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Abstract: In order to improve the forecasting ability of numerical models, a sequential data 
assimilation scheme, nudging, was applied to blend remotely sensing high-frequency (HF) radar 
surface currents with results from a three-dimensional numerical, EFDC (Environmental Fluid 
Dynamics Code) model. For the first time, this research presents the most appropriate nudging 
parameters, which were determined from sensitivity experiments. To examine the influence of data 
assimilation cycle lengths on forecasts and to extend forecasting improvements, the duration of 
data assimilation cycles was studied through assimilating linearly interpolated temporal radar 
data. Data assimilation nudging parameters have not been previously analyzed. Assimilation of 
HF radar measurements at each model computational timestep outperformed those assimilation 
models using longer data assimilation cycle lengths; root-mean-square error (RMSE) values of both 
surface velocity components during a 12 h model forecasting period indicated that surface flow 
fields were significantly improved when implementing nudging assimilation at each model 
computational timestep. The Data Assimilation Skill Score (DASS) technique was used to 
quantitatively evaluate forecast improvements. The averaged values of DASS over the data 
assimilation domain were 26% and 33% for east–west and north–south velocity components, 
respectively, over the half-day forecasting period. Correlation of Averaged Kinetic Energy (AKE) 
was improved by more than 10% in the best data assimilation model. Time series of velocity 
components and surface flow fields were presented to illustrate the improvement resulting from 
data assimilation application over time.  

Keywords: remote sensing; nudging; data assimilation; surface currents; CODAR; forecasting; 
hindcasting; Galway Bay; radars 

 

1. Introduction 

Accurate forecasting of surface currents in coastal areas is of great importance for operations 
such as search and rescue, fishing, and pollution monitoring. There are generally three main 
approaches to determine dynamic processes of coastal waters: observations, scaled physical 
modelling, and numerical modelling. Each of these provides meaningful information to analyze 
dynamic processes of relevant phenomena. However, each approach has its own constraints and 
shortcomings. Observations based on remote sensing are a desirable way to obtain data of real 
states, but they are usually expensive. Moreover, observation biases from observers or measurement 
tools can reduce the reliability of recorded data. Scaled physical experimentation is a useful way to 
investigate variations of dynamic processes, but such experiments are usually time-consuming and 
expensive to perform. In addition, limitations exist when extrapolating data obtained from a scaled 
model to a prototype, such as scaling, friction, and viscosity; experimental errors are also inevitable. 
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Accurate definition of initial conditions, boundary conditions, constitutive relations, and external 
forcing, among others, is not easy in numerical modelling. Since changing processes of dynamics of 
interest in nature are continuous and complex, the artificial definition of temporal and spatial 
resolution overly simplifies internal processes in numerical models. Some assumptions and 
approximations can also cause significant errors in numerical models. With the development of 
advanced measuring techniques, such as radar and satellite, based on remote sensing technologies, 
significant hydrodynamic data can now be obtained for coastal waters. Although accurate numerical 
modelling is difficult to set up, it is an efficient and powerful tool to inform about dynamic processes 
due to its low cost and easy operation, compared with observations and scaled physical 
experiments. Additionally, numerical models can produce forecast information at a relatively low 
cost, once a model is established.  

In order to best utilize the above methods for improved simulation (both hindcasting and 
forecasting), a blending of useful and reliable information from measurements, and physical 
experiments with numerical model results, has been broadly developed. This blending process, 
called data assimilation, has been applied in atmospheric modelling for a few decades, and currently 
is becoming more widely used in oceanography, due to increased monitoring of oceanic data in 
space and time. There are two main types of data assimilation schemes: sequential and variational 
[1,2]. The analysis equation of a sequential data assimilation scheme is obtained by a linear 
combination of measurement states and model background states, such as nudging, optimum 
interpolation (OI) and Ensemble Kalman Filter (EnKF) [3–5]. The analysis equation of a variational 
data assimilation scheme is derived by minimizing a cost function, which is made up of two terms: 
one is the distance between the analysis states and the model background states; the other is the 
distance between the analysis states and the observation states [6]. Three-dimensional variational 
(3D-VAR) data assimilation and four-dimensional variational (4D-VAR) data assimilation are 
examples of advanced variational data assimilation solvers [7–11].  

Sequential data assimilation algorithms, such as nudging and OI, are now being employed in 
oceanography to synthesize measurements into models. A number of researchers previously 
assimilated HF radar data to improve the surface currents model forecasts using sequential data 
assimilation schemes. Paduan and Shulman [12] assimilated HF radar data into a model of Monterey 
Bay via correcting wind forcing based on physical principle, i.e., conservation of energy or Ekman 
theory. They found that a significant improvement in the correction between the model and 
observed subsurface current was achieved when an Ekman-layer projection of the correction was 
included. Ren et al. [13] also used a similar data assimilation approach to correct the wind stress in a 
three-dimensional model for Galway Bay using the HF radar surface currents. Results indicated that 
both velocity components were considerably improved during the forecasting period. Their results 
showed that improvements of root-mean-square error (RMSE) for direction of surface flow fields 
were significant. Barth et al. [14] assimilated HF radar currents in a West Florida Shelf (WFS) model 
based on the Regional Ocean Model System (ROMS) using Kalman Filter theory. Error covariances 
were estimated from an ensemble simulation of the WFS model results, using different wind forcing. 
Results of the WFS model assimilating HF radar currents showed an improvement of the model 
current results, not only at the surface but also at depth. Breivik and Satra [15] developed a real-time 
system assimilating HF radar currents into their model with an improved OI scheme. Spatial 
covariance, derived from their ocean model, was used instead of simplified mathematical 
formulations. Results showed that both analyses and forecasts outperformed results from a model 
not using data assimilation (“free run”). However, the six-hour forecast from the assimilation model 
was only marginally better than the “free run”. They also found that the relatively weak 
cross-correlations observed between modelled results and the hydrography discouraged the use of 
an OI approach.  

