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Abstract: Satellite-derived estimates of precipitation are essential to compensate for missing rainfall
measurements in regions where the homogeneous and continuous monitoring of rainfall remains
challenging due to low density rain gauge networks. The Precipitation Estimation from Remotely
Sensed Information using Artificial Neural Networks—Climate Data Record (PERSIANN-CDR) is a
relatively new product (released in 2013) but that contains data since 1983, thus enabling long-term
rainfall analysis. In this work, we used three decades (1983–2014) of PERSIANN-CDR daily rainfall
data to characterize precipitation patterns in the southern part of the Amazon basin, which has been
drastically impacted in recent decades by anthropogenic activities that exacerbate the spatio-temporal
variability of rainfall regimes. We computed metrics for the rainy season (onset date, demise date
and duration) on a pixel-to-pixel basis for each year in the time series. We identified significant
trends toward a shortening of the rainy season in the southern Amazon, mainly linked to earlier
demise dates. This work thus contributes to monitoring possible signs of climate change in the
region and to assessing uncertainties in rainfall trends and their potential impacts on human activities
and natural ecosystems.
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1. Introduction

The Amazon region provides numerous essential ecosystem services, including food production,
biodiversity conservation, carbon storage, hydrology and climate regulation [1]. However, in the
last few decades, these services have been affected by the expansion of anthropogenic activities that
threaten Amazonian ecosystems [2,3]. This issue is particularly significant in the southern and eastern
fringes of the basin that have undergone intense land use changes related to the rapid advance of a
very dynamic pioneer frontier in the so-called “Arc of deforestation” (e.g., [4–8]).

As a consequence of these rapid changes, the Amazon basin environment is now considered
to be in transition to a disturbance-dominated regime [9]. The impacts of deforestation and
agricultural development in the Amazon on local [10] and regional [11–13] climate are of particular
concern. In addition to the impact of deforestation on global warming through greenhouse
gas emissions, particulate emissions and changes in surface fluxes and in the carbon and water
cycles ([14] and references therein), changes in rainfall regimes in the Amazon are also of concern [15].
Indeed, Khanna et al. [13] suggested that deforestation is sufficiently advanced to have caused a shift
from a thermally- to a dynamically-driven climatic regime, which may affect the rainy season in the
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future. In this connection, previous studies have pointed to intensification of the dry season in the
southern Amazon [15–17], and predicted intensification of rainfall during the rainy season [18] or
changes in the wet-day and dry-day frequencies [19].

These predictions of climate change need to be confirmed (or refuted) using diverse datasets
and methods to better assess the spatio-temporal patterns of precipitation in the Amazon.
However, monitoring rainfall in the Amazon is challenging. At the regional scale, rainfall regimes
in the Amazon basin are far from uniform [1] and, at a local scale, precipitation is closely linked
to the presence of convective cells resulting in marked spatio-temporal variability [11,20]. In this
context, the low density of the rain gauge network and the lack of homogeneity in the time series
prevent reliable monitoring of this variability using ground data [21–23]. Remote sensing data are
thus extremely important since they enable spatially and temporally homogeneous and continuous
monitoring of rainfall regimes.

Several remote sensing-based products are available at different spatial and temporal
resolutions [23]. For example, the Tropical Rainfall Measuring Mission (TRMM) has provided 3-hourly
rainfall estimates at a 0.25◦ spatial resolution since 1998 [24]. Although this type of product is useful
to capture the fine spatio-temporal variability of precipitation, its use to monitor trends in climate
change is debatable due to the relatively short time series (less than 20 years). Beyond the traditional
limitations of remote sensing-based rainfall estimates (e.g., [25]), TRMM measurements started in
the late 1990s, when deforestation was already rampant in the southern fringes of the Amazon,
thus preventing the monitoring of possible changes in precipitation due to changes in land cover and
land use. The recent release of Precipitation Estimation from Remotely Sensed Information using
Artificial Neural Networks—Climate Data Record CDR data (PERSIANN–CDR) [26,27], consisting
of daily rainfall estimates from 1983 to the present, represents a great opportunity to both study
precipitation patterns and to assess trends based on more than three decades of data as recommended
by the World Meteorological Organization [28,29]. The PERSIANN-CDR product is particularly
attractive thanks to the relatively long time series at a fine resolution compared to several other
satellite-derived products that have much shorter records, and/or coarser spatial resolution.

