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Abstract: Tremendous progress has been made in object recognition with deep convolutional neural
networks (CNNs), thanks to the availability of large-scale annotated dataset. With the ability
of learning highly hierarchical image feature extractors, deep CNNs are also expected to solve
the Synthetic Aperture Radar (SAR) target classification problems. However, the limited labeled
SAR target data becomes a handicap to train a deep CNN. To solve this problem, we propose
a transfer learning based method, making knowledge learned from sufficient unlabeled SAR
scene images transferrable to labeled SAR target data. We design an assembled CNN architecture
consisting of a classification pathway and a reconstruction pathway, together with a feedback bypass
additionally. Instead of training a deep network with limited dataset from scratch, a large number of
unlabeled SAR scene images are used to train the reconstruction pathway with stacked convolutional
auto-encoders (SCAE) at first. Then, these pre-trained convolutional layers are reused to transfer
knowledge to SAR target classification tasks, with feedback bypass introducing the reconstruction
loss simultaneously. The experimental results demonstrate that transfer learning leads to a better
performance in the case of scarce labeled training data and the additional feedback bypass with
reconstruction loss helps to boost the capability of classification pathway.

Keywords: SAR target recognition; deep CNNs; transfer learning; stacked convolutional auto-encoders

1. Introduction

Synthetic Aperture Radar automatic target recognition (SAR-ATR) has been a driving motivation
for many years. Generally, the SAR-ATR system can be split into three stages: detection, low-level
classification (LLC) and high-level classification (HLC). The first two stages that are also known as
prescreening and discrimination together generate the focus-of-attention (FOA) module [1]. It interfaces
with the input SAR images and outputs a list of potential SAR targets as the input of the HLC stage.
Finally, the HLC stage aims to classify the targets into different categories, which is the main focus of
this paper.

Various methods have been proposed to implement the HLC stage, which can be concluded as
three taxonomies: feature-based, model-based and semi-model-based according to [1]. Feature-based
approaches, extracting and preprocessing features from SAR target chips and training a classifier
with them, are extensively used in the literature for HLC stage. To obtain a satisfactory classification
performance, both the features and the classifiers should be carefully elaborately designed. On the one

Remote Sens. 2017, 9, 907; doi:10.3390/rs9090907 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
http://dx.doi.org/10.3390/rs9090907
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2017, 9, 907 2 of 21

hand, various types of classifiers, such as sparse representation-based method [2], Bayes classifier [3],
mean square error (MSE) classifier [4], template-based classifiers [5] and support vector machine (SVM)
[6], are selected to solve the problem. Among them, the sparse representation classification is popular
in recent studies [7,8]. The improved joint sparse representation model was proposed to effectively
combine multiple-view SAR images from the same physical target [9]. Pan et al. [10] designed a
reweighted sparse representation based method to suppress the influence of the interference caused by
objects near the targets. In addition, better performance is proved on the fusion of multiple classifiers
than the single classifier [11]. Liu et al. [12] proposed a decision fusion method of sparse representation
and SVM, fusing the results of two classifiers obeying Bayesian rule to make the decision. On the other
hand, hand-crafted features, for example, geometrical feature [13], principal components analysis
(PCA) based features [3] and Fourier descriptors [6], as well as target chip templates [4,14], are extracted
to feed into the classifiers conventionally. Due to the development of high-resolution SAR in recent
years, new progress has been made to depict SAR images with more details. Carried in the magnitude
of the radar backscatter, the scattering centers are considered as distinctive characteristics of SAR
target images [15]. As depicted in [10], instead of using the scatter point extraction to describe the
backscattering characteristic, a scatter cluster extraction method is proposed. Dense scale-invariant
feature transform (SIFT) descriptors on multiple scales are used to train a global multi-scale dictionary
by sparse coding algorithm [16]. Based on the probabilistic graphical models, Srinivas et al. [17] yields
multiple SAR image representations and models each of them using graphs. The monogenic signal is
performed to characterize the SAR images [18]. Most of the studies have carried out the experiments
on Moving and Stationary Target Acquisition and Recognition (MSTAR) public dataset to evaluate
their methods. The best result among the hand-crafted methods can achieve 97.33% on the MSTAR
dataset for the 10-class recognition task [12].

Different from the hand-crafted feature extraction based method, the deep CNN based method
automatically learns the feature from large-scale dataset, and achieves very impressive performance in
object recognition. In computer vision domain, deep CNNs have rapidly developed in recent years.
AlexNet [19] proposed in 2012 attracted people’s attention to deep CNNs since the extraordinary
performance on 1000-class object classification on ImageNet. Since then, more complex CNN
architectures, such as VGG-16-Net [20] and GoogLeNet [21], were proposed with the recognition rate
being improved gradually. Furthermore, the latest Res-Net [22] achieved superhuman performance
on ImageNet dataset at recognizing objects. Taking the tremendous progress deep learning has made
in object recognition into consideration, deep CNNs are expected to solve the SAR target recognition
problem as well. However, large-scale dataset is indispensable when training a deep CNN, such as
ImageNet that contains about 22,000 classes and nearly 15 million labeled images, since there are
millions of parameters to be determined in the network. Unfortunately, there exists no large-scale
annotated SAR target dataset comparable to ImageNet, as data acquisition is expensive and quality
annotation is costly. Limited by inadequate data in SAR target recognition, the current studies related
to deep CNNs mainly focus on augmenting the training data [23], designing a less complex network
for a specific problem and making efforts on avoiding overfitting [24]. Generally, the deeper and
wider networks can develop more abstraction and more features. A relatively complex network is
expected to extract rich hierarchical features of SAR targets; however, the limited labeled SAR target
data remains a handicap to train the network well.