Weighting factors in nudging algorithms are analytically prescribed, rather than obtained from 
covariances; model background error covariance and measure error covariance are not required. 
Hence, the nudging data assimilation technique is becoming a popular approach in assimilating 
oceanic measurements into models, due to its easy implementation and low computational cost.  
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Fan et al. [16] assimilated drifter and satellite data into a circulation model with a nudging 
algorithm for the Northeastern Gulf of Mexico. They compared the results from models with and 
without data assimilation. Comparisons of the modeled currents with moored data on the West 
Florida Shelf showed that data assimilation improved modelling performance. Fan, Oey, and 
Hamilton [16], found that drifter position errors ranged from 30–80 km with a mean of about 60 km 
over 10-day periods, which were comparable to errors obtained by Castellari et al. [17]. 

Lin et al. [18] also applied a nudging data assimilation scheme to quantify the accuracy of 
currents in an eddy-rich ocean environment, using altimetry sea-surface height anomaly (SSHA) and 
surface drifter data. Their results showed that combined altimetry SSHA and drifter analysis 
consistently outperformed analyses in which altimetry sea-surface height anomaly alone was 
assimilated. In particular, they found that assimilation of drifter data can generate small-scale eddies 
that were generally not resolved by satellite data. Additionally, employment of data assimilation 
techniques for shelf study over the deep ocean region can result in better boundary conditions for 
shelf hydrodynamic models. 

Gopalakrishnan and Blumberg [5] also assimilated HF radar data into an estuarine and coastal 
ocean circulation model using a nudging data assimilation algorithm. They introduced a nudging 
parameter into the equations of motion which affected the model dynamics. The HF radar data were 
imparted to neighboring grid points via model dynamics. The impacts of the data assimilation 
undertaken were analyzed by running models, with and without data assimilation. Data 
Assimilation Skill Score (DASS) based on mean-square error (MSE) was computed to assess the 
improvement of forecasting with nudging data assimilation algorithm in their research. Their results 
showed that the nudging data assimilation scheme was robust and efficient for assimilating the HF 
radar data into a three-dimensional operational forecasting model. The value of DASS was 18% and 
7% for east–west and north–south surface velocity components, respectively, during a one-day 
forecasting period. This indicated that assimilation of HF radar data with a nudging scheme 
significantly enhanced both velocity components during the forecasting period, and was a simple 
yet promising approach to improve model performance. 

Available observation data are an essential component when establishing a data assimilation 
system. A Coastal Ocean Dynamics Applications Radar (CODAR) system has been deployed in 
Galway Bay located at the west coast of Ireland, since 2011. High density surface currents in this area 
are captured hourly by this system. Variations in surface currents in Galway Bay area are mainly 
wind-induced [19,20]. Consistent offshore wind records are difficult to obtain, and model errors for 
this area mainly result from inaccurate wind forcing data.  

In this paper, in order to investigate the surface flow fields for the wind-dominated domain and 
to improve modelling capability for both hindcasting and forecasting, the nudging data assimilation 
algorithm was applied to combine HF radar surface velocity components within a three-dimensional 
numerical model. Nudging data assimilation relies on a few empirical parameters, and no research 
has been performed to date investigating changes in the nudging parameters on the sensitivity of 
data assimilation results. This was investigated here, and was an important and novel contribution. 
Firstly, nudging parameters were examined through assimilating hourly radar data into models. 
Appropriate nudging parameters were selected based on obtaining minimum RMSE values of 
surface velocity component(s) between model analysis states and radar observations. Secondly, 
sensitivity tests on data assimilation cycle length were performed to improve modelling accuracy 
based on properties of radar data. Results of data assimilation models with different cycle lengths 
were compared and assessed based on skill scores: DASS, Averaged Kinetic Energy (AKE), visual 
display of time series, and surface flow fields. The best data assimilation model using nudging 
algorithm for Galway Bay, was then chosen based on a comprehensive assessment. 

An outline of the reminder of this paper is: Section 2 gives a brief description about the Galway 
Bay HF radar system, the numerical model developed, and the nudging data assimilation algorithm. 
Sensitivity experiments of nudging parameters and data assimilation cycle lengths are described in 
detail in Section 3, followed by results from the nudging data assimilation models in Section 4. A 
discussion is presented in Section 5, and conclusions are presented in Section 6.  
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2. Methodologies 

2.1. High Frequency Radar System 

Remote sensing is a technology to obtain information about objects or areas from a distance, 
usually based on radars, aircraft, or satellites. Remote sensing observations have a wide range of 
coastal applications, such as monitor ocean circulation and current systems, sea ice tracking, and 
mapping of coastal features. Ocean data collected by remote sensing can be used to better 
understand the oceans, to provide knowledge to best manage ocean resources, and to provide 
useful, accurate information for commercial and recreational applications. CODAR is a land-based 
HF remotely sensing radar system which measures the near-surface ocean currents in a coastal area 
with fine temporal and spatial resolutions. One such system, consisting of two radar masts, was 
deployed on Galway Bay (see Figure 1) in 2011. This system is capable of monitoring the surface 
currents and wave parameters over most of inner Galway Bay. Measurements obtained from the 
CODAR system are in near real time. When a radar signal scatters off a wave whose wave length is 
exactly equal to half of the transmitted signal wavelength, the radar signal can return measurement 
information to the radar receiver [21–23]. A single HF radar station determines radial components of 
surface currents toward and away from that station. Total surface currents are computed and 
displayed as vector fields, by combining the radial surface current velocity components from two or 
more different masts [24,25]. 

Shulman and Paduan [26] assimilated 33-h low-pass-filtered radar data and unfiltered radar 
data into a model for the Monterey Bay area using OI; they found good agreement with moored 
current observations. Moreover, they assimilated radial and total surface currents separately. 
Results indicated that assimilation of radial surface currents extended the range of influence of the 
data into regions covered by only one HF radar site. Since the authors focused on enhancing the 
surface flow fields in the whole inner Galway Bay area, the unfiltered total vector fields with larger 
spatial coverage were employed to build a data assimilation forecasting system using nudging data 
assimilation technique in this work. 

The CODAR system provides rich datasets in time and space. They can be used to explore the 
dynamical process of surface currents, to implement data assimilation and to validate numerical 
models [27–29]. The temporal and spatial resolutions of surface currents in the Galway Bay domain 
are sixty minutes and 300 m, respectively. The operating frequency of both radar stations in Galway 
Bay at C1 and C2, as shown in Figure 1, is 25 MHz. Advantages of remote sensing CODAR system 
over the conventional techniques include: synoptic coverage, repeated observations and high 
temporal and spatial resolution.  

