the predictive accuracies of the models [63].

Adj− R2 = 1− n− 1
n− p− 1

(1− R2) (4)

RMSE =

√
1
n

n

∑
i=1

(xi − x̂i)
2 (5)

rRMSE =
RMSE

x
× 100%, (6)

where xi is the observed value for plot i, x is the observed mean value for plot i, x̂i is the estimated
value for plot i, n is the number of plots i, and p is the number of variables.

3. Results

3.1. Profile Analysis

The plots of each forest type were stratified into three groups (low, medium, and high), according
to the Lorey’s mean height from low to high. In each group, three plots were selected, and a total of
nine typical plots were selected. For the typical plots, CVD, CVP and FP were extracted, as shown
in Figures 5–7. In addition, Figure 8 shows the mean LAIc for plots in different forest types and
mean CVD.
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Figure 5 shows the spatial arrangements of four canopy structure classes for coniferous,
broad-leaved, and mixed forest plots. Generally, Oligophotic zones were larger than euphotic zone
in filled volume; coniferous forests had the largest open gap zone and the smallest closed gap zone,
whereas broad-leaved forests plots had a larger and wider spread of closed gap zone than mixed forest.
Similarly, the percentage of closed gap volume was larger in broad-leaved forests than in mixed forests,
and the lowest percentage of closed gap volume was in coniferous forests (Figure 6). The mean CVPs
(Figure 6d,h,l) show that the percentages of open gap volume were the highest in coniferous forests,
and the differences were not significant between the percentages of open gap volume in broad-leaved
forests and mixed forests. The percentages of filled volume in coniferous and mixed forests were
significantly higher than in broad-leaved forest, and the differences for the percentage of filled volume
between coniferous and mixed forest were not significant.

Weibull models were fitted to canopy foliage distribution and matched the shape of foliage profile
relatively well (Figure 7). In general, the FP profiles first exhibited a strong increasing trend, followed
by a decreasing trend. Particularly, the peaks of FP in coniferous and mixed forests occurred in the
lower or middle portions of the canopies whereas the peaks of broad-leaved forests were distributed
more toward middle and upper portions of the canopies. Comparing with the mean foliage profiles
and Weibull curves of three forest types, the curve showing the spatial distribution of FP values was
smoother in broad-leaved forests than those of coniferous or mixed forests. The Weibull shapes of
mixed forest canopy were slightly steeper than those of coniferous forest stands, indicating a wider
spread of foliage within the canopy (Figure 7d,h,l). This same trend can be seen in the mean CHDs
(Figure 8b–d).

The mean LAIc values below the threshold of 12 m (approximately middle canopy) were relatively
high for mixed forests, followed by coniferous forests and broad-leaved forests (Figure 8a). Above the
tree height of 12 m, the increasing slope of the mean LAIc of the broad-leaved forests with increasing
tree height was higher than that of coniferous forests, and maintained a relative high increasing trend,
whereas the increasing trend of coniferous forests and mixed forests gradually tended to saturate. As a
result, the mean LAIc value of broad-leaved forests was eventually higher than that of mixed forests,
and lowest for coniferous forests.
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3.2. Accuracy Assessments

The selected metrics and accuracy assessment results of all the multi-regression models
(i.e., SM models, CM models, and combination models) are shown in Tables A1–A3 and Table 3
summarizes their accuracies. All of the forest structural parameters were generally well estimated
(Adj-R2 = 0.39–0.88, rRMSE = 5.13–29.86%). Overall, Lorey’s mean height (Adj-R2 = 0.61–0.88,
rRMSE = 5.13–12.79%) and AGB (Adj-R2 = 0.54–0.81, rRMSE = 12.19–28.42%) was predicted most
accurately. For volume, DBH and basal area, the R2 values were slightly lower and ranged from
0.42 to 0.78, 0.48 to 0.74 and 0.41 to 0.69, respectively. The lowest accuracy was found for stem density
(Adj-R2 = 0.39–0.64, rRMSE = 18.68–29.86%). In comparison, most of forest structural parameters in
type-specific models (Adj-R2 = 0.44–0.88, rRMSE = 5.13–28.42%) had higher accuracies than in general
models (Adj-R2 = 0.39–0.77, rRMSE = 8.54–29.86%), indicating that the accuracies of forest type-specific
models were generally improved rather than general models. Furthermore, the fitted models of the
forest structural parameters were relatively more accurate for coniferous forests (Adj-R2 = 0.54–0.81,
rRMSE = 8.59–26.55%) than broad-leaved forests (Adj-R2 = 0.50–0.88, rRMSE = 6.39–28.42%) and
mixed forests (R2 = 0.44–0.84, rRMSE = 5.13–29.52%). Compared with canopy metrics based models
(Adj-R2 = 0.39–0.83, rRMSE = 6.94–29.26%), standard metrics based models had a relatively higher
performance (Adj-R2 = 0.42–0.84, rRMSE = 5.60–29.86%) and the combination models performed best
(Adj-R2 = 0.45–0.88, rRMSE = 5.13–28.96%), indicating the inclusion of canopy metrics potentially
improved the estimation performances of structural parameters.

For all of the general SM models, the standard metrics that were regressed against for fitting
models included most of the standard metrics, indicating those had a relatively strong correlation
with forest structural parameters. Overall, h95 (selected by four out of six models), d7 (selected by
four out of six models), d3, hcv and d9 (each of them was selected by three out of six models) were the
most frequently selected, indicating these metrics are more sensitive and representative to the forest
structural parameters. For general CM models, all of CV metrics and WF metrics were selected for
estimating forest structural parameters. Within CV metrics, the statistic of Oligophotic (all selected by
six models), Empty (selected by four out of six models) and Open (selected by four out of six models)
were sensitive to forest structural parameters and these metrics were selected both in the general
models and forest type-specific models, suggesting that the three metrics have a strong ability to
explain variations. Within WF metrics, α1 was relatively sensitive to structural parameters (selected
two out of six models). In six general combination models, most of standard metrics (nine out of 14)
and canopy metrics (four out of total 10) were used in combination for parameter estimations. The
metrics of Oligophotic, Empty, h95 remained sensitive to structural parameters (selected by 2–4 out of
six general combo models). Moreover, h75, d1 and β1 (selected by 2–3 out of 6) became more sensitive
for DBH, Lorey’s mean height, and stem density in combination models than SM models.