While attractive, the PERSIANN-CDR product has been little used to monitor rainfall in the
Brazilian Amazon and to identify indicators of climate change. In this context, the objectives of this
article are twofold. The first objective is to evaluate the potential of the PERSIANN-CDR data to
represent the spatio-temporal precipitation patterns in the southern Amazon through a comparison
with rain gauge data. Secondly, an objective is to assess changes in the rainy season in the southern
Amazon since the early 1980s by computing three temporal indicators of the rainy season : onset date,
demise date and duration.

2. Study Area

After a brief qualitative analysis of the potential of the PERSIANN-CDR to reproduce the
main rainfall regimes in the entire Amazon, we then focus our study (i.e., quantitative validation
of PERSIANN-CDR estimates and analysis of the rainy season parameters) on the southern part
of the Amazon basin. This area includes the Brazilian states of Mato Grosso and Rondônia and
northern Bolivia (Figure 1). Its climate is characterized by a well-defined rainy season that lasts from
September/November to April/May, and is primarily controlled by the South American monsoon
system (SAMS) [30–36]. This seasonal behavior is mainly driven by synoptic atmospheric patterns, i.e.,
(1) the high pressure of the Brazilian and South Atlantic anticyclone from May to September; and (2) the
interactions between the Intertropical Convergence Zone and the South Atlantic Convergence Zone
during austral summer [37]. Beyond these seasonal mechanisms, rainfall is influenced by: (1) the
atmospheric flow of water vapor from the Atlantic Ocean and connections with the Atlantic and
Pacific sea surface temperatures [21,38–40]; and (2) a large hydrological recycling process above
the forests [41–44]. The large uncertainty of the ocean and continent surface coupling [39,45,46]
drives regional and interannual rainfall variability, while the strong heterogeneity of the structure
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and intensity of the convection related to evapotranspiration influences fine/local spatio-temporal
variability. The intense land use changes, mainly characterized by high deforestation rates, that have
taken place in this pioneer active frontier region in the last four decades partly explain the observed
trend toward increased seasonality [20] and a shortening of the rainy season [16,17]. Such trends
may have irreversible ecological impacts [44] and affect agricultural activities, which depend on the
quantity of rainfall and temporal patterns [15,47–49].

Figure 1. Mean annual rainfall (1983–2014, computed per calendar year) in the Amazon measured
using the Precipitation Estimation from Remotely Sensed Information using Artificial Neural
Networks—Climate Data Record (PERSIANN-CDR) data with location of the study area (southern
Amazon). The acronyms stand for Brazilian states: AC: Acre, AM: Amazonas, AP: Amapa, MA:
Maranhão, MT: Mato Grosso, PA: Pará, RO: Rondônia, RR: Roraima, TO: Tocantins.

3. Data

3.1. Rain Gauge Data

We acquired daily rain gauge datasets from the Brazilian National Water Agency (ANA),
the Brazilian National Meteorological Institute (INMET) and the Bolivian Meteorological Service
(SENAMHI). We only considered stations for which at least three decades of records between 1983 and
2013 were available, and only stations with less than 20% missing values were selected. The quality
control of the rain gauges consisted in detecting very large and unlikely values resulting from mistakes
during the retranscription of data and checking whether a zero value was wrong or not using a nearest
neighbor approach. In the end, 71 rain gauges were selected: 57 in Brazil and 14 in Bolivia (Figure 1).

3.2. PERSIANN-CDR Data

The Precipitation Estimation from Remotely Sensed Information using Artificial Neural
Networks—Climate Data Record (PERSIANN-CDR) product was recently released by the National
Oceanic and Atmospheric Administration (NOAA; [26,27]). It consists of daily precipitation estimates
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based on infrared and daytime visible imagery from geostationary satellites, and is built on neural
networks classification and approximation techniques [50,51]. The spatial coverage ranges from 60◦ S
to 60◦ N and the spatial resolution is of 0.25◦ in latitude and in longitude. Data are available for the
1983–delayed present period. For this study we used data for the period 1983–2014.

