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Abstract: Monitoring, assessing, and understanding the structural health of large infrastructures,
such as buildings, bridges, dams, tunnels, and highways, is important for urban development and
management, as the gradual deterioration of such structures may result in catastrophic structural
failure leading to high personal and economic losses. With a higher spatial resolution and a
shorter revisit period, interferometric synthetic aperture radar (InSAR) plays an increasing role
in the deformation monitoring and height extraction of structures. As a focal point of the InSAR
data processing chain, phase unwrapping has a direct impact on the accuracy of the results.
In complex urban areas, large elevation differences between the top and bottom parts of a large
structure combined with a long interferometric baseline can result in a serious phase-wrapping
problem. Here, with no accurate digital surface model (DSM) available, we handle the large
phase gradients of arcs in multitemporal InSAR processing using a long–short baseline iteration
method. Specifically, groups of interferometric pairs with short baselines are processed to obtain
the rough initial elevation estimations of the persistent scatterers (PSs). The baseline threshold
is then loosened in subsequent iterations to improve the accuracy of the elevation estimates step
by step. The LLL lattice reduction algorithm (by Lenstra, Lenstra, and Lovász) is applied in the
InSAR phase unwrapping process to rapidly reduce the search radius, compress the search space,
and improve the success rate in resolving the phase ambiguities. Once the elevations of the selected
PSs are determined, they are used in the following two-dimensional phase regression involving
both elevations and deformations. A case study of Lupu Bridge in Shanghai is carried out for the
algorithm’s verification. The estimated PS elevations agree well (within 1 m) with the official Lupu
Bridge model data, while the PS deformation time series confirms that the bridge exhibits some
symmetric progressive deformation, at 4–7 mm per year on both arches and 4–9 mm per year on the
bridge deck during the SAR image acquisition period.

Keywords: deformation monitoring; elevation extraction; InSAR; LLL lattice reduction; long–short
baseline iteration; Lupu Bridge

1. Introduction

Space borne interferometric synthetic aperture radar (InSAR) technology makes use of
interferometric image pairs of the same ground area obtained from repeating satellite orbits.
Interferometric phases from the image pairs can be used to determine elevation and deformation in
the radar line of sight (LOS) direction [1,2]. With a high spatial resolution and a short revisit period,
InSAR can be used for large-scale deformation monitoring and elevation extraction and has great
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application potential in areas such as health monitoring of large structures [3–9]. As interferograms
are produced by the complex multiplication of coherent synthetic aperture radar (SAR) images, phase
unwrapping is required to determine the number of whole phase cycles for arcs of interferometric phase
observables in multitemporal InSAR data processing. Phase unwrapping is a core of InSAR technology.
Many methods have been developed for phase unwrapping, including, e.g., the two-dimensional
branch-cut method [10], the quality map guidance algorithm [11], the region-growing algorithm [12],
the network flow method [13,14], three-dimensional phase unwrapping [15], and some others [16–18].
Each of the methods has its advantages and limitations.

In mathematics, phase unwrapping can be seen as the closest lattice vector problem; the lattice
reduction algorithm is designed to find the shortest vector in a two-dimensional grid. In 1982, Lenstra,
Lenstra, and Lovász proposed the LLL lattice reduction algorithm [19] to extend the search space to an
n-dimensional space. Since the lattice reduction method can rapidly reduce the search radius, compress
the search space, and improve the successful rate of ambiguity resolution, it has been widely used in
integer programming [20], cryptography [21,22], number theory [23], and other fields. For example,
it was applied by Liu to resolve Global Navigation Satellite System (GNSS) phase ambiguity [24].
We propose in this paper to use the LLL lattice reduction algorithm for InSAR phase unwrapping.