Figure 9 shows the LiDAR estimated versus the field measured forest structural parameters as
well as the results for cross-validation in all plots models based on standard metrics and canopy
metrics. As indicated, Lorey’s mean height and AGB models were fitted best and resulted in R2

values of 0.79 and 0.66, followed by DBH (R2 = 0.60), volume (R2 = 0.60) and basal area (R2 = 0.52),
whereas the accuracy of stem density model was the lowest (R2 = 0.49). For Lorey’s mean height,
AGB, DBH, and volume estimations, their relationships were close to the 1:1 line whereas basal area
and stem density had a relationship that deviated from the 1:1 line, with a slightly larger deviation in
broad-leaved forests.
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Table 3. A summary of selected metrics and accuracy assessment results of predictive models.

Forest Types Parameters
SM Models CM Models Combination Models

Standard Metrics Adj-R2 RMSE rRMSE
% Canopy Metrics Adj-R2 RMSE rRMSE

% All Metrics Adj-R2 RMSE rRMSE
%

All plots

DBH/cm h95, d1, d7 0.60 *** 1.72 12.33 OG, Oligo, Empty, β2 0.50 *** 1.86 13.31 hcv, h75, d1, Oligo 0.61 *** 1.67 11.97
hLorey/m hcv, h95, d7, d9 0.75 *** 0.97 9.15 Oligo, Filled, Empty, α1 0.61 *** 1.18 11.13 h50, d1, Empty, β1 0.77 *** 0.90 8.54
N/(ha−1) hcv, d1, d7, d9 0.42 *** 423.75 29.86 OG, Eu, Oligo, β1 0.39 *** 415.17 29.26 d1, Oligo, α1, β1 0.45 *** 410.02 28.90

G/(m2·ha−1) h95, d3, d7 0.44 *** 3.99 17.23 Oligo, Empty, α2 0.41 *** 3.67 15.82 hkurtosis, h25, h95, Empty 0.50 *** 3.47 14.96
V/(m3·ha−1) hcv, h25, h50, d3 0.46 *** 22.34 17.46 OG, Eu, Oligo, α1 0.42 *** 22.36 17.48 h75, Oligo, Empty, β1 0.58 *** 21.07 16.47

AGB/(Mg·ha−1) hkurtosis, h95, d3, d9 0.64 *** 19.17 22.47 OG, Oligo, CG, Empty 0.54 *** 19.84 23.25 h95, d3, CC2m, Oligo 0.66 *** 18.25 21.39

Coniferous
forest

DBH/cm h95, d1, d7 0.67 ** 1.20 9.50 OG, Oligo, Empty, β2 0.54 1.40 11.09 hcv, h75, d1, Oligo 0.74 ** 1.08 8.59
hLorey/m hcv, h95, d7, d9 0.66 1.09 11.47 Oligo, Filled, Empty, α1 0.64 1.21 12.79 h50, d1, Empty, β1 0.77 ** 0.99 10.43
N/(ha−1) hcv, d1, d7, d9 0.60 315.78 18.68 OG, Eu, Oligo, β1 0.58 431.65 25.53 d1, Oligo, α1, β1 0.64 339.29 20.07

G/(m2·ha−1) h95, d3, d7 0.62 ** 4.53 19.63 Oligo, Empty, α2 0.55 4.73 20.48 hkurtosis, h25, h95, Empty 0.69 ** 4.23 18.32
V/(m3·ha−1) hcv, h25, h50, d3 0.69 ** 22.40 19.22 OG, Eu, Oligo, α1 0.72 ** 18.32 15.72 h75, Oligo, Empty, β1 0.78 ** 18.21 15.63

AGB/(Mg·ha−1) hkurtosis, h95, d3, d9 0.72 ** 16.86 24.17 OG, Oligo, CG, Empty 0.74 ** 18.51 26.55 h95, d3, CC2m, Oligo 0.81 ** 14.53 20.83

Broad-leaved
forest

DBH/cm h95, d1, d7 0.61 ** 1.70 11.12 OG, Oligo, Empty, β2 0.51 1.81 11.79 hcv, h75, d1, Oligo 0.68 1.54 10.06
hLorey/m hcv, h95, d7, d9 0.84 *** 0.78 6.91 Oligo, Filled, Empty, α1 0.83 *** 0.88 7.72 h50, d1, Empty, β1 0.88 *** 0.72 6.39
N/(ha−1) hcv, d1, d7, d9 0.60 298.99 26.55 OG, Eu, Oligo, β1 0.52 299.82 26.63 d1, Oligo, α1, β1 0.62 273.49 24.29

G/(m2·ha−1) h95, d3, d7 0.54 2.62 11.96 Oligo, Empty, α2 0.50 2.74 12.48 hkurtosis, h25, h95, Empty 0.63 2.49 11.34
V/(m3·ha−1) hcv, h25, h50, d3 0.56 19.49 14.68 OG, Eu, Oligo, α1 0.58 18.97 14.28 h75, Oligo, Empty, β1 0.67 16.65 12.54

AGB/(Mg·ha−1) hkurtosis, h95, d3, d9 0.57 26.80 28.42 OG, Oligo, CG, Empty 0.60 26.45 28.05 h95, d3, CC2m, Oligo 0.66 26.67 28.29