To address this problem, a more general method based on transfer learning is proposed in
this paper. Transfer learning provides an effective way in training a large network using scarce training
data without overfitting. For deep CNNs, the neurons’ generality versus the specificity of different
layers in transition has been analyzed in [25], and it has been proved that the transferring features
even from distant tasks outperform the random weights. Previous studies reveal the transferability
of different layers in deep CNNs trained with ImageNet dataset, and the transferring results show
better performance than other standard approaches on different datasets, such as medical image
datasets [26,27], X-ray security screening images [28] and the PASCAL Visual Object Classes (VOC)
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dataset [29]. ImageNet is widely experienced as the source dataset in most transfer learning cases
due to its abundant categories and significant number of images. However, the SAR images are
formed by coherent interaction of the transmitted microwave with targets. The differences in imaging
mechanisms result in the distinct characteristics between optical images and SAR data. For SAR
images, the pixels refer to the backscattering properties of the ground features, representing a series of
scattering centers, and the intensity of each pixel depends on a variety of factors, such as types, shapes
and orientations of the scatterers in the target area. While the optical images show evident contours,
edges and other details that can be easily distinguished by the human vision system.

Differently to [26–29], considering the distance between optical and SAR imagery, we adopt a large
number of unlabeled SAR scene images, which are much more easily acquired than SAR targets, as the
source dataset instead of ImageNet. Specifically speaking, the pre-trained layers are obtained firstly by
training a stacked convolutional auto-encoder on unlabeled SAR scene images. Two different target
tasks are explored in our work, one of which is to reconstruct the SAR target data with the encoding
and decoding convolutional layers and the other is to classify the SAR targets into specific categories.
The reconstruction error in the first target task plays a feeding back role in the classification task to
improve the results. We explore the transferability of those convolutional layers in the case of different
distances between the source task and target task, discussing how to transfer the features according to
the specific task. The transfer performance shows significant improvements in the MSTAR dataset,
outperforming the state-of-the-art even in a reducing scale of training data. The main contributions in
this paper are reflected in the following:

• Firstly, this paper makes an attempt on transfer learning to solve the SAR target recognition
problem for the first time and explores the appropriate source data to transfer from. We validate
that it is better to adopt SAR scene images as the source data for transfer learning in SAR
target recognition than optical imagery. Instead of using the existing model trained with labeled
ImageNet dataset in most literature, the unlabeled SAR scene imagery is utilized to train the
convolutional layers to be transferred to SAR recognition tasks later.

• Secondly, two different target tasks are contained in our work. We explore the transferability of
convolutional layers in different target tasks and verify that the the bypass extended from the
reconstruction task with reconstruction errors can make an effort on classification task during
transfer learning.

• Thirdly, we demonstrate that the proposed method outperforms the state-of-the-art CNN
based method in SAR target recognition with scarce data, which is the bottleneck for SAR
target classification.

The rest of this paper is organized as follows. In Section 2, we briefly present the related work.
Section 3 details the proposed method. Experimental results as well as the discussion are given in
Section 4, and Section 5 concludes this paper.

2. Related Work

In this section, a brief overview of the previous studies related to SAR target recognition
using CNNs is provided, followed by a short introduction to transfer learning and stacked
convolutional auto-encoders.

2.1. SAR Target Recognition with CNNs

Learning hierarchical features automatically from SAR dataset performs reasonable property in
recognition. Chen et al. [30] firstly indicated that one single convolutional layer could effectively extract
SAR targets feature representation with unsupervised learning using randomly sampled SAR targets
patches and achieve the accuracy of 84.7% in 10-class classification tasks. Morgan et al. [31] proposed
an architecture of three convolutional layers, following a fully connected layer of Softmax as a classifier,
increasing the accuracy to 92.3%. Moreover, Wilmanski et al. [32] explored different learning algorithms
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of training CNNs, finding that the AdaDelta technique that can update the various learning rates of
hyper-parameters outperformed the other techniques such as stochastic gradient descent (SGD) and
AdaGrad. Recently, in [24], a five-layer all-convolutional network was proposed. The authors adopted
a drop-out method in a convolution layer and removed the fully connected layer to avoid over-fitting
since the limited training data was insufficient to train the deep CNNs. The experiment results showed
the state-of-the-art performance of SAR target recognition in the MSTAR dataset, reaching an accuracy
of 99.13%.

