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Abstract: Across Eastern Africa, croplands cover 45 million ha. The regional economy is heavily
dependent on small holder traditional rain-fed peasant agriculture (up to 90%), which is vulnerable to
extreme weather events such as drought and floods that leads to food insecurity. Agricultural
production in the region is moisture limited. Weather station data are scarce and access is
limited, while optical satellite data are obscured by heavy clouds limiting their value to study
cropland dynamics. Here, we characterized cropland dynamics in Eastern Africa for 2003–2015
using precipitation data from Tropical Rainfall Measuring Mission (TRMM) and a passive microwave
dataset of land surface variables that blends data from the Advanced Microwave Scanning Radiometer
(AMSR) on the Earth Observing System (AMSR-E) from 2002 to 2011 with data from AMSR2
from 2012 to 2015 with a Chinese microwave radiometer to fill the gap. These time series were
analyzed in terms of either cumulative precipitable water vapor-days (CVDs) or cumulative actual
evapotranspiration-days (CETaDs), rather than as days of the year. Time series of the land surface
variables displayed unimodal seasonality at study sites in Ethiopia and South Sudan, in contrast to
bimodality at sites in Tanzania. Interannual moisture variability was at its highest at the beginning
of the growing season affecting planting times of crops, while it was lowest at the time of peak
moisture. Actual evapotranspiration (ETa) from the simple surface energy balance (SSEB) model
was sensitive to track both unimodal and bimodal rainfall patterns. ETa as a function of CETaD was
better fitted by a quadratic model (r2 > 0.8) than precipitable water vapor was by CVDs (r2 > 0.6).
Moisture time to peak (MTP) for the land surface variables showed strong, logical correspondence
among variables (r2 > 0.73). Land surface parameters responded to El Niño-Southern Oscillation
and the Indian Ocean Dipole forcings. Area under the curve of the diel difference in vegetation
optical depth showed correspondence to crop production and yield data collected by local offices,
but not to the data reported at the national scale. A long-term seasonal Mann–Kendall rainfall trend
showed a significant decrease for Ethiopia, while the decrement was not significant for Tanzania.
While there is significant potential for passive microwave data to augment cropland status and food
security monitoring efforts in the region, more research is needed before these data can be used in an
operational environment.

Keywords: AMSR-E; AMSR2; passive microwave; rainfall; actual evapotranspiration; quadratic
model; crop production

1. Introduction

Across Eastern Africa, croplands cover 45 million ha [1]. Ethiopia (ET) and Tanzania (TZ) are the
two major crop producing countries in the region, accounting for 14 million ha and 13 million ha of
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croplands, respectively [1]. The African economy is heavily dependent on small holder traditional
rain-fed peasant agriculture (up to 90% in Eastern Africa), which is vulnerable to extreme weather
events such as drought and floods [2–4]. Moreover, sluggish economic development in the region has
been unable to feed the fast growing population, leading to chronic risk of regional food insecurity [5–7].
Food crops mainly produced in the region include maize, sorghum, wheat, barley, millet, rice, teff
(a small grain produced and used primarily in Ethiopia), beans, and peas [8]. Farming systems in
Ethiopia are mainly highland temperate mixed and maize mixed, while in Tanzania it is mainly maize
mixed, and in South Sudan cereal-root crop mixed [8]. The highland temperate mixed farming system
produces small grains, such as wheat, barley, teff, and livestock. The maize mixed farming system
mainly produces maize and livestock. Production in the cereal-root crop mixed farming system is
based on vegetables, animal products, and cereals, such as maize, sorghum, and millet.

Primary climate variables, such as pressure, temperature, and precipitation, are forced in part by
intrinsic dynamical modes of the climate system. These modes include the Arctic Oscillation (AO) and
its Southern Hemisphere counterpart, the Antarctic Oscillation (AAO)—these are also known as the
Northern and Southern Annular Mode (NAM and SAM), respectively, the El Niño-Southern Oscillation
(ENSO), the Pacific Decadal Oscillation (PDO), and the Indian Ocean Dipole (IOD), among others [9,10].
Due to these dynamic modes, climatic variation in one part of the planet can be teleconnected to a
geographically distant part of the planet. Many observed climatic changes can be related to one or
more of the leading modes [9]. Crop production in Eastern Africa is based on traditional farming
practices, and it is solely rain-fed and is, therefore, susceptible to the weather extremes associated
climatic mode anomalies, particularly to the IOD and ENSO modes [11].

Rainfall over Eastern Africa responds to global scale circulation patterns linked to conditions
in both the Pacific and Indian Oceans, such as the ENSO and the IOD [10,12–15]. Rainfall in the
region is influenced more by IOD than ENSO [10,15–18]. Niño3, one of many complementary
ENSO indices, is the sea surface temperature (SST) anomaly averaged over the region spanning
150–90◦W, 5◦S–5◦N [19]. El Niño events have usually produced anomalously drier conditions in
Eastern Africa, while La Niña events are associated with wetter conditions [20–22]. IOD is represented
by an anomalous SST gradient between the Western Equatorial Indian Ocean (50–70◦E and 10◦S–10◦N)
and the Southeastern Equatorial Indian Ocean (90–110◦E and 10◦S–0◦N) [23,24]. This gradient is
named the Dipole Mode Index (DMI). When the DMI is positive, the phenomenon is referred to as
a positive IOD, and vice versa. A positive IOD is associated with wetter periods in Eastern Africa;
whereas a negative IOD means drier periods [12,15,20,21,25] in this region.

In Ethiopia, there is a minor rainy season in March called belg, while the main rainy season
falls between June and September, known as kiremt. Tanzania experiences a shorter rainy season
between October and December and longer rains between March and May; meanwhile, in South
Sudan, the rainy season spans from May to October. Regional rainfall trends have been decreasing,
but they are highly variable in space and time [26]. Thus, precipitation variability is a principal
contributor to food insecurity in Eastern Africa. A study in Western Africa found that the timing
and length of the sowing period depend on the arrival of rains and soil moisture [27]. During the
past century, shortage of rainfall in Ethiopia led to recurrent drought, which resulted in substantial
shortfalls in agricultural production triggering food insecurity, which led to multiple episodes of
famine, especially in the eastern half of the country [28]. However, highland regions receive excess
rainfall concentrated into the few months of their rainy season, which leads to flooding and soil erosion
that, in turn, deplete soil nutrients and reduce crop productivity [7].

Solar irradiance and temperature are important factors for agricultural crop productivity.
In Eastern African highlands (12◦S–15◦N), the rainy season is accompanied by high cloud cover
that reduces insolation and thus temperature. Mathan [29] found that the number of days for the
completion of germination, plant height, leaf area index, grain, straw, and total dry matter yield
for sorghum were related to the sunshine hours. Grain and straw yields were positively related to
accumulated heat units (accumulated growing degree-days, AGDD) [29]. Sunlight quality and quantity
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available for plant growth is dependent on atmospheric conditions and seasonality [30]. These factors
(and others), in addition to moisture, contribute to the long history of food insecurity in Eastern Africa.