Mixed forest

DBH/cm h95, d1, d7 0.48 ** 1.66 11.94 OG, Oligo, Empty, β2 0.48 1.78 12.79 hcv, h75, d1, Oligo 0.55 ** 1.58 11.34
hLorey/m hcv, h95, d7, d9 0.81 *** 0.60 5.60 Oligo, Filled, Empty, α1 0.75 *** 0.75 6.94 h50, d1, Empty, β1 0.84 *** 0.55 5.13
N/(ha−1) hcv, d1, d7, d9 0.48 ** 336.73 28.52 OG, Eu, Oligo, β1 0.44 324.73 22.68 d1, Oligo, α1, β1 0.50 *** 319.05 22.28

G/(m2·ha−1) h95, d3, d7 0.45 ** 3.08 12.86 Oligo, Empty, α2 0.45 *** 3.12 13.01 hkurtosis, h25, h95, Empty 0.56 ** 2.77 11.56
V/(m3·ha−1) hcv, h25, h50, d3 0.60 *** 16.76 12.70 OG, Eu, Oligo, α1 0.65 *** 16.31 12.36 h75, Oligo, Empty, β1 0.71 *** 15.87 12.02

AGB/(Mg·ha−1) hkurtosis, h95, d3, d9 0.64 *** 13.20 14.77 OG, Oligo, CG, Empty 0.71 *** 13.00 14.55 h95, d3, CC2m, Oligo 0.79 *** 10.89 12.19

Notes: Level of significance: NS = not significant (>0.05); ** <0.01; *** <0.001; DBH: mean diameter at breast height; hLorey: Lorey’s mean height; N: Stem density; G: Basal area; V: Volume;
AGB: Aboveground biomass. OG: Open gap; Oligo: Oligophotic; Eu: Euphotic; CG: Closed gap.
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cross-validation in combination models.

3.3. The Selection of Voxel Sizes

In this study, a sensitivity analysis was performed using different voxel sizes to derive CV metrics
based on CVM approach and to quantify their influence on the results. As shown in Figure 10,
a quantitative comparison of estimation accuracy for four main forest structural parameters (i.e., DBH,
Lorey’s mean height, stem density, and basal area) was performed. In general, the R2 values of the
models showed a trend of first increasing and then decreasing when horizontal resolutions of voxels
were varied from 1 m to 10 m (Figure 10a,b), and the voxels in horizontal resolution of 5 m had the
best performance. Figure 10a was subtracted from Figure 10b to calculate the result of Figure 10c,
which demonstrated the difference of rRMSE values of forest structural parameters for various vertical
resolutions (0.5 m and 1 m). The values presented were mostly positive, except for some of the
differences were negative (e.g., G at 3 m horizontal resolution) (Figure 10c). In particular, DBH and
stem density models had all positive values across 1 m to 10 m of horizontal resolutions, indicating
the two parameters were strongly influenced by the vertical resolution of the voxels. As a result, the
suitable voxel size in this study was 5 × 5 × 0.5 m3.
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4. Discussion

4.1. Canopy Vertical Profiles

Canopy is an important constituent of forest structure [64], and canopy structure is critical for
estimation of forest structural parameters [65]. Canopy vertical profile is one of the means to quantify
and analyze complex forest canopy structure and further characterize the potential heterogeneity of
forest spatial structure [66]. A wide range of forest structural parameters can be directly quantified
from canopy vertical profiles such as canopy height and canopy vertical distribution [67]. Also, a
set of forest structural parameters (aboveground biomass, basal area, volume, LAI, canopy cover,
etc.) can be predicted by establishing empirical models from LiDAR data [68]. In this study, a
voxel-based CVM and Weibull fitting approach were conducted to extract two key suites of metrics for
estimating forest structural parameters and derive correlative canopy vertical profiles including CVD,
CVP, CHD, FP, and LAIc. As mentioned above, the CVM approach provides a broad classification
approach to categorize the canopy into photosynthetically active and less active zones [39]. Therefore,
it can better reflect the spatial heterogeneity of forest structure, which is caused by the difference
of light environment in the canopy. Furthermore, the CVP explicitly presented variation in the
spatial arrangement of elements (i.e., open gap, euphotic, oligophotic, closed gap) within the vertical
forest canopy [38]. As shown in Figures 5 and 6, the broad-leaved forests had the largest closed
gap volume and the smallest open gap volume when compared to coniferous forests and mixed
forests. The explanations of these phenomena need to take into account the canopy geometry and
tree architecture [36]. At our research site, coniferous forests are dominated by Masson pine and
slash pine; these species usually consist of a regular and conical crown, demonstrating a heavily
thinned upper canopy and a dense sub-canopy (Figure 3). Furthermore, more open upper canopies in
coniferous stands allow more light to pass through to the lower canopy strata [69,70], so a shrubby
understory may incrementally emerge, resulting in the most open gap and the lowest closed gap zones
in coniferous forests. Conversely and notably, broadleaves with elliptical or spherical crown are very
tall and have positively skewed canopies with a lower canopy transparency in this study area, as
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indicated by the large decrease in open gap zones. Additionally, the closed canopy volume generally
increased with decreasing stand density [55], hence the broad-leaved forests with a lower stem density
(1126.00 ha−1) also had a more closed canopy gap. Although with a much more shrubby understory,
mixed conifer–broadleaf forests generally encompass median height broadleaved trees [65] with a
high stem density (1431.78 ha−1) and canopy transparency, resulting in a higher amount of closed
gap volume than coniferous forests and a slightly higher amount of open gap volume. On the other
hand, as Yushan forest is in secondary succession, the forest canopy surface became more uneven,
and the competitions among shade-intolerant species (e.g., Masson pine, Chinese sweet gum) were
accelerated and further inhibited the establishment and growth of these species [71,72]. As a result,
in late-successional stage, the shade-tolerant species (e.g., Oriental oak, camphorwood and Chinese
holly) eventually dominated the canopy [69,72,73] and coexisted with other species. This process
could cause the transmittance of light through the canopy to decline [74], which may result in an
increase the spatial heterogeneity of the light environment [75,76] and a further enhancement of more
microsite light availability in lower canopies [70,76–79]. Thus, for each forest type, the oligophotic zone,
which represented a larger proportion of the total filled volume compared to the euphotic zone that
represented photosynthetically active tissues (Figure 6). As mentioned above, the canopy architectures
of the three forest types can help explain why the distributions of FP and CHD in coniferous forests
and mixed forests inclined to the under canopy, whereas the curves of broad-leaved forests were
distributed more towards the middle or upper canopy (Figures 7 and 8b–d).