Ashouri et al. [26] were the first to compare PERSIANN-CDR and rain gauge data at global scale
but only a few studies on tropical areas are available to date. The accuracy of PERSIANN-CDR data
was recently tested in China by Miao et al. [52] who underlined the potential of PERSIANN-CDR
to estimate precipitations in areas where rainfall regimes are related to monsoon systems. Again
in China, Yang et al. [53] compared four satellite precipitation products and concluded that the
performance of PERSIANN-CDR data is stable over the year, especially because of monthly gauge
adjustment. In Malaysia, Tanet al. [54] judged the performance of PERSIANN-CDR to be moderate
as it appeared to slightly underestimate extreme precipitation events. Concerning the Amazon,
comparisons of PERSIANN (which is a different product to PERSIANN-CDR) and rain gauge data
are available [23]. Zubieta et al. [55] showed that PERSIANN data underestimated precipitation
in the western Amazon Basin and that its use appeared to be limited for hydrological applications.
In contrast, Ringard et al. [56] compared different remote sensing-based rainfall estimation products
over French Guiana and North Brazil and highlighted the good performance of PERSIANN-CDR
data. More recently, Dubreuil et al. [57] conducted a basic comparison of PERSIANN-CDR and rain
gauge data from 13 stations in the Amazon using a point-to-pixel approach and showed that the
main precipitation features are well captured by PERSIANN-CDR both at annual and monthly mean
time scales.

To summarize, the PERSIANN-CDR data appears relevant to monitor rainfall regimes in the
southern Amazon and identify indicators of change in the rainy season due to its good performance in
monsoon regions and its long temporal coverage (more than 30 years).

4. Methods

4.1. Validation of PERSIANN-CDR Data in the Southern Amazon

The first objective of the present study was to assess the accuracy of PERSIANN-CDR data to
estimate rainfall in the southern Amazon. To this end, we first performed a qualitative analysis to
assess the capacity of PERSIANN-CDR data to capture the spatio-temporal variability of rainfall
regimes in the Amazon. We then conducted a quantitative analysis focused on the southern Amazon
and based on the comparison of the rainfall measured at rain gauges with the corresponding rainfall
estimates based on PERSIANN-DCR data. This comparison was based on continuous and categorical
statistical indices as proposed by Tan et al. [54], Miao et al. [52] and Ringard et al. [56].

The continuous indices include the correlation coefficient (CC; Equation (1)), root-mean-square
error (RMSE; Equation (2)) and relative bias (RB; Equation (3)). An accurate rainfall estimate is
characterized by a high CC combined with low RMSE and RB values. These indices were measured at
daily and monthly scales to fully understand the performance of the PERSIANN-CDR data.

CC =

n
∑
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(Oi − Ō)(Ei − Ē)√

n
∑
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(Oi − Ō)2

√
n
∑
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RB =

n
∑

i=1
(Ei − Oi)

n
∑

i=1
Oi

(100) (3)

where Ei and Oi are estimated and observed rainfall respectively at the ith value of the time series and
n is the number of values in the time series.

The categorical indices analyze the capacity of PERSIANN-CDR data to detect rainy days.
These indices are accuracy (ACC; Equation (4)), probability of detection (POD; Equation (5)) and
false alarm ratio (FAR; Equation (6)). In our case, ACC and POD must be maximized, while FAR should
be minimized.

ACC =
A + D

n
(4)

POD =
A

A + C
(5)

FAR =
B

A + B
(6)

where A refers to rainfall detected by the rain gauge and the PERSIANN-CDR estimates; B refers to
the detection of rainfall by PERSIANN-CDR data when no rainfall was measured at the rain gauge;
C refers to precipitation missed by PERSIANN-CDR when rainfall was recorded by the rain gauge;
D refers to the non-detection of rainfall both by the rain gauge and by the remote sensing data, and n
refers to the total number of observations. In the present study, a rainy day corresponds to a day with
estimated rainfall >0.2 mm, i.e., the minimum rainfall usually measured by a rain gauge.