2.2. Transfer Learning

Facing the problem of collecting enough training data to rebuild models, transfer learning
aims to transfer knowledge from a large dataset known as source domain to a smaller dataset
named target domain. Either the feature spaces between domain data are different or the source
tasks and the target tasks focus on different topics, boosting the performance of the target task [33].
Transfer learning using CNNs is commonly used in different fields. Oquab et al. [29] demonstrates
the layers trained on ImageNet can be reused to extract the mid-level features of images in PASCAL
VOC dataset effectively. In the field of medical images processing where the data-poor exists as well,
transfer learning is an effective method when employing CNNs to medical image classification with the
help of sufficient annotated natural images. Shin et al. [34] accomplished two specific computer-aided
detection problems in medical images by fine-tuning CNN models pre-trained from natural image
dataset. They further explored different popular CNN architectures and dataset scales, concluding
that the trade-off between better learning models and using more training data should be carefully
considered. Specific to lung tissue pattern classification, Christodoulidis et al. [35] pre-trained the
network on six general texture databases, respectively, and fine-tuned on the target database after
transferring different numbers of layers, achieving a gain in performance of 2% compared to the same
network trained on the targets. The mechanisms of deep transfer learning for medical images are
analyzed in [36].

2.3. Stacked Convolutional Auto-Encoders

Inspired by fully connected auto-encoders and convolutional neural networks, a convolutional
auto-encoder was proposed to consider the 2D image structure during training and can be
stacked to form a deep hierarchy [37]. In this study, the architecture of stacked convolutional
auto-encoders (SCAE) is composed of two parts, encoder and decoder, similar to a conventional
auto-encoder. Differently, SCAEs use shared weights to preserve spacial locality, which is related
to convolution operation. The authors also indicated that Max-pooling is essential in SCAEs as it
makes the learned filters become more general. Based on the conception of SCAE proposed before,
Glorot et al. [38] demonstrated that rectified linear units (ReLUs) can make the supervised learning
more efficiently in CNNs training, replacing the widely used sigmoid activation function. Instead
of using sigmoid activation function, Paine et al. [39] applied ReLUs and some regularization
techniques such as the use of zero-bias to CAE, which was proved to achieve superior performance to
previous methods. Zhao et al. [40] proposed the what-and-where auto-encoders which recorded the
pooling switches during Max-pooling so that the reconstruction layers in the decoding part preserved
general information. Zhang et al. [41] augmented classification CNNs with a decoding pathway
of convolutional auto-encoders, considering that the reconstructive objective preserved information
of input, which is as important as supervised objectives during training. The result shows that the
decoding pathway is helpful for the supervised learning to reach a better optima.

3. Methods

According to the notion of transfer learning, we divide our method into source part and target part.
In our work, the source task is how to represent the images in source domain and then reconstruct
them as well as possible, and the main target task is to classify the SAR targets into several categories.
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Additionally, for the purpose of employing the reconstruction loss during classification, an auxiliary
target task aiming to reconstruct the SAR targets is attached. In the following, we will describe the
proposed method in details.

3.1. Assembled Convolutional Neural Network Architecture

In order to accomplish the source and target tasks, we design an end-to-end assembled CNN
architecture, integrating the reconstruction pathway, the classification pathway and the bypass to
make the training process concise, as shown in Figure 1. The whole network can not only extract rich
features of SAR scene images transferrable to SAR target dataset, but also perfectly reconstruct the
input images, feeding back the reconstruction losses to classification pathway in order to preserve the
information of input images.

Figure 1. Assembled CNN Architecture.

Smith et al. [42] proposed the design pattern for deep CNNs, including increasing symmetry,
pyramid shape and normalizing layer input, to help deep learning practitioners choose proper
architectures for their tasks instead of being restricted to some existed architectures such as AlexNet.
We design the assembled architecture based on the deep CNNs design pattern consequently.
As depicted in Figure 1, the classification pathway of the architecture consists of five convolutional
layers, followed by fully connected layers. The counterpart of each convolutional layer constitutes the
decoding part in the reconstruction pathway and the bypass extended from every deconvolution layer
with reconstruction loss is added to the classification layer. Specifically, our work adopts the pyramid
structure, which means as the network goes deeper, the outputs of each layer are down-sampled by
Max-pooling and the channel of the feature maps increase on the other hand. The number of the
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feature maps from the first convolution layer to the fifth convolution layer is shown in Table 1. Zero
padding is added to preserve the spatial size of the input volume before the convolution operation.
For each convolutional layer, a Max-pooling layer with size of 2 × 2 without overlapping is followed
to reduce dimensions of the output feature maps and introduces a form of translation invariance.
We explore two situations of the fully-connected layer (fc6), as shown in Table 1, either to preserve the
128-neuron fc layer or to cut off it. The output of the last fully-connected layer is fed to a 10-way Softmax
classifier, which is a generalization of Logistic Regression to multiple classes, giving a probabilistic
interpretation of each label. Rectifier Linear Units (ReLUs) are selected as the activation functions
after each convolutional layer and fully-connected layer since ReLUs do not saturate and have high
computational efficiency compared with the sigmoid function.

Table 1. Design scheme of classification pathway.

Layer Kernel Size Channel Padding

conv1 5 × 5 48 2
conv2 5 × 5 96 2
conv3 3 × 3 128 1
conv4 3 × 3 128 1
conv5 3 × 3 256 1

Number of Neurons

fc6 128 (optional)
fc7 10

In terms of the reconstruction pathway, five unpooling and deconvolution layers are connected
after the fifth convolutional layer in a cascade way to rebuild the input. Deconvolution layers
implement transpose convolution operation, which is the reverse process of the convolution,
serving as a decoding layer of the convolutional auto-encoder. The details will be elaborately
explained in Section 3.2.