In general, due to a thinner upper canopy and dense under canopy for each forest type, the mean
LAI increased rapidly and shifted to an infinitesimal increment from the ground up to the top of
the canopy (Figure 8a). Below the threshold of 12 m (approximately middle canopy), dense foliage
accumulated in the lower canopy of mixed forests and coniferous forests but mixed forests had more
understory shrubs and slightly denser canopies than coniferous forests whereas broad-leaved forest
had less shrubbery; therefore, there was a dramatically increased LAIc in mixed forests, followed by
coniferous forests and broad-leaved forests. Along with still moderate density of foliage near the upper
canopy in broad-leaved forests as well as thinned density of foliage in mixed forests and coniferous
forests, the mean LAIc increased trend remained relatively stable in broad-leaved forests compared to
other forest types. Eventually, broad-leaved forests had the highest mean LAIc, followed by mixed
forests and coniferous forests, which is consistent with the findings of previous studies [80,81].

4.2. Predictive Models

In comparison, the forest type-specific models had higher accuracies (Adj-R2 = 0.44–0.88,
rRMSE = 5.13–28.42%) than the general models (Adj-R2 = 0.39–0.77, rRMSE = 8.54–29.86%).
Bouvier et al. (2015) [14] developed a separate model for coniferous, deciduous and mixed stands
to estimate forest structural parameters in the Lorraine forests. The results demonstrated that the
separate models reduce estimation errors (2.0–5.3%) compared to general models in some complex
forests conditions, which was confirmed by our research results. Fu et al. (2011) [82] reported R2 values
for AGB of 0.37 of the general model and 0.43–0.68 of forest type-specific models in subtropical forests
(located in southern Yunnan province, China). In our study site, the multi-layered forest conditions in
subtropical forests contained greater species diversity, making the effects of tree-species composition
(classified as forest types) significant. Overall, the models of the forest structural parameters were
relatively more accurate for coniferous forests than broad-leaved forests and mixed forests. The
relationships between stand structure and the forest structural parameters are species-dependent, and
coniferous forests are usually characterized by relatively simple stand structures when compared
with broad-leaved or mixed stands. So it is likely that the model prediction accuracy may decrease
in multispecies stands [14]. Xu et al. (2015) [83] estimated forest structural parameters (i.e., Lorey’s
mean height, stem density, basal area and volume) in the subtropical deciduous mixed forests (on
Purple Mountain, located in eastern Nanjing), using canopy height metrics (i.e., height percentile,
mean height, maximum height and minimal height) and canopy density metrics. Compared with
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our results (rRMSE = 5.13–22.28%), theirs showed a relatively lower rRMSE for Lorey’s mean height
(6.47%), stem density (27.04%), basal area (16.38%), and volume (6.93%). Compared with canopy
metrics-based models (Adj-R2 = 0.39–0.83, rRMSE = 6.94–29.26%), standard metrics-based models had
relatively higher performance (Adj-R2 = 0.42–0.84, rRMSE = 5.60–29.86%), except for the volume and
AGB (both in forest type-specific models). The combination models performed best (Adj-R2 = 0.45–0.88,
rRMSE = 5.13–28.96%), explaining a large amount of the variability for all forest structural parameters
and indicating the increased utility of canopy metrics in capturing spatially explicit information
describing a heterogeneous forest structure. For DBH, stem density, basal area, and AGB, Lefsky et al.
(1999) [36] reported adjusted R2 values of 0.61, 0.52, 0.87, and 0.91 in boreal forests, markedly higher
than reported in this study. The cause of the lower performance in this research is likely the complex
structure of the subtropical forests, which are typified by multi-layered forests which that encompass
some stands with considerable variability in tree height and stem density, especially in old-growth
stands, whereas boreal forests have a much higher homogeneous composition and more discernible
canopy architecture.

When considering the selected frequency of metrics in the fitted models, for CV metrics,
Oligophotic, Empty metrics were mostly selected by the combination models. This may be explained
by the higher proportions of canopy elements (Figures 5 and 6), which were oligophotic, empty
volume zones, revealing the strong sensitivity and representativeness of these two metrics to local
forest structures. Previous studies [38,84] found that the Weibull scale and shape parameter were
related to canopy attributes (e.g., crown depth and crown length), hence two Weibull parameters
were both selected by the CM models of structural parameters (e.g., mean diameter, Lorey’s mean
height, basal area, and volume models) linked to canopy attributes. In combination models, the most
selected WF metrics were α1 and β1, indicating that both of them are suitable for estimating structure
parameters in local forests. The capacity of the Weibull parameters to represent the key attributes
of mean crown dimension is important, as it provides a mechanism to summarize complex canopy
characteristics into simple parameters that can be empirically analyzed in relation to various forest
stand characteristics. The two-parameter Weibull model was applied for characterizing many types
of FPs and CHDs in this study. In general, these profiles of single layer canopies corresponded well
(Figure 7). However, the unimodal Weibull distribution function applied to the profile is inadequate to
describe properly multimodal structure, which may occur in multi-layered, multi-age, complex forest
stands [52]. Thus, the relatively poor fit for multi-layered forests could result in errors in estimates
of structural parameters, which may explain why the Weibull parameters are not statistically more
significant predictors than CV metrics. In this regard, future work could focus on how to apply a
multi curve fitting approach in order to further capture the full distributions of canopy vertical profiles.
On the other hand, different plot selection strategies could influence the performance of predictive
models [85]. The plot selection in this study was only according to forest type, thus our future work
could also examine different plot selection strategies of field training plots (e.g., using LiDAR data
or geographical factors as a prior information, etc.) and utilize a suitable strategy to improve the
estimation accuracy of forest structural parameters.