Finally, we also compared the estimates of onset and demise dates of the rainy season measured
by rain gauges and remote sensing data. The comparison was based on the same continuous
statistical indices (CC, RMSE, RB). We also plotted the probability density function and the cumulative
distribution function of the differences between estimated and observed onset and demise dates in
order to see whether the estimated dates fit the values measured at rain gauges.

4.2. Determination of the Rainy Season Metrics and Their Trends

The metrics of the rainy season considered in this study were: annual total rainfall, onset date,
demise date and duration of the rainy season. These metrics were computed on a pixel-by-pixel basis
for each hydrological year of the dataset (1983 to 2013 with the end of year 2013 occurring in 2014).
The onset and demise dates and the duration were estimated based on a slightly modified version of
the method proposed by Liebmann et al. [33]. Their method involves calculating a quantity called
“anomalous accumulation” based on daily annual time series, which start 10 days before the driest
month. The “anomalous accumulation” (AA) was calculated as in Equation (7):

AA(d) =
d

∑
n=1

[R(n)− R̄] (7)

where d is the number of days, R(n) is daily rainfall and R̄ is average daily rainfall. From this annual
time series, the onset (demise) of the rainy season is defined as the day in which AA is minimum
(maximum) (Figure 2). In the present method, unlike in the original method of Liebmann et al. [33],
possible false rainy season reports were not considered. This simplified version presented less
ambiguous values in the Amazon region [22,58]. The duration of the rainy season consists in the
number of days between the onset and the demise dates for each pixel.

In addition, the original method involves using different values of R̄ for each different year,
e.g., a rainy year has a higher R̄ value than a dry year which may lead to similar rainy seasons.
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Here, we decided to apply a single threshold across the 31 annual time series (1983–2013) in order to
better analyze trends in the rainy season metrics. The value of R̄ was thus computed on a pixel-by-pixel
basis as the average daily rainfall computed over the entire time series (31 years), i.e., it corresponds to
the mean annual rainfall for one pixel divided by 365 days.

Figure 2. Illustration of the computation of the rainy season temporal metrics based on the method
proposed by Liebmann et al. [33]. It includes: (A) a one-year daily rainfall time series for a given
pixel; (B) the corresponding anomalous accumulation time series with identified onset and demise
dates; (C) the entire (31-year) daily rainfall time series for a given pixel and its corresponding onset
and demise dates.

Applying a unique R̄ threshold for the entire time series implies that the anomalous accumulation
time series computed for dry years tend to decrease continuously since the R̄ value is greater than the
threshold normally used by Liebmann et al. [33]. As a consequence, the minimum value of the AA
time series may occur after the maximum value (or even at the end of the time series), thus leading
to inconsistent onset dates that appear to occur after the demise date. To get around this problem,



Remote Sens. 2017, 9, 889 7 of 20

we computed the derivative of the AA time series, like in Arvor et al. [47], and identified the middle of
the rainy season as the day when this derivative is at a maximum. The onset (demise) date was finally
computed as the day of the minimum (maximum) AA value before (after) this middle date.

Moreover, this methodology only makes sense in regions with well-defined rainy and dry seasons.
Consequently, we discarded pixels corresponding to areas where the dry season is not clearly defined.
The areas to be discarded were determined according to the Köppen classification rules, considering
the Af class (equatorial or tropical rainforest climate) where the mean rainfall of the driest month
of the year is greater than 60 mm. In this connection, it is worth noting that a few periods of the
PERSIANN-CDR data (February 1992, end of March 1993) do not contain rainfall estimates (NA values).
For these missing periods, we replaced the NA values with R̄ so that they did not lead to the early
demise of the rainy season.

Finally, we calculated the averages and trends for each of the four metrics of the rainy season
computed over the 1983–2013 time period. Trends were computed based on the Mann-Kendall test
(e.g., [22]). Here we present only the coefficient τ of Mann–Kendall, which varies from −1 to +1.
The value of −1 (+1) indicates a trend of continuous decrease (continuous growth) in the study period.
The value 0 indicates that there is no trend. Finally, a p-value of less than 0.05 was used to assess
whether trends were significant.