The classical permanent scatterer interferometry (PSI) model estimates linear deformation rate
and elevation error simultaneously [1]. However, because the interferometric fringes are relatively
dense in the case of a long baseline, a non-continuous steep slope phase corresponding to a large
elevation gap may bring various challenges to a permanent scatterer (PS) arc’s solution. For example,
the mean/sigma ratio of an arc may exceed the threshold value, so that some PSs may be eliminated.
The obtained ambiguity may not be accurate, or the phase may be no longer continuous. Long-baseline
interferometric pairs correspond to a smaller elevation ambiguity (namely, more accurate elevation);
however, a long baseline also increases the difficulty of phase unwrapping. Conversely, short-baseline
interferometric pairs correspond to a large elevation ambiguity (namely, less accurate elevation),
but the interferometric fringes are relatively smooth and much easier to unwrap. In view of this,
this paper makes use of the long–short baseline iteration method [25–28] for multitemporal InSAR
data processing, which first selects short baseline interferometric pairs for a one-dimensional elevation
solution, and then gradually enlarges the spatial baseline threshold and reduces the phase gradient
with the elevation components calculated from the previous iteration. Once the elevations of the
selected PSs are obtained with suitable accuracy, they are used in the following two-dimensional
phase regression involving both the elevations and deformations. Finally, the linear and seasonal
deformations are extracted from the multitemporal InSAR time series.

The paper demonstrates a method suitable for the high-phase-gradient phase unwrapping
problem with no digital surface model (DSM) available in multitemporal InSAR processing.
The long–short baseline iteration method is adopted to deal with the problem of the large phase
gradients of the arcs, while the LLL lattice reduction algorithm is applied to rapidly resolve phase
ambiguity. A case study of Lupu Bridge validates the usefulness of the proposed method.

2. Research Area, Data and Methods

2.1. Research Area and Data

The research area is the Lupu Bridge (Figure 1) in Shanghai, China. This bridge has been in
operation since 2003. The bridge is about 750 m long and 100 m tall. As the first arch bridge on the
Huangpu River and the world’s second longest span all-steel arch bridge at that time, the Lupu Bridge
soon became a famous scenic spot in Shanghai. The bridge’s axis is almost perpendicular to the radar
line of sight (LOS) direction. Since the bridge structure is rather large, and the PS points of the bridge
are sparse, it is quite difficult to form a connected PS network and resolve the arcs by the traditional
PSI method.
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Thirty-five (35) ascending X-band Cosmo-SkyMed SAR images are used. The key parameters of
the images are shown in Table 1.

Figure 1. Lupu Bridge: (a) side view; (b) top view (red circle surrounding the bridge) (Cr. Baidu).

Table 1. Parameters of the ascending Cosmo-SkyMed images.

Time Range Number
of Scenes Azimuth Lines Range Columns Incident

Angle (◦) Heading (◦) Azimuth
Resolution (m)

Range
Resolution (m)

10 December 2008–
6 November 2010 35 400 250 40 −10.34 2.25 1.25

2.2. Data Processing Chain

2.2.1. Long–Short Baseline Iteration PSInSAR Method

Figure 2 shows the workflow of the proposed method. As there is no accurate DSM data
available, it is difficult to perform traditional two-dimensional phase unwrapping as the initial
elevation value contributes considerably to the convergence of the algorithm. Therefore, the long–short
baseline iteration PSInSAR method is applied for one-dimensional, accurate elevation extraction.
Only interferometric pairs with a short temporal baseline are selected assuming no deformation exists.
The thresholds of the interferometric perpendicular baseline in each iteration are loosened gradually as
shown in Table 2 to improve the elevation accuracy. Note that the elevation ambiguity ∆h is calculated
from the perpendicular baseline,

∆h =
λ× γ× sin θ

2b
(1)

where ∆h is the elevation ambiguity, i.e., the elevation change when the phase varies by 2π; λ is the
radar wavelength; γ is the range between the satellite and the illuminating scene; θ is the incident
angle; and b is the perpendicular baseline.

Table 2. Interferometric perpendicular baseline thresholds in a long–short baseline permanent scatterer
interferometric synthetic aperture radar (PSInSAR) iteration.