To address issues of food insecurity, we need a comprehensive understanding of cropland
dynamics for major commodity crops. Cropland dynamics includes the land use and land cover
change in cropland regions as observed at coarser spatial resolutions that cannot resolve crop
type due to spatial heterogeneity and spectral mixing. Land surface phenology (LSP) plays an
important role in monitoring cropland dynamics. LSP deals with the timing of vegetated land surface
dynamics as observed by satellite remote sensors, particularly at spatial resolutions and extents
relevant to meteorological processes in the atmospheric boundary layer [31,32]. Phenological studies
integrate climate–biosphere relationships as the timing of vegetation lifecycle events is influenced by
temperature and precipitation [33–36]. Remotely sensed vegetation indices (VIs) such as the normalized
difference vegetation index (NDVI) [37] have been widely utilized for agricultural mapping and
monitoring [38–42]. The Famine Early Warning System Network (FEWS NET), which is funded by the
United States Agency for International Development (USAID) and implemented by the United States
Geological Survey (USGS), uses NDVI-based measures of cropland activity as part of its integrated
early warning system for food security and drought monitoring in food-insecure regions of the
world, such as Eastern Africa, Western Africa, Southern Africa, Central America and the Caribbean,
and Central Asia [43]. FAO’s Global Information and Early Warning System (GIEWS) uses NDVI data
to detect vegetation health as a proxy for crop production [44]. Land surface dynamics in tropical
Eastern Africa are less well characterized than those in the major crop growing regions of developed
nations. We used our previous experience of using passive microwave data to track temperate cropland
dynamics in the spring wheat belts of the Northern Hemisphere [45–47] as reference areas to contrast
with the cropland dynamics of tropical Eastern Africa.

Many studies have used vegetation indices (VIs) derived from visible and near infrared
(VNIR) sensors to study LSP in terms of days of the year [48–50], but far fewer using thermal
time [31,45–47,51,52]. However, tropical croplands generally do not have temperature constraints;
rather, they are strongly dependent on rainfall and moisture for crop growth and development.
Therefore, to characterize LSP and land surface seasonality (LSS) in the region, we have used
moisture time measured as cumulative water vapor-days (CVDs) based on a spatially continuous
variable—atmospheric precipitable water vapor—that is available from passive microwave data.

In addition, the skies over Eastern Africa are obscured by heavy seasonal clouds and dust
contamination, reducing insolation, and surface air temperature as well as limiting intensive
observation of the vegetated land surface by VNIR sensors. To characterize cropland dynamics
in Eastern Africa, specifically in Ethiopia, Tanzania, and the newer nation of South Sudan, we
used a blended dataset of enhanced land surface variables produced from the passive microwave
radiometers AMSR-E (Advanced Microwave Scanning Radiometer on EOS) and AMSR2 (hereafter
simply AMSR) [53], rainfall data from TRMM (Tropical Rainfall Measuring Mission), and ETa (actual
evapotranspiration) data estimated from the simple surface energy balance model (SSEB) [54,55].

2. Study Region, Data and Methodology

2.1. Study Region

Across Eastern Africa, croplands cover 45 million ha. Our study focuses on croplands in the two
major crop producing countries in the region, Ethiopia (ET) and Tanzania (TZ), and South Sudan (SS).
Ethiopia and Tanzania contain 14 million ha and 13 million ha of croplands, respectively. South Sudan,
however, remains a bit of a mystery; it is still too new and torn by civil strife to appear in the FAO
agricultural databases.

Specific AMSR pixels were selected in these countries in a two-step process. We first developed
cropland cover stability map in Eastern Africa for cropland class (12) from the International Geosphere
Biosphere Program (IGBP) land cover scheme using the MODIS fractional land cover layer in MCD12C1
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for 2003–2012. We calculated the maximum, minimum, and mean land cover percentage over the study
period and then displayed the maximum, mean, and range in the red, green, and blue color planes,
respectively [56]. Thus, yellow shows temporally stable core areas of the cropland class; white shows
temporally unstable core areas; magenta displays unstable peripheral areas; black shows where the
croplands class did not occur 2003–2012 (Figure 1). The MODIS land cover product, which has a
spatial resolution of 0.05 degrees, could not resolve finely fragmented croplands in the study region.
Thus, while we used the MODIS data as general guidance, we used the finer resolution imagery
available in Google Earth Image to select and check visually our study sites. We have identified
100 study AMSR cropland pixels, 14 in Tanzania, 6 in South Sudan, and 80 in Ethiopia (Figure 1).
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Figure 1. Cropland class stability map in Eastern Africa for 2003–2012. Yellow shows stable core
cropland areas; white displays unstable core areas; magenta displays unstable peripheral areas;
black shows where croplands do not occur in the study period. Superimposed are 100 AMSR pixels
(red dots) selected on dominant cropland areas. Pixels are numbered from S to N and then from W to E
(all numbers are not labeled due to space limitations).
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We subset from the MODIS product the four major IGBP land cover types in the study region
(cropland, cropland/natural vegetation mosaic, savanna, and grassland) to calculate the proportions
of these land covers within each AMSR pixel (Figure 2a). Note that these land cover classes constitute
nearly all of the land cover in the study area.

To provide additional land cover data at finer spatial resolution, we subset the Landsat 7 ETM+
30 m resolution Global Land Cover data layer (tree cover, bare ground, and waterbodies) [57] to
calculate the proportions of these land cover within each AMSR pixel. The tree cover and bare ground
were raster layers with proportion of these covers per pixel (1–100%) in 2010, while the water layer was
a thematic layer where the ground was persistently water from 2000 to 2012. The tree cover and bare
ground that were within the AMSR study pixels were averaged separately. Proportion of waterbodies
within the AMSR pixel were also calculated. Thus, a given AMSR pixel can have proportional tree
cover, bare ground, water, and residual land cover. Any residual percentage of land cover could be
cropland, shrubland, grassland, and other land cover class. Note that croplands can appear as bare
ground much of the year. Moreover, since we purposely selected AMSR pixels dominated by croplands
as evident in Google Earth imagery, the residual land cover should be mainly cropland, but there could
also be a mixture of grassland and shrubland. Among our study pixels, there are two sites (92 and 98)
that have a considerable proportion of waterbody—25% and 30%, respectively (Figure 2b). These sites
are located near Lake Tana, the largest lake in Ethiopia. There are some other sites with up to 30% of
tree cover and bare ground combined.