5. Results

5.1. Validation of PERSIANN-CDR Data

5.1.1. Qualitative Analysis

Figure 1 shows the mean annual rainfall in the Amazon region. The main climatological
characteristics were reproduced by the PERSIANN-CDR data. The Equatorial and northwestern
regions have the highest rainfall, with more than 3000 mm per year. Rainfall decreases in the tropical
northern and southern latitudes with less than 2000 mm per year [37,59–61]. In addition, the data
made it possible to locate a dry NW–SE “corridor” with precipitation of less than 1500 mm/year
between two high-precipitation regions (>3000 mm), in the Colombia/Venezuela region and along
the equatorial coast near French Guiana, and which extends as far south of the Amazon delta as
the state of Pará. In the central part of the Amazon, a positive precipitation gradient extends from
approximately ∼12◦ S up to the Equator (northern boundary of the domain). In the Andean mountains,
which are part of the Amazon Basin, rainfall varies greatly depending on the altitude and on the
exposure of the slope [62,63]. Generally, air humidity decreases with altitude and annual precipitation
is less than 1000 mm above 3000 masl. Except on windward flanks, precipitation in southern Peru and
northern Bolivia can reach 6000 mm per year. On the contrary, if the slope is leeward, the rainfall may
be less than 500 mm per year [37,63,64].

At a monthly scale, mean precipitation values for the same period (1983–2013) revealed
the spatio-temporal variability of rainfall throughout the Amazon basin (Figure 3). While rain
falls throughout the year in the northern part of the region, the southern regions show a clear
seasonality related to the installation and the withdrawal of the South American monsoon system [36]
(see Section 2). Thus, the PERSIANN-CDR realistically captures the main characteristics and annual
trends in rainfall in the Amazon.
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Figure 3. Mean monthly rainfall (mm) in the Amazon basin (red) for the 1983–2014 time period
computed from PERSIAN-CDR data.

5.1.2. Quantitative Analysis

The results of the quantitative validation of PERSIANN-CDR data are listed in Table 1. At a
daily scale, the coefficient correlation was 0.347 and increased to 0.835 at monthly scale (see also [23]).
These values underline the difficulty involved in estimating rainfall at a fine temporal scale but
confirm the potential of PERSIANN-CDR data to capture rainfall regimes. The relative bias is
positive, corresponding to slight (around 6%) overestimation of remote sensing-based rainfall
estimates. Daily statistics computed on a monthly basis emphasize the irregular performance of
the PERSIANN-CDR according to the seasons (Figure 4). Correlation and RMSE were better during the
dry season (May to September). The relative bias showed rainfall was underestimated during the dry
season (especially in June and July) and overestimated in the rainy season. Accuracy (ACC) was also
better during the dry season (>75%) while the months with lowest accuracy (but still greater than 50%)
were at the beginning (October) and the end (March–April) of the rainy season. On the contrary, the
POD was always greater than 50% but values were lower in the dry season. Finally, consistent with the
previous values, the FAR values were lower in the rainy season and higher in the dry season. In July
and August, over 75% of the rainy days detected by PERSIANN-CDR data were in fact not recorded
as rainy days by the rain gauges. The contrast between the rainy and dry seasons could be explained
by: (1) the type of clouds in winter, with sparsely distributed and less frequent rainy convective clouds
(which can lead to a miss at the rain gauge, but are detected by remote sensing data which cover a
broader area); (2) the difference in spatial resolution between the two datasets; and (3) the presence of
many outliers, some of them due to suspicious rain gauge data [65,66].

Regarding the estimates of the rainy season parameters, the statistical indices (CC, RMSE and RB)
were more accurate for demise dates than for onset dates. In addition, PERSIANN-CDR data tended
to advance the onset dates (negative bias) and delay the demise dates (positive bias). This bias can
also be seen in the scatter plots in Figure 5. The high RMSE values (about 30 days) for both onset and
demise dates emphasize the difficulty involved in estimating the rainy season parameters using remote
sensing data. Nonetheless, the probability density functions and cumulative distribution functions
show that the estimates are well centered (density peak around 0 and cumulative distribution functions
characterized by a well-marked logarithmic shape).
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Table 1. Validation results for main statistical indices applied to daily and monthly rainfall values and
to onset and demise dates of the rainy season. RMSE: root-mean-square; CC: correlation coefficient;
ACC: accuracy; POD: probability of detection; FAR: false alarm ratio.