Iteration
Round

Temporal
Baseline (Day)

Perpendicular
Baseline (m)

Number of
Interferometric Pairs

Number of Arcs
Used in the Net

Elevation
Ambiguity (m)

1 <65 <50 8 1320 150.0
2 <65 <200 38 1271 37.6
3 <65 <360 58 1395 20.9
4 <65 <600 77 1233 12.5
5 <65 <1000 119 1237 7.5
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Figure 2. Workflow of the proposed InSAR processing method. 

The selection of PSs is conducted in GAMMA software using criteria such as the mean/standard 
deviation ratio, the minimum intensity, and coherence. In general, the PSs on the bridge are 
distributed along both the arches and the pavement of the bridge deck. Based on the PSs, an initial 
Delaunay triangular network is formed with 1700 arcs. As the large elevation differences between 
the arches and the deck are likely to result in the transmission and accumulation of elevation errors 
in the network adjustment, long arcs or those with poor coherence are screened out. Subsequently, 
phase unwrapping and network adjustment are carried out. In each iteration, the elevation of the PS 
on the deck with minimum azimuth is set as the reference. This value is 53.6 m, based on the bridge 
model offered by the official Lupu Bridge maintenance company. After five iterations, with a 
perpendicular baseline threshold condition of 1000 m, the PSs elevation corrections become very 
small; therefore, the elevation values obtained in the fifth iteration are considered the final solution. 
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The selection of PSs is conducted in GAMMA software using criteria such as the mean/standard
deviation ratio, the minimum intensity, and coherence. In general, the PSs on the bridge are distributed
along both the arches and the pavement of the bridge deck. Based on the PSs, an initial Delaunay
triangular network is formed with 1700 arcs. As the large elevation differences between the arches and
the deck are likely to result in the transmission and accumulation of elevation errors in the network
adjustment, long arcs or those with poor coherence are screened out. Subsequently, phase unwrapping
and network adjustment are carried out. In each iteration, the elevation of the PS on the deck with
minimum azimuth is set as the reference. This value is 53.6 m, based on the bridge model offered by
the official Lupu Bridge maintenance company. After five iterations, with a perpendicular baseline
threshold condition of 1000 m, the PSs elevation corrections become very small; therefore, the elevation
values obtained in the fifth iteration are considered the final solution.
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2.2.2. The LLL Lattice Reduction Algorithm

InSAR phase unwrapping can be considered as a mixed integer least squares problem. The LLL
lattice reduction algorithm separates the unknowns into an integer part and a real part, solving the
integer part first and then the real part. In this way, the LLL algorithm provides a fast and numerically
reliable routine to the mixed integer least squares problem.

y = Ax + Bz + δ (2)

where x is a real unknown vector with k elements, x ∈ Rk∗1; z is an integer unknown vector with
n elements, z ∈ Zn∗1; A ∈ Rm∗k and B ∈ Rm∗n are known coefficient matrices with full column rank;
m is the number of observations; and y ∈ Rm∗1 is the vector of observations. Z represents the set of
integers; R represents the set of real numbers; δ is the noise vector. The aim is to solve for the unknowns
x and z based on the known matrices A, B, and observations y. The solutions should minimize the
2-norm of vector y−Ax− Bz:

min
x∈Rk,z∈Zn

‖y−Ax− Bz‖2
2 (3)

If matrix A has QR factorization (A decomposition of a matrix A into a product A = QR of an
orthogonal matrix Q and an upper triangular matrix R),

A =
[

QA QA

][ RA

0

]
(4)

where
[

QA QA

]
∈ Rm∗m is orthogonal, and RA ∈ Rk∗k is a nonsingular upper triangular

matrix. Then

‖y−Ax− Bz‖2
2 =

∥∥∥∥∥
[

QT
A

QT
A

]
y−

[
RA

0

]
x−

[
QT

AB

QT
AB

]
z

∥∥∥∥∥
2

2

= ‖QT
Ay− RAx−QT

ABz‖2
2 + ‖Q

T
Ay−QT

ABz‖2
2

(5)

If z is fixed, there must be an appropriate x ∈ Rk∗1 that ensures that the first term (‖QT
Ay−

RAx−QT
ABz‖2

2 ≥ 0) in Equation (5) is 0 so as to satisfy the minimization requirement of Equation (3).
Therefore, the problem can be decomposed into the following two problems,

1. An ordinary integer least squares problem to calculate ẑ

min
z∈Zn
‖QT

Ay−QT
ABz‖2

2 (6)

Specifically, a reduction algorithm and a search algorithm are presented to obtain the integer z
which satisfies Equation (6).