2.2. Data

2.2.1. Remote Sensing Data

We have primarily used variables retrieved from the passive microwave data of AMSR-E and
AMSR2. The AMSR-E was launched onboard the NASA-EOS Aqua satellite in May 2002 and operated
successfully for more than 9 years before it stopped properly functioning in October 2011, due to failure
of the rotating antenna’s spin mechanism. Since May 2012, its measurement legacy has been continued
by AMSR2, which is the improved version of AMSR-E with similar functionality. AMSR2 is onboard
the Japan Aerospace Exploration Agency (JAXA) Global Change Observation Mission 1st-Water
(GCOM-W1) “SHIZUKU” satellite. We used the blended AMSR-E/AMSR2 dataset developed by the
Numerical Terradynamic Simulation Group (NTSG) at the University of Montana [53]. The NTSG
filled the gap between the AMSR-E and AMSR2 sensors using brightness temperature observations
from the Microwave Radiation Imager (MWRI) onboard the Chinese FengYun 3B (FY3B) satellite that
was launched in November 2010 [53]. The AMSRs record observations twice daily (daytime ~1330 and
nighttime ~0130). The gridded data products have a spatial resolution of 25 km. The NTSG-blended
AMSR dataset includes up to two observations per day from June 2002 to December 2015 of surface air
temperatures (ta; ~2 m height), fractional open water inundation (fw), vegetation canopy transmittance
(tc) at 10.65 GHz, volumetric soil moisture (vsm; ≤2 cm soil depth), and atmosphere precipitable
water vapor (V) for the total column [53,58]. The data set will continue to be extended as long
as AMSR2 continues to produce data (J.S. Kimball, personal communication). These products are
critical in regions where meteorological stations are sparse and high quality rainfall measurements
are missing or unavailable [59,60], such as Eastern Africa. The finer temporal resolution of passive
microwave datasets is also another significant advantage to monitor cropland dynamics, given the
rapid pace of plant growth and development. The major drawback of passive microwave datasets is
their coarse spatial resolution (25 km) relative to the region’s characteristic small farm field sizes and
fragmented croplands.
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Figure 2. (a) Mean percentage cropland (purple), cropland/natural vegetation mosaic (green), savanna (dark gold) and grassland (gold) cover in percent for 2003–2012
from the MODIS IGBP Land Cover Type 1 Percent Product at 0.05 degree spatial resolution MCD12C1 [61]. (b) Percent tree cover, bare ground, and waterbody from
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The second dataset used in this study is rainfall data from TRMM, which combines active and
passive microwave sensors. A joint US–Japan space mission, TRMM was launched in November
1997 to monitor and study tropical rainfall (50◦N–50◦S latitude), and officially ended in April 2015.
Its measurement legacy has been continued by the Global Precipitation Measurement (GPM) mission
launched on February 2014. The TRMM Multi-satellite Precipitation Analysis (TMPA) version 7
(TRMM 3B42 (V7)) is a rainfall dataset developed by NASA that provides TRMM-adjusted gridded
rainfall rate (mm/h) estimates from multiple satellites at 3-hourly temporal and 0.25-degree spatial
resolution [62]. We used the daily accumulated rainfall product that is derived from the 3-hourly
product (TRMM 3B42 (V7)-daily) [63]. We also used the NOAA Global Precipitation Climatology
Center (GPCC) long-term monthly rainfall data [64] for the regional rainfall trend analysis.

We used actual evapotranspiration (ETa) data estimated from the simple surface energy balance
model (SSEB) [54,55]. These data have a 1 km spatial resolution and a 10-day (dekadal) temporal
resolution. The data used as input to the SSEB model include the MODIS 8-day Land Surface
Temperature product at 1-km resolution (MOD11A2); the MODIS 16-day NDVI product at 250-m
resolution (MOD13Q1), and the global 1-degree reference evapotranspiration (ET0) based on NOAA’s
6-hourly Global Data Assimilation Systems (GDAS) model output.

We used the monthly time series of the Optimum Interpolation Sea Surface Temperature (OISST.v2)
Niño3 index from NOAA National Weather Service Climate Prediction Center [65] to identify El
Niño and La Niña events during our study period. To identify positive and negative Indian Ocean
Dipole (IOD) phenomena, we used the Dipole Mode Index (DMI) time series from Japan Agency for
Marine-Earth Science and Technology (JAMSTEC), which is based on the Hadley Centre Sea Ice and
Sea Surface Temperature (HadISST) dataset [66].

2.2.2. Crop Production Data

We gathered crop production and yield data for the Amhara Region of Ethiopia at two
administrative levels: woredas (smaller) and zones (larger). Some zones were also included from
the Oromia Region, Ethiopia. The woredas for which crop production and yield data were analyzed
include Dejen, Enemay, and Enebise Sar Midir in the West Gojjam Zone, Simada and Lay Gaint in the
South Gondar Zone, Jama, Legehida, Legambo, and Delanta in the South Wollo Zone, and Wadla and
Gidan in the North Wollo Zone. The woreda level data were collected by the Amhara National Regional
State Bureau of Agriculture (ANRS BoA) for 2014. The zone level data were taken from agricultural
sample survey reports for Ethiopia for the 2003–2014 period [67–69] organized by the Ethiopian Central
Statistical Agency (CSA). These zones include South Wollo, East Gojjam, North Wollo, South Gondar,
North Shewa, West Shewa, and Arsi. The reports are for “private peasant holdings” by season of
production, organized at three levels (national, regional, and zonal levels), and each level includes
crop area, crop production, and yield by crop type. More than 85% of Ethiopian population is a rural
resident dependent mainly on small holder subsistence agriculture. Commercial farms in Ethiopia
are few and are limited to the remote peripheral lowlands of the country. We also obtained woreda
(district) level crop production and yield data for 2014 from the Amhara National Regional State
Bureau of Agriculture (ANSR BoA) organized by the Zonal agricultural offices. We also use gathered
regional level Tanzanian National Sample Census of Agriculture crop production data for 2008 for
eight regions, namely, Njombe, Nzega, Shinyanga Rural, Shinyanga Urban, Kishapu, Meatu, Maswa,
and Bariadi [70].

2.3. Methods

We analyzed 14 full years (2003–2015) of twice-daily AMSR data. We applied an 8-day
retrospective moving average filter to the daytime and nighttime AMSR data separately, to minimize
data gaps due to orbit and swath width. We then averaged the daytime and nighttime values for
all variables except surface air temperature (ta) to obtain one value per 24 h. The ta time series
were processed into growing degree-days (GDDs), the daily thermal-time increment above a certain
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threshold (base temperature) for plant growth [31,71,72]. GDDs were calculated from the AMSR air
temperature (ta) data with a base temperature of 0 ◦C (=273.15 K) as follows:

GDD = max
[

tASC + tDES
2

− 273.15, 0
]

(1)

where tASC and tDES are ascending and descending pass temperatures, which corresponds roughly to
the maximum and minimum daily temperatures.

We have previously modeled the seasonal course of NDVI in temperate croplands as a quadratic
function of accumulated growing degree-days [45–47]. However, for the moisture-limited croplands
of Tropical Eastern Africa, this approach is not appropriate since temperature is not the key limiting
factor in the timing and progress of crop growth.

To illustrate the differential seasonality of croplands, Figure 3 displays GDDs and precipitable
water vapor (V) at two cropland sites, one in Zegie, Ethiopia, and the other in Saratov, Russia,
and reveals the quasi-periodic behavior of GDD versus V in both croplands. At the tropical site,
a larger dynamic range of V and smaller dynamic range of GDD within the year is evident compared
to the temperate site (Figure 3). This pattern reflects that moisture is the key limiting factor in the
tropical croplands, and temperature is limiting in the temperate croplands. Brown & de Beurs [27]
successfully applied a quadratic model in Western Africa croplands to characterize cropland NDVI as
a function of accumulated relative humidity.
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Figure 3. Scatterplot of 30-day retrospective moving average of mean AMSR-E atmospheric water
vapor (V) as a function of average growing degree-days (GDDs) for Zegie, Ethiopia (maroon circles),
and Saratov, Russia (blue diamonds), for the 2003–2010 period. Blue arrows indicate initial points in
January, while magenta arrows indicate endpoints of the annual cycle in December. Red arrows show
intra-annual cycles of V for Zegie, ET, and cyan arrows for Saratov, RU. Note the relative dynamical
range of the variables.