CC RMSE Relative Bias ACC POD FAR

Daily 0.347 12.122 6.058 0.618 0.913 0.430

Monthly 0.835 72.657 6.476 - - -

Onset date 0.329 31.88 −3.12 - - -

Demise date 0.434 26.58 1.26 - - -

Figure 4. Daily validation statistics of PERSIANN-CDR data computed per month on 71 rain gauges
located in the southern Amazon.

Finally, our results are consistent with those of other studies on the validation of PERSIANN-CDR
data in other regions of the world [52,54,56] and confirm the interest of testing this dataset to explore
potential indices of climate change in the southern Amazon.
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Figure 5. Validation statistics for the onset and demise dates of the rainy season measured by rain
gauges and PERSIANN-CDR data. The black line in the two scatter plots represent the identity line.

5.2. Analysis of Rainy Season Parameters in the southern Amazon

Beyond the capacity of the PERSIANN-CDR data to estimate rainfall and rainy season metrics in
the southern Amazon, we next assessed its potential to capture the large spatial and temporal variability
of rainfall regimes and identify possible long-term trends. The results are shown in Figures 6 and 7.

Patterns of annual rainfall are consistent with those found in other studies on rainfall regimes in
the Amazon [22,37]. The regions with the highest variability are southern Pará, southern Amazonas
and Bolivia (Figure 6, top left). The remote sensing estimates made it possible to highlight specific
regions such as the Serra do Cachimbo in southern Pará, which appears to be more rainy than the
surrounding areas.

The onset of the rainy season is earlier in northeastern Mato Grosso (MT) and southeastern Pará
(Figure 6, top right). The beginning of the rainy season is later in western Mato Grosso (Chapada dos
Parecis) compared to other areas of the same state. The differential onset of the rainy season across
the state of Mato Grosso described here confirms previous observations and partially explains why
double-cropping systems have been less widely adopted in this agricultural region (western Mato
Grosso) than in central Mato Grosso [47].
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Figure 6. Mean annual rainfall, onset date, demise date and duration of the rainy season in the southern
Amazon estimated from PERSIANN-CDR for the 1983–2013 time period. The onset and demise dates
are defined as the number of days after 1 January. Areas in white correspond to pixels where the rainy
season is not well defined according to the Köppen classification rules. (PA = Pará, MT = Mato Grosso,
RO = Rondônia, BOL = Bolivia).

Figure 7. Trends in annual rainfall, onset date, demise date and duration of the rainy season in
the southern Amazon estimated from PERSIANN-CDR for the 1983–2013 time period. The trends
correspond to the τ of Mann–Kendall. Significant trends are indicated with crosses. Areas in white
correspond to pixels where the rainy season is not well defined according to the Köppen classification
rules. (PA = Pará, MT = Mato Grosso, RO = Rondônia, BOL = Bolivia).

In general, the onset date is characterized by high interannual variability (Figure 8, top) especially
in the northern part of the study area compared to Mato Grosso, which has more pronounced wet/dry
seasons (Figure 3). The onset of the rainy season is associated with a rapid increase in specific humidity
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prior to the onset and changes in the horizontal and vertical winds (characteristic of the South American
monsoon) that follows the period when temperatures reach their seasonal maximum [31]. In this
context, the high variability of onset dates has been directly linked to pre-seasonal conditions during the
dry season in the Pacific and South America [46], which modulate moisture availability, atmospheric
instability and atmospheric circulation in both low and upper levels.

Figure 8. Standard deviation (in days) of onset and demise dates of the rainy season in the
southern Amazon.