Additionally, the feedback bypass is attached in the architecture, which combines the
reconstruction loss of each deconvolution layer in reconstruction pathway with the Softmax loss
of the last fully-connected layer in classification pathway, aiming at improving the result of main
target task. We will describe the details specifically in Section 3.3.

3.2. Unsupervised Learning on Source Task

To complete the source task with a large amount of unlabeled SAR data, an unsupervised learning
method of stacked convolutional auto-encoders is applied in our work to train a hierarchical structure
of several convolutional layers.

Each convolution layer is trained in a similar way and the individual unit is shown as Figure 2.
For each two-dimensional feature map as the input of the unit, the encoding part decomposes it and
the corresponding decoding part reconstructs it. In the lth layer’s training, there is the input xl−1

with Ml−1 channels, that is, Ml−1 feature maps in 2-D arrays of xl−1
1 , . . . , xl−1

Ml−1
generating from the

previous layer . The representation of the jth feature map in encoding part is given by

al
j =

Ml−1

∑
i=1

xl−1
i ∗ Kl

ij + bl
j, j = 1, 2, . . . , Ml , (1)

hl
j = f (al

j), (2)

where Kl
ij and bl

j denote the jth kernel and bias of the lth layer, respectively. ∗ represents the 2D
convolution operation and f denotes the Rectified Linear Units f (x) = max(0, x). In order to maintain
the size of feature maps after convolution, we use zero-paddings of k−1

2 where k denotes the kernel size.



Remote Sens. 2017, 9, 907 7 of 21

Figure 2. One-layer convolutional auto-encoder.

In Max-pooling operation, we use the “what” and “where” method [40]. It means that the
output of each Max-pooling layer contains “what” and “where” variables, preserving the values
of Max-pooling results and the pooling switches, respectively. Instead of using fixed positions in
unpooling operation, we record the locations of Max-pooling to maintain where the dominant features
are located. With respect to the decoding part, the pooling switches variables together with the
values are used to unpool the feature maps. Specifically speaking, the locations in Max-pooling are
set as pooling values and the other positions are zero padding. The mathematical illustrations of
Max-pooling and unpooling are given by

downhl = D(hl), (3)

uphl = U(downhl). (4)

After unpooling the feature maps, the reconstruction yl−1 is given by:

yl−1
i = f (

Ml

∑
j=1

uphl
j ∗R(Ql−1

ji ) + cl−1
i ), i = 1, 2, . . . , Ml−1 (5)

where Q denotes the kernels in deconvolution layers and R(·) indicates that the kernel Q is rotated
180 degrees; in other words, the matrix Q is flipped over both dimensions. Similar to the convolutional
layers, the zero-padding of k−1

2 is utilized to maintain the size of feature maps.
Mean Square Error (MSE) is applied to measure the reconstruction loss; as a result, the loss

function of the lth deconvolution layer to minimize is given by

J(K, b, Q, c) = MSEl =
Ml−1

∑
i=1

1
2N
‖xl−1

i − yl−1
i ‖

2
F, (6)

where N denotes the size of each feature map of the l − 1th convolutional layer.
The set of parameters K, Q, b and c are learned via minimizing the loss function (3), completed by

mini-batch stochastic gradient descent (SGD) with momentum and weight decay. The gradient of loss
function with respect to each parameter is given by Equations (7)–(10):

∂J(K, b, Q, c)
∂K

= δl
c ∗R(xl−1), (7)

∂J(K, b, Q, c)
∂Q

= δl
d ∗ uphl , (8)
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∂J(K, b, Q, c)
∂c

= ∑
u,v

(δl
d)u,v, (9)

∂J(K, b, Q, c)
∂b

= ∑
u,v

(δl
c)u,v, (10)

where δl
c and δl

d denote the error term in the convolution and deconvolution layer, respectively. δl
c and

δl
d can be related to δl

s which is the error term in the sampling layer. The relations among them are
given by

δl
s = δl

d ∗Q� f ′(al), (11)

δl
c = δl

s � f ′(al), (12)

where � denotes the Hadamard product. Then, the parameters can be updated with a proper learning
rate σ, together with the momentum approach. The momentum parameter and the weight decay
parameter are set as 0.9 and 0.005, respectively. Take K as an example:

v(i+1) = 0.9 · v(i) − 0.005 · σ · K(i) − σ · 〈 ∂L
∂K
|K(i)
〉Bi , (13)

K(i+1) = K(i) + v(i+1), (14)

where i is the iteration index and 〈 ∂L
∂K |K(i)

〉Bi indicates the average partial derivative over the Bi batch.
Since we train the SCAE in layer-wise fashion, the next convolution layer to be trained is stacked

upon the previous adequately pre-trained layers as shown in Figure 3. The current layer receives
the representation from the layers below as the input. When training the l + 1th convolution layer,
the parameters of the 1th ∼ lth layers are fixed and only the parameters of current layer are updated
during the l + 1th layer training. In this way, a shallow network is trained every time a new layer is
stacked, instead of updating the parameters from bottom to top.