 
Figure 1. Deployment of HF radar system in Galway Bay (C1 indicates the HF radar on Mutton 
Island; C2 indicates the HF radar located near Spiddal; A indicates a reference point for analysis). 
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Although data transfer delay usually exists when processing radar results, it is less than one 
hour in the case of the Galway Bay CODAR system. In addition, radar data were not assimilated 
into models during forecasting periods. Once the data assimilation model was developed, the 
model can be employed to produce actual forecasts.  

Measurements of surface currents in Galway Bay have been validated with independent 
observations from Acoustic Doppler Current Profile (ADCP) by O’Donncha et al. [20], and Ren et al. 
[13].  

2.2. Numerical Model 

The numerical model, EFDC, was used to simulate the hydrodynamic circulation of Galway 
Bay. EFDC was developed at the Virginia Institute of Marine Science by the U.S. Environmental 
Protection Agency (EPA). It comprises four linked modules: hydrodynamic, water quality and 
eutrophication, sediment transport, and toxic chemical transport and fate. Only the hydrodynamic 
module was used during this research. This module solves the three-dimensional, vertically 
hydrostatic, free surface, turbulent averaged equations of motion for a variable density fluid. The 
hydrodynamic component of EFDC uses a semi-implicit, conservative finite volume solution scheme 
for the hydrostatic primitive equations, with either two or three level timestepping [30–32]. The 
model uses a sigma vertical coordinate system, and either regular, or curvilinear orthogonal 
horizontal coordinates. The model had been applied to a variety of modelling studies of rivers, lakes, 
estuaries, and coastal regions [33–35]. 

The dynamics within Galway Bay are dominated by oceanic flows into the bay from the 
Atlantic shelf and wind driven currents. Oceanic flows enter and exit the bay mainly through the 
sounds around the Aran Islands. Meteorological parameters are strongly affected by the Atlantic 
weather system [36]. The main wind direction in this area is southwest [37]. In this research, a 
barotropic model of Galway Bay (see Figure 1) was developed using a regular grid coordinate 
system; a 150 m horizontal spatial resolution was employed, yielding 380 × 241 grid cells. Variable 
vertical layer thicknesses were used in the model, with a thinner layer at the top and bottom of the 
water column, and thicker layers in the middle, thereby ensuring that wind forcing was not 
overly-damped by tidal forcing. A detailed description on setting up vertical layer structure for the 
Galway Bay can be found in the study by Ren et al. [38]. The meteorological forcing data (wind, 
pressure, rain, solar radiation, and relative humidity) were obtained at one minute intervals from the 
Informatics Research Unit for Sustainable Engineering (IRUSE) weather station located at the 
campus of National University of Ireland, Galway. Records of the River Corrib inflows, which enter 
Galway Bay close to the north of point C1 in Figure 1, were obtained from the Irish Office of Public 
Works (OPW). Tidal water elevation time series generated from Oregon State University Tidal 
Inversion Software (OTIS) were used to define the tidal forcing on the western and southern open 
boundaries (see Figure 1) in the model [39,40]. 

The simulation period was from Julian Day 211 to 230 in 2013; this period was subdivided as 
follows: (i) spin-up period, Julian Day 211–220; (ii) data assimilation period, Julian Day 220–228 
01:00; (iii) forecasting period, after Julian Day 228 01:00. During this simulation period, the 
measured radar data have high density in time and space. 

2.3. Data Assimilation 

Nudging is a sequential data assimilation algorithm that combines model background states 
with measurement states in a linear formula. Model background states were calculated from surface 
velocity components from the EFDC model. A nudging term was introduced into the equations of 
motion using the difference between model background states and observation states [5]. The 
analysis equation has been conceptually expressed as [41]: ∂U∂t = (physics) + λ(U − U) (1) 
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where U is the model background states; U  is the observation states from radars; λ is the nudging 
parameter; (physics) denotes the physical process mathematically described in the numerical model.  

The nudging parameter is defined in the following empirical equation [41]: 

λ = 1t × e × e ( ) × e  (2) 

Where r is the distance between model grid point and the observation data location; (t − t )	 is the 
difference between assimilation and observation time; t 	  is an assimilation timescale, which 
determines the strength of the nudging parameter; t 	 is a damping time scale for the nudging term; R  is a nudging length scale; e 	 is the exponential decay parameter, which controls the depth of 
influence of the nudging parameter; z	 is the water depth (m); z 	 is the depth of influence (m). 

Nudging algorithms are approximations of the OI data assimilation scheme; the main 
differences lie in that the Kalman gain used in the OI algorithm is substituted by the nudging 
parameter	λ. 

In this research, surface currents measured by the HF radar system were assimilated into the 
EFDC model using the nudging data assimilation algorithm. Houser et al. [42] found that better 
results were obtained through nudging towards a gridded analysis using spatially interpolated 
precipitation data into a hydrologic model, compared to others. Rusu and Guedes Soares [43] found 
that the accuracy of predictions was enhanced as the amount of the data assimilated increased. 
Moreover, in order to ensure consistency between model background states and measurements in 
space during the data assimilation process, nudging towards a gridded analysis presented by 
Stauffer and Seaman [44] was applied in this research through spatially bilinearly interpolating 
radar data onto model grid points. Because the spatially interpolated HF radar measurements were 
collocated with the model grid point and were linearly interpolated over time to every assimilation 

timestep, e = 1  and 	e ( ) = 1 . e = 1	  indicated that the model grid and the 

observational location remained the same, and e ( ) = 1	 indicated that there was no time-lag 
between the model simulation and measurements. Thus, the nudging parameter λ can be simplified 
to: λ = 1t × e  (3) 

The nudging parameter λ	was set to zero at all grid points where HF radar observations were 
not available. The above expression of nudging parameter, λ, was used by Gopalakrishnan and 
Blumberg [5]. 

2.4. Implementation of Data Assimilation 

A complete data assimilation system is comprised of three parts: a numerical model, a data 
assimilation algorithm, and observational data sets. Since the authors focused on simulating the 
surface currents in Galway Bay, in this research, a subroutine including a nudging data assimilation 
algorithm was encoded and combined into the EFDC model. 