The demise dates follow a north-south gradient that is more pronounced than for the onset dates
(Figure 6, bottom left). The end of the South American monsoon system (SAMS) is linked to the
northward migration of the Atlantic ITCZ and the splitting of the mid-latitude upper-level westerly
jet into the subtropical and sub-polar jets [30,31]. At lower levels, the north-westerly flux changes to
easterlies to the east of the Andes, reducing the moisture supply from the Atlantic over the southern
Amazon, thus leading to the demise of the rainy season. In other words, the demise of the rainy
season is associated with a strengthening of low-level easterly winds and a general downward motion
following the northward displacement of the Hadley cell. Consequently, the interannual variability
of demise dates is lower than that of onset dates (Figure 8, bottom). Consistent with these results,
the duration of the rainy season is longer in the north than in the south of the study area (Figure 6,
bottom right), with greater variability in Bolivia, along the Andean Cordillera, and in the southern and
northern parts of the study area (not shown).

Concerning long-term changes in rainfall patterns, annual amounts tend to decrease regionally
(Figure 7, top left), although trends vary strongly in the study area and are mainly statistically
insignificant, except for regions in Bolivia and western Mato Grosso. In addition, our results indicate
positive trends for onset dates (delayed onset) in Bolivia and northern Mato Grosso (Figure 7, top right),
but they are mainly significant in Bolivia. Conversely, trends are negative (early onset) in the center of
Mato Grosso and in Rondônia but are not significant. Trends in demise dates are significantly negative
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for the majority of the study area including southern Amazonas, parts of Acre and Bolivia, Rondônia,
and western Mato Grosso (Figure 7, bottom left), indicating a trend toward earlier demise of the rainy
season in these areas. As a consequence, we also observed a trend towards a reduction of the length of
the rainy season, with especially significant trends in Bolivia, Rondônia state and southern Amazonas
(Figure 7, bottom right).

These observations on the shortening of the rainy season in the southern Amazon are in agreement
with results of previous studies [15,16]. However, we identified two major cases that appear to coexist
with a small overlap: regions where the reduction in the length of the rainy season is linked to delayed
onset (mainly central Bolivia) and regions where the reduction is linked to early demise (northern
Bolivia, Rondônia, southern Amazonas and western Mato Grosso). This analysis is illustrated (Figure 9,
top and bottom plots) by plotting onset and demise dates for the 31-year time series of two areas
in Bolivia (with a significant trend toward a shorter rainy season explained by a delayed onset)
and in eastern Mato Grosso (with a significant trend toward a shorter rainy season explained by an
early demise).

Figure 9. The central map shows trends in the duration of the rainy season (τ value) with significant
trends of delayed onset (green crosses) and early demise (blue crosses). The top and bottom parts show
the 31-year variability and trends for the onset and demise dates at two locations, in Bolivia and at the
border between Rondônia and Mato Grosso states.
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6. Discussion and Future Outlook

PERSIANN-CDR data were released fairly recently (2013) and have consequently not been widely
used for climate change analysis in the Amazon. The results of this pioneer study confirm the good
performance of PERSIANN-CDR data for the monitoring of rainfall regimes in areas characterized
by monsoon systems [52] and thus validates their interest for this type of application. This study
also emphasizes the capacity of remote sensing-based rainfall estimation products to highlight a
few subregions such as the Serra do Cachimbo (southern Pará state) or the Chapada dos Parecis
(western Mato Grosso state) that do not stand out in studies based on in-situ data. This ability to
capture the spatio-temporal variability of rainfall regimes in the Amazon is a major advantage of
remote sensing products for fine-scale crop monitoring [67] or hydrological modeling [55,68].

In particular, our results confirm that PERSIANN-CDR estimates can be used for the analysis of
onset and demise dates of the SAMS. Generally speaking, these dates are related to a series of dynamic
and thermodynamic seasonal changes [31,32,34], including the increase in evapotranspiration linked to
the increase in solar radiation in spring, changes in the low and upper-level wind circulations, and the
dynamic influence of transient synoptic systems that can trigger large-scale convection. The variability
of these factors, modulated by the influences of Pacific and Atlantic sea surface temperatures (SST),
affects the variability of onset and demise dates of the rainy season.