Figure 3. Stacked convolutional auto-encoders in layer-wise fashion for the second layer.
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3.3. Transferring Knowledge to Target Tasks

In our method, the reconstruction loss of SAR targets data is expected to be considered
during classification. Consequently, the target tasks consist of the main part about recognition and the
auxiliary part about reconstructing SAR targets.

In previous literature of transfer learning in CNN representation [43–46], CNN layers are proved to
be transferrable from natural images to other medical data, such as neuroimaging data, ultrasound data
and computed tomography (CT) images either using the off-the-shelf representations or fine-tuning
the parameters. Despite the disparity between SAR scene images and SAR targets, the auxiliary target
task is very similar to the source task, both of which focus on reconstruction. Knowledge used to
transfer from the source task can be encoded into the feature representation, serving as the off-the-shelf
features. By fixing the parameters in encoding part of reconstruction pathway, the decoding part is
fine-tuned in a reducing learning rate with SAR targets.

In terms of the main target task of recognizing the different categories of SAR target data, which
is very dissimilar to the source task, the classification pathway is designed, with two fully-connected
layers concatenated after the encoding part of the reconstruction pathway. The convolutional layers
are transferred from the pre-trained network and the rest of the classification pathway is randomly
initialized. We fine-tune the transferred layers instead of freezing them to achieve a better performance.
During the classification task, both the classification pathway and reconstruction pathway are activated,
together with the bypass attached. The overall loss function contains two parts:

Loss = Lossrecon + Losscls, (15)

where Lossrecon refers to the MSE loss in reconstruction pathway, denoted as

Lossrecon =
5

∑
i=1

λiMSEi, (16)

and Losscls denotes the cross-entropy loss between the label and the output of the last layer when
using a Softmax classifier. The Lossrecon preserves the information of intermediate layers, acting
as a regularizer during supervised training, which prevents over-fitting and gradient vanishing.
Different values of λi can be experienced to control the influence of each layer.

4. Experiments and Discussions

To evaluate the proposed method, we set the experiments as the following. Firstly, a brief
introduction of datasets is given in Section 4.1 and the training procedure of the proposed method is
illustrated in Section 4.2. After that, we train the classification pathway from scratch with SAR targets
as our baseline, as shown in Section 4.3. To estimate the effectiveness of transfer learning, we compare
the results between the baseline and the proposed method in different aspects, shown in Section 4.4.
In addition, Section 4.5 explores different sizes of training datasets on our method, compared with the
baseline and one of the state-of-the-art methods.

4.1. Materials

4.1.1. Source Domain Dataset

A large number of unlabeled SAR scene images are utilized to perform as the source domain.
These images are collected by TerraSAR-X, a German Earth-observation satellite that provides
high-quality and precise Earth observation data of 3 m resolution with StripMap mode. We select the
areas covering various landscapes such as cities, forests, mountains and cultivated lands and crop
them into 128 × 128 pixels with overlap, as shown in Figure 4. The number of SAR scene images is up
to 50,000.
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Figure 4. Different types of SAR scene images. (a) cultivated lands; (b) mountains; (c) rivers; (d) cities.

4.1.2. Target Domain Dataset

In the target domain, we employ the Moving and Stationary Target Acquisition and Recognition
(MSTAR) public release dataset in our work [50]. MSTAR dataset, collected by Sandia National
Laboratory SAR sensor platform, is extensively used in the research of SAR automatic target recognition
for algorithm development. The dataset contains 10 categories of military vehicles: the T72, BTR70,
BMP2, 2S1, BRDM2, BTR60, D7, T62, ZIL131 and ZSU23, with the resolution of 1-ft on X-band. Those
images are acquired at depression angles of 15◦ and 17◦, serving as the testing dataset and the training
dataset, respectively, and the aspect angle covers in the range of 0◦ to 360◦. Details of MSTAR dataset
for experiment are shown in Table 2. It is a practical approach to make data augmentation for the
purpose of improving the performance of training CNNs. Therefore, we augment the MSTAR dataset
with translation and mirroring by ten times.

Table 2. Training and testing dataset.

Category 2S1 BMP2 BRDM2 BTR60 BTR70 D7 T62 T72 ZIL131 ZSU23 Total

Training(17◦) 299 233 298 256 233 299 299 232 299 299 2747
Testing(15◦) 274 195 274 295 196 274 273 196 274 274 2425

4.2. Training Procedure of Transfer Learning Based Method

1. Pre-train Reconstruction Pathway with SAR Scene Images
As is elaborated in Section 3, we train the reconstruction pathway using stacked convolutional
auto-encoders with pooling-switches in layer-wise fashion on unlabeled SAR scene dataset.

2. Transfer Learning to Target Tasks

• Classification Pathway Transferred
In this part, we froze the decoding part of reconstruction pathway and reuse the encoding
layers to train the classification pathway with MSTAR dataset. The learning rate of five
convolutional layers are reduced to a small value compare with the full-connected layers,
which are Gaussian randomly initialized.