Since surface current vectors are the parameters of primary interest, an overview of the 
procedure for calculating surface currents in EFDC is shown in Figure 2. 

 
Figure 2. Flowchart of EFDC model (shaded boxes indicate the calculation process for the 
hydrodynamic variables of interest for data assimilation). 
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Updating of surface flow fields via assimilating radar data using nudging data assimilation was 
carried out during the process of solving the hydrodynamic equations. HDMT.FOR is the main 
routine in EFDC used to calculate surface currents, so the assimilation process of radar 
measurements was incorporated into this routine. However, the hydrodynamic computation within 
EFDC is quite complex. In order to better show the updating of the surface velocity vectors via 
assimilating the radar data in the model, the hydrodynamic and mass transport calculation 
processes in the HDMT.FOR routine was extended and details are presented in Figure 3. 

 
Figure 3. Flowchart of data assimilation in main program HDMT.FOR of EFDC (shaded part 
indicates new subroutine for data assimilation). 

Figure 3 shows general computing process for simulating surface velocity vector in the main 
program HDTM.FOR. To assimilate the measured surface current data into the model, the shaded 
subroutine, as shown in Figure 3, was added. Implementation of the data assimilation procedure is 
presented in Figure 4. 

Interpolation of radar data (step 1) and calculation of weight factor (λ) (step 2) were conducted 
before undertaking data assimilation. Updating of model background states was carried out at each 
assimilation timestep.  
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Figure 4. Flow chart of implementing a nudging algorithm in EFDC model 

3. Sensitivity Experiments 

In order to develop a good data assimilation forecasting model for the Galway Bay domain 
using the HF radar data, the procedure can be described as a twofold process: firstly, appropriate 
nudging parameters (assimilation time scale t 	 and the depth of influence 	z 	) were examined, and 
appropriate values defined based on RMSE values between surface currents and HF radar data 
during the hindcasting period. Secondly, sensitivity tests of model forecasts of data assimilation 
cycle lengths’ influence were undertaken. The authors are not aware of any other such sensitivity 
analyses that had been carried out to improve model forecasts using nudging data assimilation 
technique.  

3.1. Tests of Nudging Parameters 

In order to produce satisfactory results when measurements were assimilated into models 
using the nudging algorithm, different researchers have used different values of the nudging 
parameters. For example, Fan et al. [16] set the assimilation scale t = 675	s	 and the depth of 
influence of data assimilation as 	z = 10	m when assimilating drift and satellite data. Lin et al. [18] 
used the same values of nudging parameters as Fan et al. [16] in their data assimilation system; 
Gopalakrishnan and Blumberg [5] set values at 1800 s and 2 m, respectively. In this research, 
assimilation scale and depth of influence were optimized based on more than twenty representative 
numerical experiments, as presented in Table 1. This was the first time sensitivity analysis had been 
performed on the parameters of a nudging data assimilation algorithm using radar data. Twenty 
versions of data assimilation models were run using different values for the nudging parameters. 
The radar surface currents were assimilated hourly into these test models. Model NDA0, the “free 
run” with no data assimilated into this model, was used as a benchmark for comparisons.  

RMSE between the radar data and the model results were calculated using Equations (4) and 
(6). RMSE of surface velocity east–west components (u) was firstly calculated with Equations (4) and 
(5), which average the values of RMSE in space and time; the same equations were used for 
north–south surface velocity components (v); and the total RMSE	(u, v) was finally computed using 
Equation (6). RMSE	(u, v) was used to assess the degree of agreement between modeled results and 
the HF radar data. 

RMSE (u) = ∑ (u (i) − u (i))N  (4) 
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RMSE(u) = ∑ RMSE (u)N  (5) 

RMSE(u, v) = RMSE(u) + RMSE(v)  (6) 

where u 	 is the CODAR HF radar measured surface velocity east–west component (cm/s); u  is the modelled surface velocity east–west component (cm/s); RMSE (u) is the RMSE of 
east–west velocity component in space covered by the high frequency radar system at timestep	j 
(cm/s); N  is the number of times using Equation (4); N  is the number of calculation points at 
timestep j; RMSE(u) is the averaged value of east–west velocity component in space during the data 
assimilation period (cm/s).  

Values of 	RMSE(u), RMSE(v) and RMSE(u, v) over the data assimilation period are presented 
in Table 1. 

Table 1. Nudging Data Assimilation Test Models. 

Model Zd (m) Ta (s) RMSE (u, cm/s) RMSE (v, cm/s) RMSE (u, v, cm/s) 
NDA0 - - 8.71 7.70 11.62 
NDA1 3 1200 79.61 67.79 104.56 
NDA2 4 1200 8.13 7.13 10.81 
NDA3 5 1200 8.11 7.15 10.81 
NDA4 6 1200 8.44 7.45 11.26 
NDA5 3 1500 63.26 53.93 83.13 
NDA6 4 1500 7.88 6.92 10.48 
NDA7 5 1500 8.22 7.25 10.96 
NDA8 6 1500 8.50 7.50 11.33 
NDA9 3 1800 52.43 44.69 68.89 

NDA10 4 1800 7.80 6.86 10.39 
NDA11 5 1800 8.29 7.31 11.06 
NDA12 6 1800 8.53 7.53 11.38 
NDA13 3 2100 44.71 38.14 58.77 
NDA14 4 2100 7.81 6.86 10.40 
NDA15 5 2100 8.35 7.37 11.14 
NDA16 6 2100 8.55 7.56 11.41 
NDA17 3 2400 38.97 33.26 51.24 
NDA18 4 2400 7.84 6.90 10.44 
NDA19 5 2400 9.39 7.40 11.96 
NDA20 6 2400 8.57 7.57 11.43 z  indicates depth of influence; t  is assimilation scale. 