2. With z known, Equation (3) becomes a least squares problem. With ẑ brought back into
Equation (5) and setting the first term into 0, x̂ can be obtained from

RAx = QT
Ay−QT

ABẑ (7)

For simplicity, the above problem 1 is noted as:

min
z∈Zn
‖y− Bz‖2

2 (8)

where y is a known vector; z is the least squares solution required; and Bz is a vector in the grid.
Thus, seeking a solution for Equation (8) can be interpreted as searching for the grid vector that
is nearest to y. This is a closest vector problem (CVP), which has been proven to be an NP-hard
(non-deterministic polynomial hard) problem. To make the search process simple and efficient, many
reduction methods have been proposed. In this study, we use the LLL method, which has two steps,



Remote Sens. 2017, 9, 897 6 of 13

• Reduction

First, using a minimum main-element method, the QR decomposition of matrix B is carried out to
transform it into an upper triangular matrix R and an orthogonal matrix Q. Second, the non-diagonal
elements in R are reduced using an integer Gaussian transform to remove any correlation and enable
efficient searching. Third, the columns are rearranged using the minimum-column pivoting strategy to
meet the LLL reduction criterion.

• Search

After reduction, we need to search for the optimal integer solution z ∈ Zn to satisfy min
z∈Zn
‖y−Rz‖2

2.

Given a threshold β, we assume that the optimal integer solution z satisfies

f(z) , ‖y− Rz‖2
2 < β (9)

This corresponds to searching for the optimal solution within an ellipsoid.
R is then decomposed into the first (n − 1)-order submatrix and the last line, and y is decomposed

into the (n − 1)-dimensional sub-vector and the last element. Thus,

‖y− Rz‖2
2 =

∥∥∥∥∥
(

y1
yn

)
−
(

R1 r1:n−1,n

0 rnn

)(
z1

zn

)∥∥∥∥∥
2

2

= ‖(y1 − znr1:n−1,n)− R1z1‖2
2 + (yn − rnnzn)

2

(10)

To satisfy Equation (9), the following conditions need to be met,

(yn − rnnzn)
2 < β (11)

and
‖(y1 − znr1:n−1,n)− R1z1‖2

2 < β− (yn − rnnzn)
2 (12)

Equation (12) is an (n − 1)-dimensional integer least squares problem, and the corresponding

search radius is ρ =
√
(β− (yn − rnnzn)

2). The integer solution to Equation (11) falls within
[(yn − β)/rnn, (yn + β)/rnn]. Using this algorithm recursively, we can solve the upper triangular
integer least squares problem.

Once the p optimal integer solutions ẑ are obtained, we can use the following upper triangular
matrix to solve for the corresponding p real solutions: RAx̂ = QT

A
(
yeT − Bẑ

)
, where e = [1, · · · , 1]TεRp.

2.2.3. LLL Lattice Reduction Algorithm Used for PSInSAR

When applying the above LLL lattice reduction algorithm to PSInSAR data processing, by contrast,
the phase ambiguities correspond to the integer unknowns, while the elevation error and the linear
deformation rates correspond to the real unknowns, and the interferometric phases correspond to the
observations in Section 2.2.2.

Assume that there are m + 1 SAR images of the same area, obtained at time t1, . . . , tm+1,
respectively. One of the images is chosen as the master image and the other m images are the slave
images, to form m interferograms. The unwrapped phase between pixel i and pixel j in interferogram
p is expressed as

∆∅p
ij = αp × vij + βp × hij + 2π× z + δ (13)

where vij and hij are the relative displacement rate and relative elevation error between the two
pixels, respectively. βp changes with the perpendicular baseline, and αp changes with the temporal
baseline. z is the unknown number of whole phase cycles, and δ is the noise resulting possibly from
decorrelation error, nonlinear deformation, thermal noise, and so on. Note that the atmospheric phase
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is considered to be correlated in space and can be significantly reduced by differencing interferometric
phases between adjacent PSs to form an arc observation.