• Reconstruction Pathway Transferred
For the auxiliary target task, we froze the classification pathway and only fine-tune the
decoding part with a reduced learning rate with MSTAR dataset regardless the categories.

3. Fine-Tune the Assembled Network with Bypass Activated
Finally, we activate all the pathways and joint the reconstruction loss to the classification pathway.
We fine-tune the whole network by adjusting the loss weight of each reconstruction layer to an
appropriate value.
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4.3. Baseline: Training the Assembled CNN with MSTAR from Scratch

In this subsection, we only use MSTAR dataset to train the network from scratch as our baseline.
More specifically, to complete the primary target task and the auxiliary target task, the classification
and the reconstruction pathway are trained separately. We initialize the weight parameters of each

layer randomly from Gaussian distributions of zero mean and a standard deviation of
√

2
n , where n

denotes the number of the input neuron. This initialization method ensures that all neurons in the
network initially have approximately the same output distribution and empirically improves the rate
of convergence. The details about the parameters initialization of the classification pathway are shown
as Table 3, similar to the reconstruction pathway.

Table 3. Classification pathway parameter initialization (Gaussian distribution).

Layer Conv1 Conv2 Conv3 Conv4 Conv5 Fc6 Softmax

weight (std) 0.04 0.02 0.04 0.04 0.03 0.002 0.04

We train the network using mini-batch SGD, with an initial learning rate of 0.01 and a reducing
factor of 0.1 after 2000 iterations. The momentum parameter is set to 0.9 and the weight decay parameter
0.005. The result of the classification task is shown in Table 4, reaching an average accuracy of 98.3%.
We select an image from test dataset to evaluate the training result of reconstruction pathway. Table 5
records the MSE loss of the image and the reconstruction signal after each convolution layer being
trained. Figures 5 and 6 show the reconstructed image and the learned kernels of each convolutional
layer respectively.

Table 4. Confusion matrix of 10-class recognition result (baseline).

Category 2S1 BMP2 BRDM2 BTR60 BTR70 D7 T62 T72 ZIL131 ZSU234 Accuracy

2S1 270 0 0 0 0 0 3 0 0 1 98.54%
BMP2 0 180 0 0 0 0 0 15 0 0 92.3%

BRDM2 0 3 270 0 0 0 0 1 0 0 98.54%
BTR60 0 1 0 195 0 0 0 0 0 0 99.49%
BTR70 1 0 1 0 182 0 2 9 0 0 93.33%

D7 0 0 0 0 0 272 0 0 0 0 100%
T62 0 0 0 0 0 1 272 0 0 0 99.63%
T72 0 0 0 0 0 0 1 195 0 0 99.49%

ZIL131 0 0 0 0 0 0 0 0 274 0 100%
ZSU234 0 0 0 0 0 0 0 0 0 274 100%

Accuracy 98.3%

Table 5. Reconstruction loss of each layer (baseline).

Training Layer Conv1 Conv2 Conv3 conv4 conv5

loss 0.1977 0.336 0.43 0.45 0.5
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Figure 5. Training results of reconstruction pathway (baseline). (a) the input image; (b–f) the
reconstruction images of five convolutional layers.

Figure 6. Training results of reconstruction pathway (baseline). (a–e) the kernels of convolutional
layers 1–5, respectively.

4.4. Transfer Learning: from Source Task to Target Tasks

Transfer learning is applied to both primary target task (10-class MSTAR recognition) and auxiliary
target task (reconstructing MSTAR dataset). We firstly concentrate on the source task to train the
reconstruction pathway, following the training procedure in Section 4.2. The reconstruction results are
shown in Figure 7.

Figure 7. Training results of reconstruction pathway (source task). (a) the input image; (b–d) the
reconstruction images of the 1st, 3rd, and 5th convolutional layer, respectively.
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4.4.1. Auxiliary Target Task

In this part, we firstly attempt to fine-tune all the layers in reconstruction pathway with MSTAR
dataset on pre-trained network. The variation of L2 norm of each kernel is computed to estimate the
changes during transfer learning. The changes of convolutional kernels in each layer are analyzed in
Table 6 and the convolutional kernels in the first layer before and after transfer learning are shown in
Figure 8. The phenomenon can be observed that the convolution kernels are barely changed during
the transfer learning from source task to auxiliary target task, both of which focus on keeping good
reconstruction of the input. As a result, we can use the off-the-shelf representations of the pre-trained
network, extracting features from the convolutional layers directly and fine-tuning the decoding part
only to reduce the training time.

Table 6. Average kernel variation(%) in L2-norm.

Layer (Kernels Num.) Conv1(48) Conv2(96) Conv3(128) Conv4(128) Conv5(256)

Changes(%) in L2-norm 0.36 0.07 0.1 0.1 0.1

Figure 8. The 1st convolutional layer kernels of baseline and transfer learning method. (a) baseline;
(b) transfer learning method.

When training the reconstruction pathway in layer-wise fashion only with MSTAR dataset from
scratch, the reconstruction loss of the input layer is 0.5809 while the transfer learning method can
reduce the result to 0.404. We take an image of MSTAR testing dataset as visualization shown in
Figure 9, indicating that the transfer learning based method can reconstruct more details in the
reconstructing images.