Rainfall in Eastern Africa is erratic and sporadic. From a daily TRMM rainfall data, we calculated
8-day retrospective cumulative rainfall for our study. In contrast, precipitable water vapor (V) is
a continuous spatiotemporal field. Thus, we analyzed the time series of biophysical and climatic
variables as a function of precipitable water vapor. Cumulative water vapor days (CVDs) are the
simple summation of AMSR V throughout the whole year. That is, the passage of days is weighted by
the quantity of V occurring that day:

CVDt = CVDt−1 + Vt (2)
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where Vt is daily precipitable water vapor at time t. The concept is analogous to the use of
accumulated growing degree-day (AGDD) to study cropland dynamics in the temperature-limited
temperate croplands.

Vegetation optical depth (VOD) was calculated as the negative logarithm of vegetation
transmittance (tc) at 10.65 GHz:

VOD = −loge(tc) = −ln(tc). (3)

The actual evapotranspiration (ETa) estimates were a retrospective summation for every 10 days
(dekad). To match the time scale, we produced comparable AMSR and TRMM dekadal datasets by
summing the daily data. We compare the ETa data with the AMSR and TRMM datasets. We have
cumulative annual ETa and V data (designated as CETaDd [Cumulative ETa Dekad] and CVDd
[Cumulative V Dekad]) to characterize all our study variables as a function of CETaDd and CVDd:

CETaDdt = CETaDdt−1 + ETat (4)

CVDdt = CVDdt−1 + Vt (5)

where ETa is dekadal actual evapotranspiration, and Vt is dekadal atmospheric precipitable water
vapor at time t.

To characterize the seasonal progression of moisture, we fitted the ETa from SSEB model product
and V from AMSR as a quadratic functions of CETaDd and CVDd, respectively:

ETat = α + β × CETaDdt − γ × CETaDdt
2 (6)

Vt = α + β × CVDdt − γ × CVDdt
2 (7)

where the intercept α is the start of observation period ETa/V value, the linear parameter β affects
the slope, and the quadratic parameter γ controls the curvature. Our model is an arched quadratic in
shape; thus, the sign of the β coefficient is positive, while the sign of the γ coefficient is negative.

At sites with two rainfall seasons, the ETa and V time series display bimodal patterns. At these
sites, we fitted two separate quadratic models, one for each rainfall season. From the observed data,
the breakpoints for these two rainfall seasons were more or less similar in time and space, but different
between the northern and southern hemispheres. Therefore, for the quadratic model fit, we divided
the observations into two growing season phases. The first phase for Ethiopia and South Sudan
ran from DOY 001–201 (1 January–20 July) and the second phase ran from DOY 202–365 (21 July–
31 December). In Tanzania, the phases ran from DOY 182–052 (1 July–21 February) and DOY 053–181
(22 February–30 June).

We modeled characteristics of each biophysical and climatic variable in terms of cumulative
moisture time. We determined peak height (PH) of each variable using the seasonal maxima, and the
corresponding moisture time to peak (MTP) was measured in CVDs. We also calculated the PH lag
time between biophysical and climatic variables.

For the ENSO analysis, we standardized the Niño3 index data using a 30-year (1986–2015)
climatology to obtain the mean and standard deviation [19,73]. We then filtered the standardized data
using a 5-month retrospective moving average [19] (Figure 11). If the index value exceeded ±1 for
at least two consecutive months in the rainy season, that year was labeled as El Niño for positive
deviations or La Niña for negative deviations [19]. A similar approach was applied to the DMI time
series with the positive (or negative) IOD mode indicated by the DMI remaining above 1 (or below
−1) for at least two consecutive months in the rainy season [19]. Any given year may experience a
positive (El Niño) or negative (La Niña) or neutral ENSO mode and a positive or negative or neutral
IOD mode. Therefore, there are nine possible combinations of these events in a given year (Table 1).
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Table 1. Classification of years when El Niño or La Niña and/or positive or negative Indian Ocean
dipole occurred.

IOD/ENSO Negative IOD Neutral Positive IOD

El Niño −/+ 0/+ +/+
Neutral −/0 * 0/0 +/0
La Niña −/− 0/− +/−

* 0 = Neutral.

We examined crop production and yield data for the Amhara Region of Ethiopia at two
administrative levels: woredas (smaller) and zones (larger). Some zones were also included from the
Oromia Region, Ethiopia. We used the assumption that crop biomass and crop evapotranspiration
are linked to crop production to link cropland LSP to crop production and yield statistical data
in the region. We calculated the area under the curve (AUC) for the growing season VOD as a
proxy for crop biomass and the AUC for the growing season VOD diel difference (VODdd) as a
proxy for crop evapotranspiration: VODdd = VODDSC − VODASC, where VODDSC and VODASC
are the descending and ascending VOD, respectively. We calculated separate AUCs for the VODs
derived from the ascending and descending orbits, in addition to the average VOD. We assessed the
relationship between the growing season maximum VOD and the crop production data, since growing
season maximum NDVI has corresponded with crop production data in past research [74]. Actual
evapotranspiration data from the simplified surface energy balance (SSEB) model was used to link it
with crop production and yield data. One way to determine the AUC cut-points (the points to start
and end the integration) was using the variation of volumetric soil moisture (vsm). The vsm starts to
rise continuously as the main rainfall season began, and then starts to drop as moisture was drawn
down by growing crops. The moisture started to rise again as the crops dried out (Figure 4). The AUC
was integrated between these soil moisture cut points, and the crop production and yield data were
linked to the AUCs using simple linear regression.
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Figure 4. AUC (area under the curve) of VODdd (vegetation optical depth diel difference; green
area under the purple curve) at AMSR pixel cropland site in Ethiopia (Site 82). The cut points were
determined based on the seasonality of volumetric soil moisture.

Even though crop production statistical data lower level of aggregation and AMSR data
spatial resolution were comparable in size, they may not necessarily overlap each other. Therefore,
before trying to link crop production and the derived LSP and LSS metrics (AUC, maximum VOD,
and rainfall), we normalized these variables by area. We multiplied the reported crop production
data at a given season (CPs) by a factor of cultivated area in a given administrative division during
this season (CAs) divided by the total area in that administrative division (TAA): CPs × CAs/TAA.
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This formulation presumes the crop production is evenly distributed across the administrative division.
Although we know that agriculture is not evenly distributed, it is a reasonable first-order assumption
given the scale differences of these data. We normalized the phenology or seasonality metric (PSM) by
multiplying by a factor of the overlap area between the AMSR pixel and the administrative division
(OA) divided by the total AMSR pixel area (TPA): PSM × OA/TPA.

3. Results

3.1. Land Surface Seasonalities of Precipitable Water Vapor

Precipitable water vapor (V) in the northwestern and central parts of the croplands in the Ethiopian
highlands displayed weak unimodal seasonality and stronger intra-seasonal variation (Figure 5).
Croplands in the drier lowlands of Northern South Sudan experienced strong unimodal V seasonality
and minimal intra-seasonal variation. Croplands in Tanzania showed clear bimodal V seasonality as
well as strong intra-seasonal variation.
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Figure 5. V time series graphs for ET ((a) site #60), TZ ((b) #6), and SS ((c) #85) for 2003–2015.
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3.2. Land Surface Seasonality and Phenology of AMSR Land Parameters & TRMM Rainfall

AMSR land surface parameters and TRMM rainfall time series displayed a unimodal seasonality
in Ethiopia and South Sudan, while there is clear bimodality for sites in Tanzania, which is in line
with the climatic seasonality, particularly for the rainfall, of the respective countries described in
the introduction.