As an arc in an interferogram contains one-integer ambiguity, together with real unknowns
vij and hij, there are m + 2 unknowns in the m interferograms corresponding to the arc. As there are
only m observations, the observation equations formed according to Equation (13) have rank defects.
To solve this problem, the initial values of two unknown parameters are assumed to be equal to 0, i.e.,{

hij = 0
vij = 0

(14)

and will be updated iteratively. The new observation equations can be expressed as follows:

y =

(
A1
A2

)
x +

(
B1
B2

)
z + δ (15)

where A1 has m rows, and its two columns are
[
α1, . . . ,αm]T and

[
β1, . . . ,βm

]T
, respectively. A2 is a

2 × 2 identity matrix. The real unknowns x include vij and hij. B1 is an m ×m identity matrix times
2π. B2 is a 2 ×m zero matrix. If the signal-to-noise ratio of the observations is high, the solution can
be found with a few iterations.

3. Results and Discussion

3.1. Bridge Elevation Extraction

At first, only interferometric pairs with a short temporal baseline are selected assuming no
deformation exists, and only the relative elevation errors are considered as the real unknowns
in the one-dimensional elevation extraction step with LLL. The thresholds of the interferometric
perpendicular baseline length in each iteration are loosened gradually, as shown in Table 2, to improve
the elevation estimation accuracy obtained.

Figure 3 shows the side views of the PS elevations on the bridge obtained in iterations
1 (B⊥ < 50 m), 3 (B⊥ < 360 m), and 5 (B⊥ < 1000 m), respectively. In iteration 1, it is obvious that the
elevation variations are relatively larger and the elevations on the arch are discontinuous, even with
some obvious errors. However, with the loosening of the spatial baseline threshold and the increase of
iterations, the elevations become smoother. The elevations obtained in iteration 5 are accepted as the
final solution.
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elevation) obtained in iterations 1, 3, and 5 are compared with the official bridge model dataset 
(Table 3). The accuracy of the estimated elevations improves with the number of iterations; the final 
estimated elevations from iteration 5 are in good agreement with the bridge model. Note that Table 3 
only presents a rough comparison, as it is difficult to match the PSs with their exact location in the 

Figure 3. Estimated permanent scatterer (PS) elevations on the bridge obtained in iterations 1 (B⊥ < 50 m)
(a); 3 (B⊥ < 360 m) (b); and 5 (B⊥ < 1000 m) (c), respectively (Azimuth-Elevation plane).

Figure 4 shows the elevations of PSs on the bridge obtained in iteration 5 after geocoding
(three-dimensional (3D) view). The results clearly show the bridge arches and the deck. In order to
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further evaluate the accuracy of the obtained elevations, two external bridge datasets are used for
comparison. One is the official bridge model obtained from the Shanghai Lupu Bridge Investment
Development Co., Ltd. (No. 449, Yaohua Road, Shanghai, China). Three key parameters of the
bridge structure (namely, maximum arch elevation, minimum deck elevation, and maximum deck
elevation) obtained in iterations 1, 3, and 5 are compared with the official bridge model dataset (Table 3).
The accuracy of the estimated elevations improves with the number of iterations; the final estimated
elevations from iteration 5 are in good agreement with the bridge model. Note that Table 3 only
presents a rough comparison, as it is difficult to match the PSs with their exact location in the bridge
model, and therefore the elevation differences between the InSAR solution and the model do not
necessarily represent the accuracy of the proposed method. The second external bridge dataset is
downloaded from Google 3D Warehouse. The 3D PSs are transformed to the model coordinates for
visualization in the Meshlab software. As shown in Figure 5, the arch shape and the location of the PSs
are in excellent agreement.
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Table 3. Key parameters of the estimated bridge structure from iterations 1, 3, and 5 compared with
the bridge model data (only direct measurements are listed).