Typical variations of the RMSE values in models are presented in Table 1. Other models were 
examined by the authors as well, but the difference of RMSE values was very small when z 	 was 
greater than 4 m. Averaged RMSE(u, v) between the nudging data assimilation test models, and the 
HF radar measurements over the data assimilation period, as shown in Table 1, indicated that model 
results were more sensitive to depth of influence z 	, than the assimilation time scale 	t . Table 1 
shows that model NDA10, having the minimum RMSE(u, v) of 10.39 cm/s, generated the best 
forecast results. It was assumed that good agreements between measurements and modeled results 
during assimilation period had positive impacts on forecasting. Thus, data assimilation scale t =1800	s	 and depth of influence of data assimilation as 	z = 4	m were taken as the best nudging 
parameters.  

To examine the performance of models using the nudging data assimilation algorithm, surface 
flow fields over the data assimilation period from four representative assimilation models presented 
in Table 1 were compared with model NDA0 and the radar data in Figure 5. 
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(a) (b)

(c) (d)

(e) (f)

Figure 5. Mean surface flow fields during Julian Day 220–228 01:00 ((a) is averaged flow field from 
model NDA0, (b–e) are averaged flow fields from model NDA9-NDA12, respectively; (f) is averaged 
flow field of radar data). 

Figure 5 shows that results from a representative model NDA9 (see Figure 5b) significantly 
deviated from the HF radar observations; similar deviation occurred when z  is less than 3m. This 
indicated that inappropriate nudging parameters lead to model deviation or even instability. 
Patterns of surface flow fields in model NDA0, NDA11, and NDA12 were quite similar. Based on 
averaged surface flow fields during assimilation period, model NDA10 (Figure 5c) can yield closer 
results to radar data (Figure 5f). In the following studies, the values t = 1800	s	 and 	z = 4	m 
were used in nudging data assimilation models. 

3.2. Tests of Data Assimilation Cycle Lengths 

The temporal resolution of HF radar measurements for Galway Bay domain is sixty minutes. To 
study the influences of variations in data assimilation cycle lengths on forecasts, and to implement 
shorter updating of model background states, HF radar data were temporally linearly interpolated 
onto intervals less than sixty minutes. The reasons for using temporally interpolated radar data are, 
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firstly, Sun [45] suggested that it was desirable to have rapid update cycles to capture the temporal 
change and to obtain useful information from the model background states. The radar data were not 
regarded as a single snap-shot by Sun [45], but each point in the three-dimensional data volume was 
assimilated at the timestep closest to the measurement time in a sequential scan. Secondly, in 
operational data assimilation forecasting systems, measurements from different resources at 
different timesteps can be assimilated into models. Thus, assimilation intervals in these models do 
not have to be at regular time intervals. Application of the temporally interpolated radar 
measurements is similar to a real forecasting data assimilation case using measurements from 
different sources. Thirdly, frequent updating using temporally interpolated radar data examines 
whether or not the three-dimensional coastal EFDC model is sufficiently robust for developing an 
operational data assimilation model forecasting system. Finally, since hourly output of surface 
current vectors were obtained by averaging/merging data over a specified time period in the 
CODAR radar monitoring system, temporal linear interpolation of the output data was somewhat 
analogous to an inverse process, which conveyed the averaged information to successive timesteps 
over the measurement period [46]. Linearly interpolated surface velocity data over short periods 
were assumed to more accurately describe the dynamics of the surface currents. 

Since the ultimate goal of using data assimilation techniques was to enhance model 
performance through optimizing the integration of the measured data, the idea of using linearly 
interpolated measurements in time, to frequently update the model background states, was a 
numerical experiment designed to assess the accuracy of forecasted states. Additionally, Ren et al. 
[47] used constant pseudo measurements to test the influence of data assimilation cycle lengths in 
the same domain. The results showed that improved surface current forecasting resulted from the 
assimilation model using shorter updating intervals. It was the first time that linearly interpolated 
coastal HF surface currents were assimilated into a model to examine modelling performance. 
Temporal interpolation of radar data was implemented at each observational point where two 
successive hourly radar measurements were available. Here, five versions of the nudging data 
assimilation model were developed to assimilate temporally interpolated radar data with different 
data assimilation cycle lengths: (a) each model computational timestep (MS), (b) one minute, (c) five 
minutes, (d) fifteen minutes, and (e) sixty minutes. RMSE values were computed and averaged 
during the +12 h forecasting period (02:00–13:00 Julian Day 228) using Equations (4) and (6). Detailed 
description of these nudging data assimilation models is given in Table 2. All of the cycle length test 
models had the same initial and boundary conditions as model NDA10. 

Table 2. Nudging Cycle Length Test Models (+12 h forecasting). 

Model NDA0 NDA21 DA22 NDA23 NDA24 NDA10 
Cycle Length (minutes) - MS * 1 5 15 60 

RMSE (u, cm/s) 8.2131 7.3618 8.2189 8.2087 8.2138 8.2054 
RMSE (v, cm/s) 6.0902 5.2062 6.1026 6.093 6.0938 6.0956 

RMSE (u, v, cm/s) 10.2247 9.0167 10.2368 10.2229 10.2275 10.2218 
* Note that MS indicates assimilation was performed at each model computational timestep. 

Table 2 shows that model NDA21, which updated the model background states at each model 
computational timestep using the temporally interpolated radar data, showed significant 
improvements during forecasting period compared with results from model NDA0. Meanwhile, 
other models updating model background states with longer data assimilation cycle lengths did not 
change much with respect to forecasting performance in models. Values of RMSE for both surface 
velocity components in model NDA21 were less than other models with longer data assimilation 
cycle length. Improvement of averaged RMSE was 10% and 15% for east–west and north–south 
velocity components separately during a 12-h forecasting period, in comparison with model NDA0.  
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4. Forecast Assessments of Assimilation Cycle Lengths 

The above tests showed that assimilating HF radar data at each model computational timestep 
can improve surface flow fields using a nudging algorithm. In order to quantitatively and 
qualitatively compare and assess assimilation model results with the “free run” and radar data, 
mean surface flow fields from assimilation cycle length test models, “free run” and radar data are 
presented in Section 4.1. A statistical assessment method, namely DASS, of each surface flow field 
during a six-hour forecasting period based on MSE, is computed and presented in Section 4.2. 
Section 4.3 presents an analysis of the correlation of AKE between model results and radar data 
over a two-day forecasting period. Time series of both surface velocity components’ forecasts from 
models at one assimilation point are also compared with radar data in Section 4.4. 