In the drier lowlands of South Sudan, there was high intra-annual dynamic range of V and soil
moisture (vsm) and higher magnitude of V and GDD (Figure 6b, #78) compared to the highlands of
Ethiopia (Figure 6a, #73) or Tanzania (Figure 6c, #14). Rainfall and VOD had higher magnitude in the
humid highlands of Ethiopia followed by Tanzania. In Ethiopia, vsm rose as the rainy season started,
then sharply dropped as VOD increased due to soil moisture drawdown by growing vegetation,
and finally bounced back as the canopy senesced.
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GDD dropped during the rainfall and active vegetation growing season, despite the overhead
sun during this time of the year. First, the rainfall season in this part of the world is characterized by
a heavy cloud deck that reflects back much of the insolation, thereby reducing the amount of light
available at the surface for plant growth [75–77]. Second, evapotranspiration from actively growing
crops cools down the surrounding air through evaporative cooling yielding a lower Bowen Ratio [46].

The behavior of VOD as a function of CVDs exhibited distinctive land surface phenology
trajectories. During the growing season, VODs rapidly ascended to a unimodal peak value and
declined gradually. The pace of fractional green vegetation cover development was quicker than
during its disappearance (Figure 7). The diel difference in the VOD (VODdd) was highest during the
rainy season due to high evapotranspiration in daytime by actively growing crop vegetation.
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3.3. Land Surface Seasonality of Soil Moisture

Interannual moisture variability was at its highest at the beginning of the growing season affecting
planting times of crops, while it was at its lowest at the time of peak moisture. Variability was higher
for South Sudan sites (Figure 8c, #91) followed by Tanzania (Figure 8b, #5), while it was lower for
Ethiopia (Figure 8a, #35).
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3.4. Land Surface Seasonality of Actual Evapotranspiration

Actual evapotranspiration (ETa) from the simple surface energy balance model closely tracked
the rainfall pattern in time and space. ETa was very sensitive to track both the unimodal and bimodal
rainfall patterns (Figure 9). ETa increased while there was sufficient soil moisture for evapotranspiration
demand and reached its peak slightly later than the peak rainfall period (~2 weeks; Table 3). The ETa
from the active growing vegetation and the wet ground in the rainfall season cooled down the
surrounding surface air (evaporative cooling) resulting in lower GDD. The relationship among
these land surface and atmospheric variables held true for both the unimodal and bimodal growing
season dynamics. ETa was higher at lowland cropland sites that received enough moisture to meet
evapotranspiration demand.
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Figure 9. Time series of MODIS rainfall, SSEB ETa, and AMSR GDD and VOD for (a) #87 in Ethiopia
and (b) #14 in Tanzania for 2003–2015.
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The quadratic model fits for ETa and V for sites with unimodal growing season were strong
(Figure 10a,b). The quadratic fits of ETa and V at sites with bimodal growing seasons were fitted with
two separate models, one for each growing season (Figure 10c,d). These fits were generally strong,
but the fits of the second (main) growing season were better (r2 > 0.8) than those of the first growing
season (r2 > 0.6). Fits with ETa were better than those with V. ETa displayed sharper seasonal dynamics,
appearing more responsive to rainfall, soil moisture, and vegetation moisture compared to V.
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Figure 10. Quadratic model fits for average growing season (2003–2015) at a unimodal site (#48) in
Ethiopia for (a) ETa (r2 = 0.97) and (b) V (r2 = 0.79) and at a bimodal site (#14) in Tanzania for (c) ETa
(r2 = 0.93, 0.96) and (d) V (r2 = 0.63, 0.38). Blue bars are rainfall (rf) graphs for the same period. Note the
relative dynamics of ETa and V in relation to rf, and the differences in axis scaling by site.

3.5. El Niño/Southern Oscillation and the Indian Ocean Dipole

Five of the nine possible ENSO/IOD events combinations were observed during the study period,
and no instance of a negative IOD was observed except briefly during the short rainfall season of
Tanzania in 2016. Note that the long rainy season in Tanzania in 2016 coincided with a positive IOD
and an El Niño year (Figure 11, Table 2).
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Table 2. Classification of years when El Niño or La Niña and/or positive or negative Indian Ocean
dipole occurred.

IOD/ENSO −ve IOD Neutral +ve IOD

El Niño – – 2015, 2016
Neutral – 2003–2005, 2008–2009, 2013–2014 2006, 2012
La Niña – 2007, 2010 2011

3.6. Land Surface Phenology Linkages to Crop Production Statistics

Woreda level data collected from local offices were better fit (r2 = 0.60) by a logarithmic curve
(Figure 12a), suggesting saturation, than by a line (r2 = 0.57; data not shown). VODdd AUC showed a
weak but significant linear correspondence to crop yield data with an r2 of 0.25 (Figure 12b).
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Figure 12. Relationships between area under VODdd curve and statistical data for (a) crop production
and (b) crop yield at the woreda level in the Amhara Region in Northwestern Ethiopia for 2014. Both fits
are significant at p < 0.01.

The Zonal level CSA data from the highland agricultural areas of the Amhara and Oromia Regions
for 2003–2008 and 2010 (2009 data were not available) indicated that crop production substantially
increased (Figure 13). There is weaker evidence of a cultivated area increase during the same period
in these zones. The VODdd AUC also showed that there is very little change during this period,
except in 2010. The North Wollo Zone showed consistently lower crop production, cultivated area,
and VODdd AUC time series. The Zones in Figure 13c were clustered into two general groups.
The lower VODdd AUC value clusters were North Wollo, South Wollo, and East Gojjam, while the
remaining four zones make up the higher VODdd AUC value clusters. The VODdd AUC displayed
weak but significant correspondence with crop production data at the zone level in five of seven
zones. Significant relationships were found in West Shewa, North Shewa, East Gojjam, South Wollo,
and North Wollo Zones, with coefficients of determination ranging from 0.25 to 0.72. No significant
relationship was found in either Arsi or South Gondar Zones (data not shown). The VODdd AUC also
showed significant correspondence with rainfall data in the same five zones (0.29 < r2 < 0.73), but not
in South Gondar or Arsi. Maximum VOD showed a significant correspondence with crop production
data in four of seven zones (West Shewa, East Gojjam, South Wollo, and North Wollo).

The VODdd AUC data with crop production statistical data at the regional level in Tanzania for
2008 showed a positive correspondence across regions with r2 of 0.67 (Figure 14b). Since our sample
size was small, this correspondence was dominated by one or two extreme values. Increasing sample
size could reduce the uncertainty of the correspondence, but these ground level data are limited.
The VODdd AUC tracks the relative pattern of regional crop production statistical data in six of eight
regions in the western half of Tanzania (Figure 14a). The six regions include Njombe, Nzega, Shinyanga
Urban, Kishapu, Maswa, and Bariadi.
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Figure 13. Time series graphs of (a) cultivated area, (b) crop production, and (c) VODdd AUC in five
zones (SW = South Wollo, EG = East Gojjam, NW = North Wollo, SG = South Gondar, NS = North
Shewa, WS = West Shewa, and Ar = Arsi. Note the differences in rates of change of the crop production
data relative to the VODdd AUC satellite derived data.
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Figure 14. Graphs of (a) crop production statistical data and VODdd AUC and (b) their linear regression
fit across regions in Tanzania for 2008. The fit was significant at p < 0.01.