Figure 9. Reconstruction comparison between baseline and transfer learning. (a) input image;
(b) reconstruction image of SCAE training from scratch; (c) reconstruction image of transfer learning.
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4.4.2. Primary Target Task

The classification results of transfer learning based method are recorded in Table 7. The confusion
matrix is shown in the table, indicating the recognition accuracy of each category. Compared with
the result in Table 4, it is obvious that the transfer learning method improves the recognition rate of
10-class SAR vehicle targets, achieving an improvement with 0.75%.

In addition, variations of convolution kernels are observed during primary target task transfer
learning. The kernel numbers of each convolutional layer, which changed over 40% in L2-norms, are
recorded in Table 8 and kernel visualizations of the first and the third convolutional layer are shown in
Figure 10. From Table 8, we can see that a majority of kernels have significantly changed (over 30% in
`2-norm) in the first convolution layer, while the last several layers show little change. This can be
validated in Figure 10 as well. Among them, the first convolutional layer has the highest variation
than other four layers, which is similar to the auxiliary target task. Furthermore, it can be observed
that the convolution kernels of each layer in auxiliary target task have minuscule change compared
with the primary target task. This is possibly due to the dissimilarity degree of two tasks. Both the
source task and the auxiliary target task aim at encoding the input and reconstructing perfectly as far
as possible, while the primary target task focus on classification, which is more dissimilar to the source
task. Thus, instead of using off-the-shelf feature representations in auxiliary target task, we fine-tune
all the convolutional layers in classification pathways to achieve a better performance.

After adding the bypass to the classification pathway, the final classification accuracy achieves
99.09% on average, which brings about a minor improvement of 0.04%, compared to the 0.17% change
transfer learning makes. Figure 11 shows the loss curve of test dataset during training, illustrating
the benefit of bypass. The test loss converges at the later stage of transfer learning and vibrates in a
small range as shown in (a). After that, training the current network with the attached bypass enables
the loss to decrease again as shown in (b). The attached bypass makes a further effort to improve the
performance, maintaining the high recognition rate in the case of cutting down the training number to
200 per class specifically (see Figure 13).

Table 7. Confusion matrix of 10-class recognition results (transfer learning).

Category 2S1 BMP2 BRDM2 BTR60 BTR70 D7 T62 T72 ZIL131 ZSU234 Accuracy

2S1 274 0 0 0 0 0 0 0 0 0 100%
BMP2 0 194 1 0 0 0 0 0 0 0 99.49%

BRDM2 1 2 271 0 0 0 0 0 0 0 98.9%
BTR60 0 0 0 196 0 0 0 0 0 0 100%
BTR70 1 1 0 5 182 0 4 1 1 0 93.3%

D7 0 0 0 0 0 271 1 0 2 0 98.9%
T62 0 0 0 0 0 1 272 0 0 0 99.63%
T72 0 1 0 0 1 0 0 194 0 0 98.9%

ZIL131 0 0 0 0 0 0 0 0 274 0 100%
ZSU234 0 0 0 0 0 0 0 0 0 274 100%

Accuracy 99.05%

Table 8. Kernel variations in L2-norm of each convolutional layer (primary target task).

Layer Conv1 Conv2 Conv3 Conv4 Conv5

Numbers of Kernels (Changes > 30%) 37/48 5/96 0/128 0/128 7/256
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Figure 10. Convolutional layer kernels of baseline and transfer learning. (a,b) the kernels in the 1st
convolutional layer before and after transfer learning; (c,d) the kernels in the 3rd convolutional layer
before and after transfer learning.

Figure 11. Testing loss curve during training. (a) the testing curve during transfer learning; (b) the
testing curve after attaching the bypass.

According to Table 1, we have explored two different architectures, with and without the
128-neuron fc layer, in order to evaluate our method. The result shows that adding the optional
fully-connected layer improves the recognition rate from 98.5 to 99.05%, which indicates that it seems
to be inappropriate to cut off the fully-connected layer blindly to avoid overfitting in the case of limited
training data, as it plays an efficient role in developing more abstraction and high-level features,
beneficial to classification.

4.5. The Effectiveness of Transfer Learning

In Figure 12, we compare the recognition results of our transfer learning based method
(CNN-TL-bypass) with the conventional approach (SVM) and some state-of-the-art SAR recognition
methods in recent years. It is 8.67%, 5.43%, 5.68%, 2.85%, 4.09% better than SVM, sparse representation
of monogenic signal (MSRC) [18], tri-task joint sparse representation (TJSR) [47], supervised
discriminative dictionary learning and sparse representation (SDDLSR) [8] and joint dynamic sparse
representation (JDSR) [48]. In addition, our method can achieve a comparable performance to the
state-of-the-art methods based on deep learning (A-ConvNet [24] and DCHUN [49]), shown in
Figure 12. In order to verify the advantage of our method for a further step, experiments have
been conducted on different sizes of training dataset. By randomly selecting 200, 100, 50 samples in
each category of MSTAR training set as the training samples, respectively, we experiment with the
A-ConvNet method [24], the baseline (written as CNN-baseline), and the proposed method without
bypass (written as CNN-TL) and proposed method with bypass (written as CNN-TL-bypass). The
recognition rate of each method is shown in Figure 13.
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Figure 12. Recognition rate of different methods with full training sets.