4.1. Assessment of Mean Surface Flow Fields 

An implicit assumption when using data assimilation techniques in numerical models was that 
a combination of measured data with model background states will improve modelling 
performance, especially during forecasting periods. In this work, we were interested in enhancing 
the forecasting of surface flow fields in Galway Bay through assimilating the radar data. In order to 
explore improvements using a nudging data assimilation algorithm over the domain during a 
forecast period, averaged surface flow fields during a +12 h forecasting period (start from Julian Day 
228, 2013 02:00) were calculated. All nudging data assimilation models had the same conditions, 
except data assimilation cycle lengths as presented in Table 2. The results are presented in Figure 6, 
comparing different forecasts against radar data. 

Averaged surface flow fields over the half-day forecasting period Julian Day 228 02:00–13:00 
show visually that model NDA21 (Figure 6b), updating at each model computational timestep, 
produced closer surface flow fields to the HF radar data (see Figure 6g). Other nudging models 
(NDA10, NDA22-NDA24) using longer data assimilation cycle lengths did not show significant 
improvements compared with model NDA0 and the radar data. RMSE values of averaged velocity 
components over the half-day forecasting between the radar data and the nudging data assimilation 
models were calculated. RMSE from model NDA21 was smaller than model NDA0. RMSE values 
were 7.36 cm/s and 5.21 cm/s for the east–west and north–south velocity component of model 
NDA21, respectively. Improvement of averaged total RMSE (u, v) was 12% during the half-day 
forecasting, in comparison with the model NDA0. However, there were no distinct improvements 
from the other nudging data assimilation models using longer assimilation cycle lengths.  

In summary, averaged surface flow fields and values of RMSE showed that model NDA21 used 
to update model background states at each model computational timestep significantly improved 
the model forecasting. Thus, temporal linear interpolation was significant and useful in this context. 
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(c) (d)

(e) (f)

(g)

Figure 6. Mean surface flow fields ((a) results from model NDA0; (b–e) results from model 
NDA21-NDA24, respectively; (f) results from model NDA10; (g) radar data). 

4.2. Data Assimilation Skill Score Assessment 

In order to quantitatively and concisely assess the improvements of using nudging data 
assimilation, a DASS based on MSE was firstly calculated over time at every HF radar measurement 
point, and then averaged across the data assimilation domain to evaluate modelling performance. 
The DASS for the north–south component of surface currents can be expressed as [48,49]:  DASS = 1 −MSE(v , v )MSE(v , v )  (7) 

where v 	 and 	v 	 are the north–south velocity component from the model with and without data 
assimilation, respectively; v  is the measured north–south velocity component from the HF 
radar system.  

An analogous version of Equation (7) was also used to calculate DASS  for surface east–west 
velocity component. If DASS is greater than zero, then it indicates that the data assimilation model 
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improved the forecasting compared with model NDA0. If DASS is less than zero, then it means the 
data assimilation contaminated the basic dynamic processes in the model resulting in deterioration 
in model accuracy. The time series of DASS for both surface current components are shown in Figure 
7.  

 
Figure 7. DASS of model NDA21 during 02:00–07:00 Julian Day 228. 

Figure 7 shows that the DASS values for both surface current components were greater than 
zero over a six-hour forecasting period. This indicated that the application of nudging data 
assimilation to combine radar data into EFDC model had positive influences on forecasting. During 
the first three hours (02:00–04:00), DASS  values were larger than DASS . This indicated that data 
assimilation improved the performance of north–south surface velocity component better than 
east–west surface velocity component. However, during the final three hours (05:00–07:00), 
improvement of east–west surface velocity component exceed north–south surface velocity 
component. In general, the range of DASS  was larger than that of DASS ; magnitudes of DASS  
decreased over time, while magnitudes of DASS  increased over the first six hours, and then 
decreased. This was due to that model adaptability in computing east–west surface velocity 
component after implementing data assimilation procedure was different from that of north–south 
surface velocity component. A similar trend of skill score to the DASS  was obtained when 
assessing performance of a sea-ice model after implementing data assimilation by Levy, et al. [50]. 
Moreover, a similar trend of weighted skill score existed in a global weather data assimilation 
system by Clayton et al. [9]. Averaged DASS  in the data assimilation domain during the +6 h 
forecast was 26%; the averaged DASS  was 33%. The analysis indicates that both surface velocity 
components were significantly improved during the +6 h forecasting when using the nudging data 
assimilation algorithm to update the model background states at each model computational 
timestep. 

So, although counterintuitive, it is not unusual for DASS to increase with time during certain 
forecasts. In this case, it is likely that the increase in DASS is due to the relative changes in wind and 
tidal forcing functions.  

4.3. Averaaged Kinetic Energy Assessment 

Assessment of model results based on AKE values is a convenient way to determine 
fundamental correlation between assimilation model results and observations. Breivik and Satra 
[15], and Xu et al. [51], previously applied AKE to assess model results. The spatially averaged AKE 
(E 	) across the study domain was calculated to assess improvements when using nudging data 
assimilation. E 	 was calculated as follows [15,49,52]: E = 1A U ds (8) 
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where A	is the domain covered by the CODAR system; ds is the integral cell area; U	is total surface 
speed.  

Water density is assumed constant, and therefore, it is omitted from Equation (8).  
The AKE from models and observations was computed in the data assimilation domain at each 

model forecasting timestep. Hourly data comprised of 48 points from each dataset over a 2-day 
forecasting period (start from Julian Day 228 02:00) were used for this analysis, which was sufficient 
to ensure the analysis is meaningful. Time series of AKE values were calculated using Equation (8). 
Correlation of AKE between model NDA21 and radar data was improved by 12% in comparison 
with the model NDA0.  

4.4. Assessment of Surface Velocity Components 

To further compare the improvements among models and radar data in time, time series of 
surface velocity components at location A (see Figure 1) from six representative nudging data 
assimilation models are respectively shown in Figures 8 and 9. 