4. Discussion

4.1. Seasonal Peak and Moisture Time to Peak (MTP) for Land Surface Phenologies and Seasonalities

Moisture time to peak (MTP) for land surface phenologies and land surface seasonalities showed
strong correspondence between and among land surface parameters derived from AMSR, rainfall from
TRMM, and ETa from SSEB with r2 > 0.73 for most variables in the Ethiopian study sites (Figure 15).
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Furthermore, lags between variables exhibited logical sequencing. For example, the MTP for rainfall
lagged the MTP for precipitable water vapor by about five weeks (Figure 15; Table 3). The MTP for
volumetric soil moisture leads the MTP for rainfall due to earlier wetting and saturation period of the
soil ahead of peak rainfall period. In addition, soil moisture was drawn down by actively growing
crop vegetation, decreasing the soil moisture. The soil moisture saturation period depends, in part, on
soil texture and type, land cover type, and land use. The MTP for VOD lags the MTPs for rainfall and
volumetric soil moisture by about seven and eleven weeks, respectively. In Ethiopia, VOD peaked
in mid-October, while rainfall peaked in mid-August. The peak timing for some variables occurred
around the same time, e.g., the MTP for VOD diel difference and the MTT (Moisture Time to Trough)
for GDD (growing degree-days), which is the CVDs (cumulative precipitable water vapor-days) to the
seasonal lowest GDD). GDD dropped to its lowest point due to evaporative cooling from growing
crops. There were no apparent relationships among the MTPs of variables in the South Sudan sites
due to few data points and heterogeneous land cover. A similar pattern was found for the Tanzanian
sites, where some sites support a double growing season and others support a single growing season.
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Figure 15. Moisture Time to Peak (MTP) or Moisture Time to Trough (MTT) for cropland land surface
variables in Ethiopia for 2003–2015 (r2 > 0.8). The variables listed in the diagonal of the figure from
top-left to bottom-right include moisture time to peak or trough for MTP for growing degree-days
(MTP GDD), precipitable water vapor (V), volumetric soil moisture (vsm), fractional open water (fw),
rainfall (rf), actual evapotranspiration (ETa), vegetation optical depth diel difference (VODdd), MTT for
growing degree-day (MTT GDD), and vegetation optical depth (VOD). Note that peak rf lags peak V,
peak soil moisture, and peak VOD, but VODdd lags peak rf. Upper panel shows the Pearson correlation
coefficients. All correlations were significant with p < 0.01. To identify variables combination for any
given plot or r-value, make horizontal and vertical lines towards the diagonal line of the square matrix
containing the variables.



Remote Sens. 2017, 9, 914 18 of 30

Table 3. MTP lag in weeks between each variable averaged in space and time (2003–2015) for Ethiopian
sites. Note that these lags can vary in space and time for particular sites.

MTP
GDD

MTP
V

MTP
vsm

MTP
fw

MTP
Rf

MTP
ETa

MTP
VODdd

MTT
GDD

MTP
VOD

MTP GDD 11 12 15 16 18 20 20 24
MTP V 1 4 5 7 9 9 12

MTP vsm 3 4 6 7 8 11
MTP fw 1 3 4 5 8
MTP Rf 2 3 4 7

MTP ETa 2 2 5
MTP VODdd 0 4

MTT GDD 3
MTP VOD

4.2. AMSR Variables Response to El Niña Southern Oscillation and Indian Ocean Dipole Modes

The positive IOD year of 2006 brought heavy rainfall to the region (Figure 16, Table 2), resulting
in major nationwide flooding in Ethiopia [78–82]. Moreover, the rainfall was concentrated in a
few months of the rainy season causing unprecedented flooding. The floods affected 8 out of the
country’s 11 administrative regions and led to acute food insecurity for at least 10 million people [79,81].
This extreme event caused internal mass displacement and considerable damage to property and
infrastructure leading to acute food shortage for more than 7 million people [79,81].
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Figure 16. Time series of (a) cumulative volumetric soil moisture (vsm), (b) cumulative fractional
water (fw), and (c) cumulative vegetation optical depth (VOD) in Central Ethiopia. The neutral
ENSO/IOD years are represented by the black line, while the maxima and minima of this combination
are represented by gray. The rest shows other possible combinations of ENSO/IOD.

In 2010, a La Niña year, there was heavy rainfall and flooding in Ethiopia [83]. The flooding
affected nearly 1 million people across several administrative regions [84]. Rainfall in 2010 was above
normal but distributed throughout the rainy season. Thus, the flooding and associated damage in
Ethiopia were not as severe as in 2006 [79,83]. Soil moisture and fractional water were high in these
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positive IOD and La Niña years compared to the neutral years, while the VOD looked similar to the
neutral years (Figure 16).

The worst drought in over 30 years occurred in 2015. It claimed human and animal life and
devastated crop production, especially in Eastern Ethiopia [85–89]. More than 10 million people
(~ 10% of Ethiopia’s population) were in need of food assistance [86,88]. This year was both an El
Niño and a positive IOD year (Figure 11; Table 2). Even though the effect of El Niño and positive IOD
may have been expected to cancel each other out [15,25], the severe drought of 2015 might be due to
the three months of the El Niño event occurring before the positive IOD mode (in 2015 NINO3 > 1
occurred three months earlier than DMI > 1; Figure 16). Soil moisture (Figure 16a) and fractional water
(Figure 16b) in 2015 were well below the minimum boundary envelope of the neutral years. Since the
severe drought devastated crop production, VOD in 2015 (Figure 16c; red color) was well below that
of the minimum boundary of the neutral years. In 2016, a La Niña year, most parts of Eastern Africa
received heavy rainfall [89].

4.3. Crop Production Responses to Biophysical Factors

The logarithmic fit of the AUC of the VOD diel difference to the crop production data (Figure 12a)
may result from VOD saturation, exaggerated crop production reports, and/or spatial extent
disagreement between the satellite product and the crop production areal unit unresolved by the
normalization procedure. Jones et al. [90] found that there is evidence of VOD signal saturation at
higher biomass levels, but less is known about the diel difference of the VOD.

The Zone level CSA (Central Statistical Agency) crop production statistical data substantial
increment in the highland agricultural areas of the Amhara and Oromia Regions for 2003–2010 was
not supported by the VODdd AUC data (Figure 13). In some parts of Ethiopia 2010 was a flood
year; however, the increment of the VODdd AUC in 2010 may have arisen the more even distribution
of rainfall throughout the rainy season that, in turn, may have supported good crop growth and
production. Consistently lower values for crop production, cultivated area, and VODdd AUC time
series in the North Wollo Zone may result from it being drier and more degraded than other study sites.
Not surprisingly, North Wollo is one of the more food-insecure zones in Ethiopia [91]. The VODdd
AUC time series data appear to differentiate between drier and more mesic Zones: trajectories for
the drier North and South Wollo Zones clustered with lower VODdd AUC values, in contrast to the
clusters of the more mesic zones (Figure 13c).