4.3. The Selection of Voxel Sizes

Voxels representing canopy elements such as trunks and branches were abstracted by a volume
grid and placed in a 3D grid [86]. As a method of volume visualization of LiDAR points, voxels have
already been applied to airborne LiDAR data for improving calculations of forest attributes [87,88].
Voxel size is a key parameter pertaining to the scale of forest structural parameter estimates to
the physical dimension of canopy components [89]. Thus, a sensitivity analysis was conducted to
investigate the influence of various voxel sizes on forest structural estimations. As shown in Figure 10,
in very low (i.e., 1 × 1 × 0.5 m3) or high (i.e., 10 × 10 × 1 m3) resolution conditions, the R2 values
showed a relatively lower performance. If voxels are too small, a voxel-based CVM approach may
produce redundant unfilled voxels of empty volume containing few tree canopy elements, which may
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lead to the underestimation of forest structural parameters; however, too large voxels may lead to
too few voxels and result in statistically insignificant descriptions of canopy features [90]. In these
conditions, the voxel approach could become ineffective at characterizing the vertical distribution
of various canopy structures and the capability to capture 3D heterogeneity of canopy structure for
CV metrics could be constrained, hence resulting in relatively lower performances of the models.
After taking into account factors of plot size (30 × 30 m2), point cloud densities (3.74 pts·m−2), etc.,
Hilker et al. (2010) [39] used a voxel size of 6 × 6 × 1 m3 for discrete airborne LiDAR data to estimate
the tree height and LAI in Douglas-fir-dominated forest stands with relatively high tree heights
(30–35 m). Concerning a much higher point cloud density (5.06 pts·m−2) of LiDAR data and relatively
lower tree heights (4.47–18.52 m) in this study site, a 1 m vertical resolution produced more coarse data
than the vertical resolution of 0.5 m (approximately treble the temporal sample spacing of 1 ns (15 cm)),
thus, constraining the ability of canopy volume metrics to describe the vertical variability of the forest
canopy structures. Moreover, potential tree movement due to wind between laser acquisitions is also
considered a source of uncertainty, as laser returns from the same target can be located in different
voxels for different laser acquisitions. By using a voxel size larger than the pulse diameter, this issue
can be slightly reduced [91]. Overall, the optimal voxel size is a key parameter to determine in order to
improve characterizations of forest structure [92,93]. Consequently, the optimal voxel spatial resolution
should be determined based on plot size, the characteristics of the LiDAR instrument used (e.g., beam
diameter, footprint size, average point density and temporal sample spacing, etc.), and forest structure
attributes (e.g., tree height, crown diameter, crown depth, etc.)

5. Conclusions

In this study, a set of canopy metrics derived from canopy vertical profiles, which has the potential
to aid in our understanding of the physical characteristics of forest structure, was extracted. The
capability of the standard metrics (extracted from the point cloud data) and canopy metrics for
estimating forest structural parameters (i.e., DBH, Lorey’s mean height, stem density, basal area,
volume, and AGB) was assessed, individually and in combination, over a subtropical forest in
southeastern China. Moreover, a sensitive analysis of different voxel sizes was performed to investigate
the optimal voxel size for estimating forest structural parameters.

The results demonstrated that the forest type-specific models had relatively higher accuracies
(Adj-R2 = 0.44–0.88, rRMSE = 5.13–28.42%) compared with the general models (Adj-R2 = 0.39–0.77,
rRMSE = 8.54–29.86%). The estimation accuracies of Lorey’s mean height and AGB were the highest,
followed by volume, DBH and basal area, whereas stem density was relatively lower. Overall,
metrics of Oligophotic, Empty, Open, α1 were the most frequently selected, indicating their potential
capability for predicting forest structural parameters in the forest stands within the study site. The
results demonstrated the synergistic use of standard metrics and canopy metrics for better predicting
forest structural parameters (∆Adj-R2 = 0.01–0.20, ∆rRMSE = −5.71–1.39%), compared with models
developed using standard metrics (only) and canopy metrics (only). In addition, the optimal voxel
size for estimating forest structural parameters in this study is 5 × 5 × 0.5 m3, and the voxel vertical
and horizontal resolutions should be determined based on plot size, the characteristics of the acquired
LiDAR data (i.e., beam diameter, footprint size, average point density, and temporal sample spacing)
and forest structure attributes (i.e., tree height, crown diameter, and crown depth).

Acknowledgments: The project was funded by the Natural Science Foundation of Jiangsu Province
(No. BK20151515) and the National Natural Science Foundation of China (No. 31400492). This research was also
supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).
Special thanks to Xin Shen, Kun Liu, and Ting Xu for field works. The authors gratefully acknowledge the foresters
in Yushan forest for their assistance with data collection and sharing their rich knowledge and working experience
of the local forest ecosystems.

Author Contributions: Zhengnan Zhang analyzed the data and wrote the paper. Lin Cao helped in project and
study design, paper writing, and analysis. Guanghui She helped with data analysis and paper writing.