Figures 8 and 9 show significant improvements over time of both velocity components 
appeared in the best data assimilation model NDA21 compared with model NDA0 at point A. Other 
nudging data assimilation models (NDA10, NDA22–NDA24), with longer data assimilation cycle 
lengths, had quite a similar trend to model NDA0 during the forecasting period. Although the trend 
of the north–south velocity component from model NDA21 was different from the radar data 
(shown in Figure 9), its trend was closer to the radar data than results from the other models. 
Moreover, the magnitudes of the north–south velocity component were quite small during the 
analysis period. Because the north–south velocity component was mainly affected by wind forces, 
using constant wind data in time and space in the model may lead to errors. 

 
Figure 8. Time series of east–west velocity component. 
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Figure 9. Time series of north–south velocity component. 

4.5. Assessment of Forecasted Surface Flow Fields 

Although the above mean surface flow fields showed surface flow patterns during a half-day 
period, surface flow fields at a representative forecasting time, 03:00 Julian Day 228, are presented in 
Figure 10, to further illustrate model performance after implementing data assimilation.  

(a) (b)

(c)  

Figure 10. Surface flow fields at 03:00 Julian Day 228 ((a) forecast from the model NDA0; (b) radar 
data; (c) forecast from the model NDA21). 

-30

-10

10

30

228 228.1 228.2 228.3 228.4N
ot

h-
so

ut
h 

co
m

po
ne

nt
 (c

m
/s

)

Time (Julian Day)

v-NDA10 v-NDA24 v-NDA23 v-NDA22

v-NDA0 v-NDA21 v-CODAR

Longitude (degrees)

La
tit
ud
e
(d
eg
re
es
)

99.2
53.1

53.2

53.3

10 cm/s

JulianDay 228, 2013 03:00 (NDA0)

Longitude (degrees)

La
tit
ud
e
(d
eg
re
es
)

99.2
53.1

53.2

53.3

10 cm/s

JulianDay 228, 2013 03:00 (CODAR)

Longitude (degrees)

La
tit
ud
e
(d
eg
re
es
)

99.2
53.1

53.2

53.3
Julian Day 228, 2013 03:00 (NDA21)

10 cm/s



Remote Sens. 2017, 9, 932  17 of 22 

 

The east–west trend of surface currents was stronger in model NDA21 than model NDA0. The 
general trend in model NDA21 was closer to the radar measured flow field. Improvements of vector 
direction of surface currents over the data assimilation domain in model NDA21 were 20% 
compared with model NDA0 at 3:00. This further demonstrated that updating the model 
background states at each model computational timestep, using nudging assimilation algorithm, 
significantly enhanced forecasting of surface flows. 

5. Discussion 

As the difference between observations and model results was weighted using the factor λ in 
the nudging data assimilation technique, and then used to update model background states, the 
complex definition of observation error covariance and model error covariance used in OI and 
4D-VAR techniques was not required. Thus, the application of the nudging algorithm is simpler and 
more efficient than others, such as OI and 4D-VAR data assimilation schemes. This is of great 
importance for a real-time operational data assimilation forecasting model, which requires timely 
prediction information for practical operations, such as search and rescue, and oil spill response. 
Selection of the most appropriate data assimilation algorithm is important when exploring the 
potential for using HF radar data to improve model performance.  

According to a DASS forecast skill score, improvement of velocity component prediction from a 
nudging data assimilation model updating at each model computational timestep, was more 
significant than the assimilation model by Ren et al. [13], which indirectly corrected wind stress 
using HF radar data for the same research domain. Averaged DASS values over six-hour forecasts 
obtained by Ren et al. [13] were 1% and 23% for east–west and north–south velocity components, 
respectively; DASS of 26% and 33% were obtained for velocity east–west and north–south 
components, respectively, in this work, during the same prediction period. Although indirect data 
assimilation via correcting wind stress using HF radar data significantly improved forecasting of 
velocity of the north–south component, the influence of data assimilation on velocity of the 
east–west component was not as good as using a nudging algorithm. This indicated that the 
approach proposed in this work was more suitable for producing accurate patterns of surface flow 
fields for the Galway Bay area. Additionally, Gopalakrishnan and Blumberg [5] used a similar 
nudging data assimilation scheme to combine HF radar data with model background states; 
improvements of forecasted velocity east–west (or north–south) components in this work were more 
significant than their assimilation model results based on DASS values. DASS in Galway Bay for 
velocity east–west (or north–south) component was 26% (33%), in comparison with their values at 
18% (7%). This was because the data assimilation cycle length was small, i.e., at each model 
computational timestep in this work. In short, frequent updating of model background states using a 
nudging algorithm positively constrains circulation of surface flow fields during the forecasting 
period, than those assimilation models with longer data assimilation cycle lengths. 

The best data assimilation model (NDA21) had a much smaller RMSE value than RMSE values 
(range 10~20 cm/s) obtained by Zhao et al. [53] using quasi-ensemble Kalman filter with Canadian 
quick covariance. This may be because hourly radar data were assimilated into models in their work, 
but a shorter data assimilation cycle length was applied herein. It also showed that application of 
quasi-ensemble Kalman filter for assimilating radar data was more challenging than using a 
nudging data assimilation algorithm.  

According to the AKE assessment criteria, improvement of AKE over a 2-day forecasting period 
of 12% in the best nudging data assimilation model in this work, was comparable to the AKE value 
of 16% over a 2-h forecast obtained by Breivik and Satra [15]. However, at 4-h and 6-h forecasts, 
correlation of AKE between radar data and assimilation model significantly decreased from 0.58 to 
0.38 in Breivik and Satra [15]. Multiple assessment criteria showed that developed nudging data 
assimilation updating at each model computational timestep using radar data produced 
comparable, or better results than others. In addition, sensitivity experiments on nudging 
parameters presented in Table 1 indicated that hindcasting results were more sensitive to the 
influence depth than the assimilation time scale. Water depths of the assimilation domain covered 
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by CODAR system ranged from ~5–35 m. To examine model performance at spatial locations with 

different water depths, relationships between depth of influence and the value of e  are presented 
in Table 3. 

Table 3. Relationship between z and λ (zd = 4 m, ta = 1800 s). 