Size of Training Set all part200 part100 part50
A-ConvNet 98.51% 98.02% 96.41% 95.34%

AlexNet-ImageNet-TL 96.62% 96.16% 95.75% 93.48%
CNN-baseline 98.88% 98.60% 98.14% 96.37%

CNN-TL 99.05% 98.88% 98.30% 97.11%
CNN-TL-bypass 99.09% 99.09% 98.50% 97.15%
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Figure 13. Recognition rate of different methods with reducing training sets.
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To illustrate the results precisely, we replicate the experiment of [24] and obtain an accuracy
of 98.51%, which is lower than what the literature proposed, probably due to the different
experiment settings. Although the A-ConvNet achieves extraordinary success in recognizing a
10-class MSTAR dataset, according to whether the literature (99.13%) or our replication (98.51%),
the performance fiercely deteriorates when reducing the training data, similar to results of the
CNN-baseline of which the network is trained with the MSTAR dataset from scratch as well. In contrast,
the transfer learning based method decreases the tendency of dramatic deterioration. Compared to
98.02% (part-200), 96.04% (part-100) and 95.34% (part-50) for the state-of-the-art deep learning based
approach (A-ConvNet) [24] in SAR ATR, our method achieves 1.07%, 2.11% and 1.79% better results.
Transfer learning is 0.17%, 0.28%, 0.16% and 0.74% better than baseline with full training dataset,
part-200 dataset, part-100 dataset and part-50 dataset, respectively. According to [49], their network can
achieve an accuracy of 94.97% when using about 30% training data to train it. In our work, however,
the accuracy can reach 97.15% with less than 20% training data (part-50), which has a superiority of
2.18% compared with [49].

By analyzing the loss curve under different experiment setups shown in Figure 14, we find that
transfer learning makes the gradients drop faster than those in baseline case in which the network is
trained from scratch, obviously appeared with a smaller training dataset. Moreover, the proposed
method is effective at avoiding over-fitting to some degree, narrowing the gap between training and
testing loss (or accuracy), preventing the model performance on testing dataset from getting worse.

In our work, the abundant unlabeled SAR scene images are chosen as our source data to pre-train
the network transferred to the SAR classification task, instead of the ImageNet dataset, which is
widely adopted in previous studies. AlexNet [19] trained on ImageNet, by contract, is experimented
to transfer the five convolutional layers to our target task (written as AlexNet-ImageNet-TL). For the
full training dataset, the AlexNet-ImageNet-TL achieves 96.62% on 10-class classification of MSTAR,
as shown in Table 9. As the training dataset of target task decreases to part-200, part-100 and part-50,
the accuracies drop to 96.16%, 95.75% and 93.48%, which are 2.93%, 2.75% and 3.67% lower than
CNN-TL-bypass, respectively, shown in Figure 13. Thus, it can be seen that SAR scene images are
more appropriate than optical images in transfer learning to solve the SAR target recognition problem
for the similarity between the source data and the target data.

Table 9. Confusion matrix of 10-class recognition result (AlexNet-ImageNet-TL).

Category 2S1 BMP2 BRDM2 BTR60 BTR70 D7 T62 T72 ZIL131 ZSU234 Accuracy

2S1 272 0 0 0 0 0 1 0 0 1 99.27%
BMP2 3 171 0 3 7 0 0 1 1 0 91.93%

BRDM2 0 2 264 3 2 0 0 3 0 0 96.35%
BTR60 3 1 1 189 1 0 0 1 0 0 96.43%
BTR70 0 1 0 6 177 0 4 6 0 1 90.77%

D7 0 0 0 0 0 266 8 0 0 0 97.08%
T62 0 0 0 0 0 2 270 0 1 0 98.9%
T72 0 1 1 3 2 0 2 186 0 1 94.9%

ZIL131 0 0 0 0 0 0 0 0 274 0 100%
ZSU234 0 0 0 0 0 0 0 0 0 274 100%

Accuracy 96.62%
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Figure 14. Testing loss curve during training. (a,b) the testing curve of baseline and transfer learning
with 200 training images per category; (c,d) the testing curve of baseline and transfer learning with 50
training images per category.

5. Conclusions

For the purpose of overcoming the difficulties of training a deep CNN resulting from limited
SAR target images, we proposed a transfer learning based method to transfer knowledge learned
from a large amount of unlabeled SAR scene data to SAR target recognition tasks and feedback
to the reconstruction loss to the classification pathway. Our method is competitive both with
the state-of-the-art methods based on CNNs and the conventional approaches on MSTAR dataset
recognition when using all training samples, and achieves superior performance than that when
experimenting on a smaller size of training data. The result reveals that transfer learning is an effective
way to solve the data hungry problem and knowledge learned from unlabeled SAR scene images is
transferrable both on SAR target classification and reconstruction task. What to transfer and how to
transfer are important issues in transfer learning. Choosing an appropriate source dataset and whether
to use the off-the-shelf representations or to fine-tune the parameters should be deliberated. In addition,
considering the reconstruction loss is beneficial for improving the classification performance to
some degree.
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