Conflicts of Interest: The authors declare no conflict of interest.



Remote Sens. 2017, 9, 940 20 of 26

Appendix A

Table A1. Allometric equations for aboveground biomass components of dominant tree species and
species group in the study site.

Tree Species Component a b R2 References

Masson pine
Stem wood (Ws) 0.141 1.092 0.9970

Jiang et al.
(1992) [42]

Live branches (Wb) 0.065 0.991 0.9871
Foliage (Wf) 0.132 0.745 0.9827

Chinese fir
Stem wood (Ws) 0.124 0.680 0.9704

Ye and Jiang
(1983) [43]

Live branches (Wb) 0.203 0.385 0.7223
Foliage (Wf) 0.850 0.189 0.6567

Slash pine
Stem wood (Ws) 0.235 0.900 0.9523

Wang and Shi
(1990) [44]

Live branches (Wb) 0.080 1.064 0.8520
Foliage (Wf) 0.456 0.610 0.8802

Sawtooth oak
Stem wood (Ws) 0.018 1.034 0.9864

Xu et al.
(2011) [46]

Live branches (Wb) 0.00008 1.468 0.9745
Foliage (Wf) 0.004 0.769 0.8662

Sweet gum
Stem wood (Ws) 0.093 0.801 0.9310

Qian (2000) [45]Live branches (Wb) 0.083 0.649 0.9890
Foliage (Wf) 1.084 0.217 0.6940

Other
broadleaves a

Stem wood (Ws) 0.023 0.985 0.9903
Sun et al.

(1992) [47]
Live branches (Wb) 0.00004 3.785 0.9623

Foliage (Wf) 0.00003 1.378 0.9456

Notes: The equation of W = a(D2H)b was used to calculate each biomass component. H = Tree height (m),
D = DBH (cm) and a, b are the parameters. a The general equation of “Other broadleaves” includes tree species
of Quercus variabilis, Quercus fabri, Quercus aliena, Quercus glandurifera var. brevipetiolata, Castanea sequinii,
Liquidambar formasana and Pistacia chinensis.

Table A2. Predictive models and accuracy assessment results (by standard metrics).

Variables Predictive Models Adj-R2 RMSE rRMSE %

All plots

DBH/cm exp(1.064 + 0.641 ln h95 − 0.580 ln d1 + 0.066 ln d7)× 1.008 0.60 *** 1.72 12.33
hLorey/m exp(−0.33− 0.079 ln hcv + 1.012 ln h95 − 0.028 ln d7 − 0.001 ln d9)× 1.006 0.75 *** 0.97 9.15
N/(ha−1) exp(6.814− 0.049 ln hcv + 2.124 ln d1 − 0.296 ln d7 − 0.049 ln d9)× 1.052 0.42 *** 423.75 29.86

G/(m2·ha−1) exp(0.899 + 0.851 ln h95 − 0.819 ln d3 − 0.177 ln d7)× 1.019 0.44 *** 3.99 17.23
V/(m3·ha−1) exp(3.445− 0.137 ln hcv + 0.232 ln h25 + 0.515 ln h50 + 0.295 ln d3)× 1.023 0.46 *** 22.34 17.46

AGB/(Mg·ha−1) exp(−0.169− 0.058 ln hkurtosis + 1.817 ln h95 + 0.627 ln d3 − 0.048 ln d9)× 1.037 0.64 *** 19.17 22.47

Coniferous forests

DBH/cm exp(0.996 + 0.664 ln h95 − 0.485 ln d1 + 0.88 ln d7)× 1.006 0.67 ** 1.20 9.50
hLorey/m exp(−1.480− 0.488 ln hcv + 1.211 ln h95 − 0.102 ln d7 − 0.008 ln d9)× 1.013 0.66 1.09 11.47
N/(ha−1) exp(6.39− 0.851 ln hcv + 1.810 ln d1 − 0.477 ln d7 + 0.140 ln d9)× 1.036 0.60 315.78 18.68

G/(m2·ha−1) exp(−0.885 + 1.531 ln h95 + 1.380 ln d3 − 0.376 ln d7)× 1.029 0.62 ** 4.53 19.63
V/(m3·ha−1) exp(3.459 + 0.633 ln hcv + 3.732 ln h25 − 2.335 ln h50 + 0.491 ln d3)× 1.029 0.69 ** 22.40 19.22

AGB/(Mg·ha−1) exp(−2.216 + 0.565 ln hkurtosis + 2.218 ln h95 + 0.455 ln d3 − 0.099 ln d9)× 1.059 0.72 ** 16.86 24.17

Broad-leaved forests

DBH/cm exp(0.949 + 0.680 ln h95 − 0.654 ln d1 + 0.028 ln d7)× 1.009 0.61 ** 1.70 11.12
hLorey/m exp(−0.296− 0.149 ln hcv + 0.981 ln h95 − 0.082 ln d7 − 0.031 ln d9)× 1.004 0.84 *** 0.78 6.91
N/(ha−1) exp(7.663 + 0.602 ln hcv + 2.500 ln d1 − 0.144 ln d7 − 0.071 ln d9)× 1.056 0.60 298.99 26.55

G/(m2·ha−1) exp(3.045 + 0.046 ln h95 + 0.516 ln d3 − 0.001 ln d7)× 1.010 0.54 2.62 11.96
V/(m3·ha−1) exp(3.459 + 0.633 ln hcv + 3.732 ln h25 − 2.335 ln h50 + 0.491nd3)× 1.029 0.56 19.49 14.68

AGB/(Mg·ha−1) exp(1.958− 0.060 ln hkurtosis + 1.150 ln h95 + 0.579 ln d3 + 0.057 ln d9)× 1.063 0.57 26.80 28.42