Z (m) (z/zd) Exp (z/zd) λ
5 1.25 3.49 0.00 

15 3.75 42.52 0.02 
20 5.00 148.41 0.08 
25 6.25 518.01 0.29 
30 7.50 1808.04 1.00 
35 8.75 6310.69 3.51 

Table 3 shows that the nudging weighing factor, λ, is equal to 1 when water depth is 30 m. 
Magnitudes of the nudging weighing factor, λ, had the same trend as water depth varies. Significant 
deviations in Figure 5b existed at some points, due to incorrectly assimilating the increment (U −U) to model background states using Equation (1). Exploration of the sensitivity of influence depth 
over a domain needs to be carried out in future research. 

As presented in Table 2, value of the nudging parameter λ, determined by z, z 	, and t , was 
different at each model grid. The nudging parameter λ had similar trends relative to z and z , 
when t  was set different values. In order to further investigate relationships among them, an 
example as t = 1800	s is shown in Figure 11. To clearly show the main variation range of λ 
relative to z, z 	 and t , only parts of plots were shown in Figure 11. The larger the value of z, then 
the larger λ was, given a fixed value of z . It indicated that those points with deeper water depth 
were nudging to a larger extent. This lead to significant deviation of analysis states from radar data. 
Use of varying z  in space can deal with overly nudging at those points, with deeper water depth z.	Moreover, amount of λ, whose value was greater than 10, increased as z  decreased. It indicated 
that z  needed to be large enough, such as 4 m, as in this work. This can ensure that model 
background states at fewer points were overly nudged than those when z  was smaller. Thus, 
presented sensitivity experiments in this work were a must for other cases when using similar 
nudging data assimilation algorithms.  

 

Figure 11. Relationship among nudging parameters. 

In addition, models using the same parameters as in model NDA9, NDA11, and NDA12, were 
performed to assimilate the interpolated radar data at each model computational timestep. On the 
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radar data during a 12 h forecasting period, the model using the same nudging parameters as in 
model NDA9 to assimilate radar data at each model computational timestep overly nudged the 
analysis states, leading to model instability, and forecasting was significantly larger than radar data. 
Models using the same nudging parameters as in model NDA11 and NDA12 were developed to 
assimilate the interpolated radar data at each model computational timestep, respectively. Results 
from these models were quite similar to outputs from the best model NDA21, but model NDA21 
was slightly better than others, in terms of RMSE values between model outputs and radar data 
during a 12 h forecasting period. Experiments performed in this work indicated that the same 
nudging parameters can be used to develop nudging data assimilation models with different cycle 
lengths.  

6. Conclusions 

Real-time remotely sensing HF radar measurements were blended into a numerical model 
EFDC using a nudging data assimilation algorithm. The most appropriate nudging parameters were 
determined based on obtaining minimum RMSE values between modeled results and radar data 
during a data assimilation period with hourly assimilation. Assimilation of the remotely sensing 
radar data at each model computational timestep resulted in a good forecasting performance 
compared with a “free run” model and models with longer data assimilation cycle lengths. The main 
conclusions from the research are: 

(1) Sensitivity tests performed on the nudging data assimilation parameters suggest that an 
influence depth of 4 m and an assimilation timescale of 1800 s were the suitable values for 
developing the data assimilation system for Galway Bay based on RMSE analysis during a 
hindcasting period. Further analysis indicated that surface flow fields were more sensitive to 
the depth of influence than the assimilation time scale. This is the first study that has 
investigated the effects of the system parameters on results, and to provide guidance for future 
application of this algorithm. 

(2) The research showed that modelling performance was also quite sensitive to data assimilation 
cycle lengths. Assimilation of radar data at each model computational timestep significantly 
improved model forecasting in comparison with using longer data assimilation cycle lengths. 
The RMSE of the averaged velocity components over a half-day forecasting period between the 
radar data and the best nudging data assimilation model was smaller than model forecasts 
using longer cycle lengths. The averaged east–west and north–south velocity components from 
the best model (NDA21) were improved by 10% and 15%, compared with the “free run”, 
respectively. However, there were no distinct improvements in RMSE between the other 
models with longer data assimilation cycle lengths. The results presented herein demonstrated 
better performance than all other published results in investigating this area. Additionally, 
results indicated that the same nudging assimilation parameters can be used for models with 
different cycle lengths. 

(3) The calculation of surface flow fields were enhanced during the forecasting period when data 
assimilation was employed at each model computational timestep. Surface flow fields from 
other assimilation models with longer cycle lengths did not significantly improve compared 
with model NDA0. This was the first time such a sensitivity analysis was performed.  

(4) The values of DASS generated during this research proved that model NDA21 improved model 
performance by 26% and 33% for east–west and north–south velocity components, respectively, 
during a +6 h forecasting period for Galway Bay; these were significant improvements. 

(5) Analysis of AKE further proved that updating model background states at each model 
computational timestep resulted in forecasting improvements. Correlation of AKE between the 
best nudging data assimilation model NDA21 and the radar data was improved by 12% 
compared with model NDA0 over a two-day forecasting. The improvement, herein, was 
comparable with other studies.  

(6) Time series graphs at a location within Galway Bay showed that implementation of data 
assimilation at each model step using interpolated radar data greatly enhanced both surface 
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velocity components during forecasting period, especially for the north–south surface velocity 
component. Results from other assimilation models with longer data assimilation cycle lengths 
did not generate distinct improvements on the model forecasts; they followed the same trend as 
the “free run”. 

(7) Surface flow fields at a representative measurement timestep, 03:00 Julian Day 228, show that 
the best assimilation model produced significantly better surface flow circulation through the 
domain than the “free run” did. Improvements of vector directions in the domain were in the 
order of 20% at this time, compared with the “free run”. 

In summary, the assimilation of remotely sensed HF radar data using a nudging algorithm is a 
powerful tool for improving model performance. For the first time, this research presented evidence 
of the effects of changes in nudging parameters and data assimilation cycle lengths on 
hydrodynamic forecasting, when applying this algorithm. The nudging algorithm has been shown 
to be particularly useful when updating is applied at each model computational timestep. 
Significant improvements in forecasting can last more than six hours after data assimilation; these 
forecasts can provide useful information for a variety of applications, such as search and rescue and 
oil spill operations. Sensitivity analysis, as described above, should be carried out for site specific 
models when using remotely sensed data. In order to explore effects of assimilation with high 
temporal model updating and to further enhance modelling performance, non-linear interpolated 
temporal radar data will be conducted in future work. 
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