Iteration 1 Iteration 3 Iteration 5 Official Model

Maximum arch elevation (m) 109.1 106.0 109.6 109.35
Minimum deck elevation (m) 41.1 47.3 50.1
Maximum deck elevation (m) 59.1 54.2 53.2

Mean deck elevation (m) 53.60

3.2. Bridge Deformation Extraction

As shown in [29], the Lupu Bridge is an all-welded steel arch bridge connected by a set of
components with a misalignment error of less than 1 mm. Moreover, even with nearly 20 arch ribs and
a span of more than 500 m connecting Puxi and Pudong, the axial deviation of the central arch joints is
less than 5 mm.

In fact, it is challenging to interpret InSAR-derived deformation results of man-made structures,
particularly bridges, because it can be difficult to separate the major components of the InSAR phase,
such as the linear deformation rates, seasonal deformation, elevation of structures, and atmosphere
phase screen (APS). For example, the elevation-related atmospheric phase and the temperature-related
deformation tend to have the same pattern. The elevation errors leak easily to deformation solutions.
A few InSAR time series studies have investigated the thermal expansion of bridges and other
structures [30–35]; however, many technical details are yet to be resolved.

In the Lupu Bridge case, once the elevations of the PSs are resolved with suitable accuracy, they are
then used in a two-dimensional phase regression involving both elevation and linear deformation,
and to obtain the linear deformation map as in Figure 6. By the way, PS No. 175 on the riverside is
chosen as the reference point. As the research area is relatively small, the APS is neglected.
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are the IDs of chosen PSs. Red stars and the inverted triangle indicate the monitoring PSs (No. 693, 
932, and 1457) and the reference PS (No. 175), respectively. 

As shown in Figure 6, the linear deformation rates of the main part of the bridge are uniform, 
indicating that the bridge is stable as a whole. The LOS deformation rates compared to the reference 
point No. 175 vary from 4 to 7 mm per year during the SAR image acquisition period. Note that a 
positive value represents motion away from the satellite along the LOS, while a negative value 
indicates motion towards the satellite along the LOS. Progressive deformation appears on the two 
bridge arches and bridge deck. The largest deformation rates occur at the central part of the arches (7 
mm per year) and the bridge deck (9mm per year). 

The thermal expansion of metallic or reinforced concrete structures can significantly affect the 
interferometric phase signature [36]. Typically, thermal dilation provides progressive patterns due 
to its accumulation over the structure’s length. This is in agreement with our result. To further 

Figure 6. Linear deformation rates (in the line of sight (LOS) direction) of PSs. The labeled numbers
are the IDs of chosen PSs. Red stars and the inverted triangle indicate the monitoring PSs (No. 693, 932,
and 1457) and the reference PS (No. 175), respectively.

As shown in Figure 6, the linear deformation rates of the main part of the bridge are uniform,
indicating that the bridge is stable as a whole. The LOS deformation rates compared to the reference
point No. 175 vary from 4 to 7 mm per year during the SAR image acquisition period. Note that
a positive value represents motion away from the satellite along the LOS, while a negative value
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indicates motion towards the satellite along the LOS. Progressive deformation appears on the two
bridge arches and bridge deck. The largest deformation rates occur at the central part of the arches
(7 mm per year) and the bridge deck (9 mm per year).