In general, rainfall, VODdd AUC, VOD AUC, and VODmax did not exhibit noticeable increases
during the study period (2003–2015). However, small holder agricultural crop production from the
Ethiopian CSA in these zones has reportedly more than doubled in just eight years. Based on this
governmental report, crop production grew at an annual rate of 6.5%, while the population growth was
2.6% over the same period of time. Yet, a paradox arises in that while crop production has apparently
increased, millions have been food-insecure every year during the study period, including more than
10 million in the 2015 drought year [85,86].

Uncertainties in the national statistical data are not well characterized. In Ethiopia, administrative
offices below the federal level lack organized historical datasets, and access to data at these offices is
difficult. However, we also acknowledge that uncertainties also arise in the remote sensing data due to
the mixture of other land covers with croplands within the 625 km2 of each AMSR pixel, and potential
biases arising from differences in the areal distribution of croplands within woredas that were not
addressed by the normalization procedures.

FAO-harvested area and crop production country-level data [1,92] for Ethiopia and Tanzania
were analyzed to better understand agricultural activity in the region. Note that such data are mainly
collected from governmental agencies and thus may be subjected to bias. In Eastern Africa, institutional
changes have been affecting agricultural land ownership and crop production through land policy
reforms. Even though these institutional changes happen over longer time spans, they brought some
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apparently abrupt changes on the agricultural sector (Figure 17). In contrast, rainfall variability has
been the major driver for short-term fluctuations in agricultural crop production [28,93].
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It is not clear why harvested area in Ethiopia drastically fell in the early 1970s, if those decreases
are indeed real. However, some literature has claimed that around the end of Haile Selassie’s rule
(1930–1974), land was distributed by the crown to members of the military and those who were loyal
to the regime, resulting in a concentration of land in the hands of few in the society [94]. Some of this
cropland may have been idled as a result of institutional change, as has been observed elsewhere [33].

The FAO long-term data showed a tremendous crop production increment in Ethiopia in the
1990s and onwards compared to that of Tanzania. Generally, the production growth rate can
be modeled using an exponential growth rate (r2 = 0.78 for Ethiopia and r2 = 0.90 for Tanzania;
Figure 18). However, in Ethiopia since 2009, the increment has accelerated beyond exponential growth.
Crop production as a function of harvested area is well fitted with a linear curve for Tanzania for
1961–2014, but with an exponential curve for Ethiopia for 1961–2008. However, since 2009, production
statistics accelerated while harvested area saturated, and the exponential growth curve can no longer
explain this correspondence, which casts doubt on the reported crop production figures.

The crop production and yield data showed a general correspondence with climate modes in both
countries. The climate modes were annual averages to align them with crop production and yield data.
This may have an adverse effect on the seasonal dynamics of climate modes that positive and negative
extremes that occur in a given year may cancel out each other. Crop production and yield was at its
minimum during El Nino/La Nina and positive/negative IOD years, while there were larger crop
productions and yield during normal ENSO/IOD years (Figure 19). It appears that crop production
and yield was more influenced by abnormal IOD than ENSO.
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Figure 18. (a) Time series graphs of national annual crop production data in Ethiopia and Tanzania for
1993–2015. Source: [1]. Note the exponential growth rate of crop production data in Ethiopian relative
to that of Tanzania. (b) Exponential fit of crop production as a function of harvested area for Ethiopia
(red squares) and linear fit of that of Tanzania (black circles) for 1961–2014. Note the inability of the
exponential curve to explain this relationship in Ethiopia that crop production tremendously increases
while harvested area saturates.
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Figure 19. Crop yield in metric ton per hectare (MT/ha) as a function of climate modes in (a) Ethiopia
and (b) Tanzania for 1982–2014. Note that the climate modes are annual averages from their respective
standardized monthly indices.

Previously, we observed that VODmax exhibited strong correspondence with NDVI max (r2 > 0.8)
for cropland sites in Northern Eurasia [45]. A long-term (1988–2008) global vegetation biomass
change study on major world biomes found correspondence between VOD and production of major
crops [95]. Passive microwave data products have been shown to be relevant to the study of tropical
cropland dynamics, but further studies are needed for these data to be used confidently and effectively.
Such studies would best incorporate independent measurements (or estimates) of crop production and
crop yield at the local level. In this step, crop production and yield data with uncertainty or errors
resulting from insufficient knowledge about data collection protocols, statistical processing, and/or
politically motivated data manipulation should be avoided.
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4.4. Seasonal Kendall Trend Test on Long-Term Rainfall Data

Since crop production in Eastern Africa is strongly dependent on rainfall, we also investigated
the long-term rainfall trend (1961–2016) [64] in both Ethiopia and Tanzania using the nonparametric
Seasonal Kendall trend test (Figure 20) [96]. The rainfall data in Ethiopia for February (S = −282,
p = 0.046) as well as for July (S = −366, p = 0.010) showed a significant (p < 0.05) negative trend
according to the Seasonal Kendall test. Thus, the global trend for the entire series was significant
(S = −1326, p = 0.007) (Figure 20a; Appendix B.1). Seasonal Sen’s slope estimate yielded a slope
of −11.2 mm/decade for Ethiopia. Rainfall data in Tanzania did not exhibit a significant trend for
any month. Thus, the global trend for the entire series was not significant at p < 0.05 (S = −810,
p = 0.098) (Figure 20b, Appendix B.2). For Tanzania, the Seasonal Sen’s slope estimate yielded a slope
of −4.3 mm/decade.
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Figure 20. Seasonal Kendall rainfall trend with Seasonal Sen’s slope for (a) Ethiopia and (b) Tanzania for
1961–2016. Ethiopia exhibited a significant decrease in rainfall of more than 11 mm/decade (p = 0.007),
but the decrease in Tanzania was not significant at p < 0.05 (p = 0.098).

5. Conclusions and Recommendations

The economies of Eastern Africa are heavily dependent on traditional rain-fed agriculture that
is vulnerable to extreme weather events, such as drought and floods. Even in the absence of conflict,
this region has been one of the most food-insecure parts of the world over the past three decades or
more. Weather station data are scarce and difficult to obtain, while optical satellite data are limited
by obscuring clouds. Satellite passive microwave data are less sensitive to clouds and atmospheric
effects. Therefore, we explored using passive microwave data to study cropland dynamics in Ethiopia,
Tanzania, and South Sudan. Since crop production in the region is moisture limited, seasonal dynamics
of the microwave datasets were characterized as functions of cumulative moisture, in contrast to the
commonly used day-of-year or accumulated growing degree-days in temperate areas.

The microwave data were able to track cropland dynamics in time and space. Soil moisture was
sensitive to rainfall and crop cover: it started to rise when rainfall commenced and attain its peak
during the peak rainfall season, then sharply dropped during the active vegetation growth period
due to soil moisture drawdown by growing vegetation, and finally started to rise once the vegetation
senesced. Interannual variability of soil moisture was higher during the beginning of the growing
season, affecting planting times for croplands. Precipitable water vapor was able to capture seasonal
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and intra-seasonal atmospheric water vapor across cropland sites. It was also able to differentiate
unimodal and bimodal growing seasons in the study region.