Mixed forests

DBH/cm exp(1.184 + 0.360 ln h95 − 1.116 ln d1 + 0.110 ln d7)× 1.008 0.48 ** 1.66 11.94
hLorey/m exp(0.830 + 0.222 ln hcv + 0.700 ln h95 + 0.135 ln d7 − 0.067 ln d9)× 1.003 0.81 *** 0.60 5.60
N/(ha−1) exp(7.774 + 0.093 ln hcv + 4.386 ln d1 − 0.391 ln d7 + 0.157 ln d9)× 1.031 0.48 ** 336.73 28.52

G/(m2·ha−1) exp(1.308 + 0.772 ln h95 + 1.036 ln d3 − 0.046 ln d7)× 1.009 0.45 ** 3.08 12.86
V/(m3·ha−1) exp(3.144 + 0.006 ln hcv − 2.519 ln h25 + 3.238 ln h50 + 2.386nd3)× 1.009 0.60 *** 16.76 12.70

AGB/(Mg·ha−1) exp(−0.177− 0.261 ln hkurtosis + 1.917 ln h95 + 1.380 ln d3 − 0.081 ln d9)× 1.016 0.64 *** 13.20 14.77

Notes: Level of significance: NS = not significant (>0.05); ** <0.01; *** <0.001.
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Table A3. Predictive models and accuracy assessment results (by canopy metrics).

Variables Predictive Models Adj-R2 RMSE rRMSE %

All plots

DBH/cm exp(2.852 + 0.169 ln OG− 0.076 ln Oligo + 0.081 ln Empty− 0.576 ln β2)× 1.010 0.50 *** 1.86 13.31
hLorey/m exp(−0.235− 0.421 ln Oligo + 1.010 ln Filled− 0.272 ln Empty− 0.338 lnβ2)× 1.009 0.61 *** 1.18 11.13
N/(ha−1) exp(5.545− 0.508 ln OG + 0.232 ln Eu + 0.342 ln Oligo + 1.332 ln β1)× 1.055 0.39 *** 415.17 29.26

G/(m2·ha−1) exp(2.119 + 0.579 ln Oligo + 0.579 ln Empty + 0.094 ln α2)× 1.020 0.41 *** 3.67 15.82
V/(m3·ha−1) exp(3.063 + 0.249 ln OG + 0.237 ln Eu + 0.423 ln Oligo− 0.694 ln α1)× 1.025 0.42 *** 22.36 17.48

AGB/(Mg·ha−1) exp(1.650− 0.292 ln OG + 1.021 ln Oligo− 0.071 ln CG + 0.717 ln Empty)× 1.048 0.54 *** 19.84 23.25

Coniferous forests

DBH/cm exp(1.455− 0.535 ln OG + 0.388 ln Oligo + 0.622 ln Empty− 0.052 ln β2)× 1.009 0.54 1.40 11.09
hLorey/m exp(−4.620− 4.700 ln Oligo + 5.948 ln Filled + 0.281 ln Empty− 2.952 lnβ2)× 1.014 0.64 1.21 12.79
N/(ha−1) exp(5.379− 0.310 ln OG− 0.726 ln Eu + 1.019 ln Oligo + 1.156 ln β1)× 1.042 0.58 431.65 25.53

G/(m2·ha−1) exp(−1.378 + 1.535 ln Oligo + 0.195 ln Empty− 2.715 ln α2)× 1.043 0.55 4.73 20.48
V/(m3·ha−1) exp(−1.462 + 0.559 ln OG + 2.869 ln Eu− 0.765 ln Oligo− 6.184 ln α1)× 1.028 0.72 ** 18.32 15.72

AGB/(Mg·ha−1) exp(−3.600− 3.719 ln OG + 2.238 ln Oligo− 1.604 ln CG + 5.287 ln Empty)× 1.043 0.74 ** 18.51 26.55

Broad-leaved forests

DBH/cm exp(3.562 + 0.454 ln OG− 0.053 ln Oligo− 0.099 ln Empty− 0.958 ln β2)× 1.010 0.51 1.81 11.79
hLorey/m exp(1.030− 0.149 ln Oligo + 0.323 ln Filled + 0.250 ln Empty− 0.613 ln β2)× 1.004 0.83 *** 0.88 7.72
N/(ha−1) exp(6.025− 0.774 ln OG + 1.103 ln Eu− 0.015 ln Oligo + 0.836 ln β1)× 1.078 0.52 299.82 26.63

G/(m2·ha−1) exp(2.514 + 0.321 ln Oligo− 0.040 ln Empty− 0.032 ln α2)× 1.013 0.50 2.74 12.48
V/(m3·ha−1) exp(5.339− 0.234 ln OG− 0.981 ln Eu + 0.588 ln Oligo + 0.715 ln α1)× 1.013 0.58 18.97 14.28

AGB/(Mg·ha−1) exp(4.009− 0.188 ln OG + 0.440 ln Oligo + 0.615 ln CG− 0.517 ln Empty)× 1.055 0.60 26.45 28.05

Mixed forests

DBH/cm exp(3.172 + 0.169 ln OG + 0.060 ln Oligo + 0.002 ln Empty− 0.724 ln β2)× 1.009 0.48 1.78 12.79
hLorey/m exp(0.481 + 0.318 ln Oligo + 0.390 ln Filled + 0.210 ln Empty− 0.109 lnβ2)× 1.003 0.75 *** 0.75 6.94
N/(ha−1) exp(4.939− 0.262 ln OG− 0.997 ln Eu + 0.965 ln Oligo + 1.804 ln β1)× 1.034 0.44 324.73 22.68

G/(m2·ha−1) exp(1.909 + 0.626 ln Oligo + 0.080 ln Empty + 0.153nα2)× 1.009 0.45 *** 3.12 13.01
V/(m3·ha−1) exp(−0.871 + 0.626 ln OG + 0.080 ln Eu + 0.088 ln Oligo + 0.744 ln α1)× 1.008 0.65 *** 16.31 12.36

AGB/(Mg·ha−1) exp(1.848 + 0.087 ln OG + 1.195 ln Oligo + 0.087 ln CG + 0.119 ln Empty)× 1.013 0.71 *** 13.00 14.55

Notes: Level of significance: NS = not significant (>0.05); ** <0.01; *** <0.001.