The thermal expansion of metallic or reinforced concrete structures can significantly affect the
interferometric phase signature [36]. Typically, thermal dilation provides progressive patterns due
to its accumulation over the structure’s length. This is in agreement with our result. To further
study thermal expansion effects on the deformation results, we collected temperature records of
Shanghai during the SAR image acquisition period. Unfortunately, only some scattered monthly
averaged temperature records can be found on the internet for the period, i.e., from December 2008 to
November 2010. The SAR sensor passed over Shanghai at about 06:00 Beijing time. However, if we
calculate the average temperature on the date of the data acquisition two, three, and four years later
(T2010–2012, T2011–2013, T2012–2014 in Figure 7a) and extrapolate the monthly temperature during
2008 to 2010 (T2008–2010 in Figure 7a), the trends of variation of the temperature are almost the same.
Thus, the interpolated temperature (T2008–2010) is used for the seasonal deformation analysis.
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Figure 7. (a) Temporal variations of temperature (T2008–2010: interpolated averaged daily temperature
records on SAR data acquisition dates. T2010–2012, T2011–2013, T2012–2014: averaged daily
temperature records on acquisition dates two, three, and four years later); (b–d): Unwrapped
deformation phase time series (red dots) and residual time series (green crosses) of PS points 693, 932,
and 1457 whose locations are shown in Figure 6.
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Three PSs (No. 693, 932, and 1457), whose locations are shown in Figure 6, are chosen for a more
detailed seasonal deformation analysis. In the two-dimensional phase regression as shown in the
last line of the bottom box in Figure 2, the unwrapped deformation phase time series (red dots) and
the residual time series (green crosses) of these three points are shown in Figure 7b–d. Note that the
unwrapped deformation phase time series are calculated by removing the elevation phase from the
unwrapped interferometric phase, while the residual unwrapped phase is obtained by removing both
the linear deformation and elevation phase from the unwrapped phase.

Both the unwrapped deformation phase time series and residual time series of the three points
are used to calculate the correlation coefficients with the interpolated temperature (T2008–2010) and
the results are listed in Table 4. In Table 4, the residual unwrapped phase time series corresponding to
the three PSs have a strong negative correlation with the temperature. The correlation coefficients of
all the three target points are larger than 0.9. When the phases of the linear deformation and the minor
elevation correction are added back, the unwrapped phase time series have a much weaker negative
correlation with the temperature, with the correlation coefficients ranging from 0.2526 to 0.646, with
0.646 corresponding to the PS at the center of the bridge arches, indicating that this PS was affected
much more by the temperature than the other two PSs.

As expected, the central parts of the bridge arches and the bridge deck were experiencing the
largest deformation.

Table 4. Coefficients between the residual unwrapped phase/unwrapped deformation phase and
temperature variations.

PS Point Number Location
Correlation Coefficient

(Residual Unwrapped Phase
vs. Temperature)

Correlation Coefficient
(Unwrapped Deformation Phase

vs. Temperature)

693 Southern end of arch −0.9225 −0.2526
932 Center −0.9163 −0.6460

1457 Northern end of arch −0.9240 −0.3421

4. Conclusions and Outlook

We use a long–short baseline iteration method for elevation extraction in PSInSAR data processing
to overcome the high-phase-gradient problem in a case where no DSM is available, so as to improve
the accuracy of the estimated deformation rates. The LLL lattice reduction algorithm is used to
rapidly reduce the search radius, compress the search space, and improve the success rate of resolving
the ambiguities in phase unwrapping. To validate the method, elevations of 577 PSs on the Lupu
Bridge have been obtained and compared with elevation data of the bridge model. The results
are in excellent agreement. Besides, the linear deformation rates and seasonal deformation of the
PSs have been extracted from InSAR deformation time series, which indicates that the bridge is
stable in general, although symmetric progressive deformation has been found on the bridge arches
and the bridge deck. The results agree with the Lupu Bridge design, where the arch joints would
absorb most of the thermal deformation to mitigate the thermal dilation of the bridge as much as
possible. Compared to the traditional PSInSAR approach, our method obtained more accurate elevation
estimations. Consequently, the deformation estimation results are also more reliable.

As a whole, multitemporal InSAR is a useful tool for elevation reconstruction and the health
monitoring of large infrastructures, such as bridges, dams, and high-rise buildings. Future work
should be focused on interpreting the deformation; for example, linking individual PSs with the local
structural elements and evaluating the results. It should also be interesting to consider to model the
temperature-related deformation in the InSAR observation equation and to carry out close comparison
of the results with in-situ measurements.
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