Actual evapotranspiration (ETa) derived from simple surface energy balance model was sensitive
to rainfall dynamics. It tracked well both the unimodal and bimodal spatial and temporal rainfall
patterns in the region. Both the unimodal and bimodal ETa time series were fitted by the quadratic
model better than with cumulative vapor days. Moisture times to peak (MTPs) showed strong
correspondence between and among land surface variables. The lags and co-occurrences between and
among these land surface variables occurred in logical sequences.

Global circulation patterns and climate modes linked to the Pacific and Indian Oceans, such as El
Niño Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) modes affect rainfall in Eastern
Africa. The biophysical and geophysical variables derived from passive microwave data responded to
ENSO and IOD events occurring during the study period, including major floods (2006, 2010) and an
extreme drought (2015).

The correspondence between passive microwave land surface parameters and crop production
and crop yield was not straightforward. The spatial resolution of satellite passive microwave data and
the areal units of crop production statistical data in Ethiopia is roughly similar. We addressed the spatial
overlay mismatch between the AMSR pixel and crop production area through an areal normalization
process. However, key limitations of the crop production data include data uncertainty and the
lack of high quality, long-term data at the woreda (district) level. Data access is highly centralized
at the federal level. Crop production data from the Ethiopian Statistical Agency (CSA) is not well
characterized, and access to data below the zone level is restricted. The correspondence between
the passive microwave data metrics and crop production data at the woreda level was encouraging,
but these data were made available from a regional agricultural office through personal communication.

In contrast, the correspondence between passive microwave data metrics with crop production
data at zone level (using data from CSA) was very weak, with no correspondence at some sites.
Note that the woreda level analysis is correspondence across space in one year (2014), while the zone
level analysis is correspondence in time (2003–2008 & 2010). According to the CSA, small holder
peasant agricultural crop production data in the study zones in Northwestern Ethiopia has reportedly
more than doubled in just eight years. This figure strains credulity given the interannual variation
in precipitation. However, we acknowledge that the mixture of other land covers with croplands
within the 25 km AMSR-E pixel may contribute to the discrepancies of the LSP product with crop
production data. While the passive microwave products are found to be relevant for the study of
cropland dynamics, additional study is needed to understand how they can best be used. Access to
crop production and yield statistical data at the village level and the synergistic use of VNIR vegetation
index data might complement such research efforts.
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Appendix A.

Table A1. Main institutional change periods and their description presented in Figure 17 legends for
Ethiopia (Figure 17a) and Tanzania (Figure 17b).

Legend Label Year Description

Ethiopia (Figure 16a)

1 1974

The Derg regime came to power. In 1975 the “Land to the Tiller” policy was declared,
which granted to tenant farmers ownership on the lands they cultivated, with the
objective of increasing cultivated area [94]. At the same time, there was huge national
afforestation program, which may have reduced the area of marginal croplands.

2 1991 Tigray People Liberation Front (TPLF)-led Ethiopian People Revolutionary
Democratic Front (EPRDF) came to power.

3 1994

The “Agriculture-Led Industrialization” (ADLI) policy was declared, which aimed at
giving more resources to farmers and farm activity compared to urban dwellers and
industrial and tertiary activities [97]. This change may have triggered expansion of
cultivated lands on formerly uncultivated or preserved lands. Many of the lands
forested during the Derg regime were abandoned and left to local farmers.

4 1995

The new constitution of 1995 approved and confirmed the state ownership of all
land in Ethiopia, reversing the 1975 policy. As the land was owned by government,
farmers had only use rights. This policy brought tenure insecurity to farmers and
triggered a “tragedy of the commons” mentality: tenant farmers were reluctant to
manage well the lands they cultivated or to invest in long-term agricultural
production activity projects [97].

5 2010

“Growth and Transformation Plan” was a medium-term strategic framework for the
five-year period from 2010/11 to 2014/15. During this time the “Arab Spring” revolt
occurred, and some observers have commented that this plan aimed to divert
attention of the Ethiopian population [98]. Execution of this plan was poor. For
example, among the ten mega-sugar factories planned, not one was completed by
the end date [98].

Tanzania (Figure 16b)

B 1985 Nyerere handed power over to Ali Hassan Mwinyi [99].

C 1995 Benjamin William Mkapa was sworn in as the new president of Tanzania in the first
multi-party election [99].

D 2005 Jakaya Mrisho Kikwete was elected fourth president for a five-year term.

E 2015 John Magufuli elected as fifth president of Tanzania [99].

F 1967/68 Arusha declaration; Ujamaa and Villagization. Nyerere introduced African socialism,
or Ujamaa, literal meaning “family-hood” [100].

G 1980 Economic Liberalization and the National Agricultural Policy [100].

H 1990 Investment Promotion and the Transition to Multipartyism [100].

I 1995 National land policy enacted [101]

J 1997 National land policy amended [101].

K 2001 Land Act no. 4 and village land act no. 5 enacted in 1999 become operational [101].

L 2004 Land Act no. 4 and village land act no. 5 enacted in 1999 amended [101].

M 2007 Land use plan act enacted [101].
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Appendix B.

Appendix B.1. Seasonal Kendall Test for Rainfall in Ethiopia

Two-Sided Homogeneity Test

H0: S = 0 (no trend)
HA: S != 0 (monotonic trend)

Statistics for individual seasons
S Var S Z tau p-value

1 56 20020 0.4 0.036 0.692
2 − 20020 −2.0 −0.183 0.046
3 −102 20020 −0.7 −0.066 0.471
4 −78 20020 −0.6 −0.051 0.581
5 6 20020 0.0 0.004 0.966
6 −208 20020 −1.5 −0.135 0.142
7 −366 20020 −2.6 −0.238 0.010
8 −166 20020 −1.2 −0.108 0.241
9 −120 20020 −0.8 −0.078 0.396
10 −6 20020 0.0 −0.004 0.966
11 −88 20020 −0.6 −0.057 0.534
12 28 20020 0.2 0.018 0.843

Statistics for total series
S Var S Z tau p-value

1 −1326 240240 −2.7 −0.072 0.007

Seasonal Sen’s slope and intercept
slope: −0.0925 mm/month

intercept: 104.3255
number of observations: 672

Appendix B.2. Seasonal Kendall Test for Rainfall in Tanzania

Two-Sided Homogeneity Test

H0: S = 0 (no trend)
HA: S != 0 (monotonic trend)

Statistics for individual seasons
S Var S Z tau p-value

1 18 20020 0.1 0.012 0.899
2 −214 20020 −1.5 −0.139 0.130
3 −108 20020 −0.8 −0.070 0.445
4 −266 20020 −1.9 −0.173 0.060
5 −168 20020 −1.2 −0.109 0.235
6 0 20020 0.0 0.000 1.000
7 −226 20020 −1.6 −0.147 0.110
8 76 20020 0.5 0.049 0.591
9 80 20020 0.6 0.052 0.572
10 112 20020 0.8 0.073 0.429
11 −48 20020 −0.3 −0.031 0.734
12 −66 20020 −0.5 −0.043 0.641

Statistics for total series
S Var S Z tau p-value

1 −810 240240 −1.7 −0.044 0.098

Seasonal Sen’s slope and intercept
slope: −0.0362 mm/month

intercept: 81.0414
number of observations: 672
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