Table A4. Predictive models and accuracy assessment results (using both standard metrics and
canopy metrics).

Variables Predictive Models Adj-R2 RMSE rRMSE %

All forests

DBH/cm exp(0.802− 0.060 ln hcv − 0.095 ln h75 + 0.7401 ln d1 − 0.548 ln Oligo)× 1.008 0.61 *** 1.67 11.97
hLorey/m exp(0.091− 0.053 ln h50 + 0.154 ln d1 + 0.971 ln Empty− 0.315 ln β1)× 1.009 0.77 *** 0.90 8.54
N/(ha−1) exp(7.012 + 0.167 ln d1 + 0.761 ln Oligo + 0.741 ln α1 + 1.643 ln β1)× 1.049 0.45 *** 410.02 28.90

G/(m2·ha−1) exp(1.576− 0.255hkurtosis − 0.304 ln h25 + 1.031 ln h95 + 0.073 ln Empty)× 1.017 0.50 *** 3.47 14.96
V/(m3·ha−1) exp(0.201− 0.463h75 − 0.502 ln Oligo + 0.845 ln Empty + 2.343 ln α1)× 1.018 0.58 *** 21.07 16.47

AGB/(Mg·ha−1) exp(0.519 + 0.193 ln h95 + 1.458 ln d3 + 1.300 ln CC2m − 1.348 ln Oligo)× 1.036 0.65 *** 18.25 21.39

Coniferous forests

DBH/cm exp(1.041− 0.164 ln hcv + 0.062 ln h75 + 0.8131 ln d1 − 0.182 ln Oligo)× 1.006 0.74 ** 1.08 8.59
hLorey/m exp(−1.207− 0.196 ln h50 + 0.582 ln d1 + 1.441 ln Empty− 0.661 ln β1)× 1.010 0.77** 0.99 10.43
N/(ha−1) exp(1.881 + 0.573 ln d1 − 3.703 ln Oligo + 2.036 ln α1 + 0.029 ln β1)× 1.033 0.64 339.29 20.07

G/(m2·ha−1) exp(0.242− 0.323hkurtosis − 0.060 ln h25 + 1.668 ln h95 + 0.046 ln Empty)× 1.029 0.69 ** 4.23 18.32
V/(m3·ha−1) exp(−1.585− 0.537h75 − 0.599 ln Oligo + 1.392 ln Empty + 3.014 ln α1)× 1.024 0.78 ** 18.21 15.63

AGB/(Mg·ha−1) exp(−0.808 + 0.794 ln h95 + 1.594 ln d3 + 3.551 ln CC2m − 4.560 ln Oligo)× 1.040 0.81 ** 14.53 20.83

Broad-leaved forests

DBH/cm exp(0.876− 0.095 ln hcv − 0.325 ln h75 + 0.5881 ln d1 − 0.797 ln Oligo)× 1.008 0.68 1.54 10.06
hLorey/m exp(1.020 + 0.047 ln h50 − 0.226 ln d1 + 0.633 ln Empty− 0.255 ln β1)× 1.003 0.88 *** 0.72 6.39
N/(ha−1) exp(7.281 + 0.074 ln d1 + 0.8081 ln Oligo + 0.583 ln α1 + 2.132 ln β1)× 1.055 0.62 273.49 24.29

G/(m2·ha−1) exp(3.404− 0.100hkurtosis − 0.166 ln h25 + 1.109 ln h95 − 0.902 ln Empty)× 1.009 0.63 2.49 11.34
V/( m3·ha−1) exp(9.533 + 2.028h75 + 1.027 ln Oligo− 1.599 ln Empty− 3.683 ln α1)× 1.011 0.67 16.65 12.54

AGB/(Mg·ha−1) exp(2.376− 0.395 ln h95 + 1.210 ln d3 + 3.440 ln CC2m − 4.200 ln Oligo)× 1.051 0.66 26.67 28.29

Mixed forests

DBH/cm exp(0.615 + 0.012 ln hcv − 0.331 ln h75 + 0.5901 ln d1 − 1.911 ln Oligo)× 1.008 0.55 ** 1.58 11.34
hLorey/m exp(0.089− 0.136 ln h50 + 0.295 ln d1 + 1.043 ln Empty− 0.969 ln β1)× 1.002 0.84 *** 0.55 5.13
N/(ha−1) exp(8.121 + 0.135 ln d1 + 1.246 ln Oligo + 0.120 ln α1 + 4.921 ln β1)× 1.029 0.50 *** 319.05 22.28

G/(m2·ha−1) exp(−0.179− 0.069hkurtosis + 0.361 ln h25 − 1.140 ln h95 + 1.927 ln Empty)× 1.009 0.56 ** 2.77 11.56
V/(m3·ha−1) exp(0.201− 0.463h75 − 0.502 ln Oligo + 0.845 ln Empty + 2.343 lnα1)× 1.018 0.71 *** 15.87 12.02

AGB/(Mg·ha−1) exp(0.519 + 0.630 ln h95 + 1.113 ln d3 + 0.073 ln CC2m + 1.788 ln Oligo)× 1.009 0.79 *** 10.89 12.19

Notes: Level of significance: NS = not significant (>0.05); ** <0.01; *** <0.001.
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