In this connection, we found that the standard deviation of the onset dates was much larger
than that of the demise dates. This is in agreement with the results obtained by Gan et al. [31] and
Gan et al. [32] who used other criteria and atmospheric parameters (wind changes) for the detection
of the rainy season. In fact, the large variability and uncertainty concerning the onset data trends is
a reflexion of the complex mechanisms that determine the establishment of the monsoon in South
America [36]. For example, a southward displacement of the Southern Hemisphere subtropical jet
stream due to the influence of El Niño Southern Oscillation (ENSO) conditions could reduce the number
of cold front incursions [69] that promote the initiation and organization of large-scale convective
processes [31,70]. Additionally, Arias et al. [71] found that a delayed onset of the SAMS was correlated
with the accelerated demise of the North Atlantic monsoon, which alters the cross-equatorial flow and
prevents the humidity flux necessary to support large-scale organized convection.

The marked variability of demise and especially of onset dates has important implications for
the analysis of long-term trends. Our results point to a shortened rainy season due to an early
withdrawal of the SAMS. Whether this trend is linked to early weakening of the South American
low-level jet/reversal of the low-level winds and/or a greater decrease in the supply of moisture
possibly related to deforestation (i.e., less evapotranspiration) was not determined in the present study
and requires further investigation. However, this trend is evidence for a shortening of the rainy season
which is in agreement with other studies [16,18]. However our study indicates a reduction of the rainy
season that is more linked to early demise (mainly in Rondônia and western Mato Grosso) rather
than to a delayed onset of the rainy season (only observed in Bolivia). This result disagrees with the
results of the study of Fu et al. [16] who also observed a shortening of the rainy season but linked
it to the delayed onset of the rainy season. We think that these discrepancies may be due to: (1) the
large standard deviation of the onset dates that may prevent the identification of statistically robust
trends; (2) the use of different datasets; and (3) perhaps most importantly, the different methodologies
used to define the rainy season. For example, Fu et al. [16] used temporally (pentads) and spatially
(southern Amazon basin)-averaged time series, while we provide a spatial map of the precipitation
patterns based on daily data. Further analysis is thus needed to better understand how the trend results
may be impacted by the still relatively short time series (31 years). Comparisons with other rainfall
data from meteorological stations and/or precipitation products such as the Global Precipitation
Climatology Project (GPCP) or the Tropical Rainfall Measuring Mission (TRMM) would be interesting
to confirm the trends.

Still from a methodological point of view, the method proposed by Liebmann et al. [33] and
applied in the present study merits discussion. Compared to other methods [72,73], its main advantage
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is that it is not based on a subjective threshold fixed arbitrarily. Indeed, the R̄ value in Equation (7)
can be considered as an adaptive threshold whose value changes depending on the annual time series
being studied. Thus, two neighboring pixels or two succeeding annual time series in the same pixel
may have different R̄ thresholds, which can mean that pixels in dry and humid regions (or different
years) may present similar onset and demise dates. While such an approach may be appropriate from a
climatological point of view and is easy to implement, it may not be appropriate for other applications.
For example, from an agricultural point of view, farmers expect specific rainfall conditions to cultivate
crops, e.g., daily precipitation higher than a threshold to start planting soybean or a long rainy season
with a minimum average daily precipitation to adopt double cropping systems [47,48]. From this point
of view, the adaptive R̄ threshold complicates the comparisons between time series of different pixels
or years, thus making it difficult to characterize the spatio-temporal variability of the rainy season.
In the present study we partially addressed the threshold issue by fixing the R̄ based on the entire
time series (31 years) for a given pixel, i.e., all annual time series from the same pixel are analyzed
based on the same threshold. This enabled us to better capture the long-term trends on a pixel-to-pixel
basis. To go even further, we now intend to test the methodology of Liebmann et al. [33] by integrating
fixed thresholds in order to reveal new dynamics of the spatio-temporal variability of precipitations
in the Amazon.

Finally, the metrics of the rainy season (annual rainfall, onset date, demise date, duration)
introduced in this paper do not enable a complete understanding of changes in the rainfall regimes
in the Amazon. For example, farmers interviewed in the state of Mato Grosso are worried about the
intensification of extremely dry (veranico) or extreme rainfall events during the rainy season that may
affect crops or jeopardize the harvest. It is not unusual to have dry periods during the rainy season
corresponding to the “break phase” of the SAMS [31,74], and even droughts and floods are part of
the natural variability of the system [75,76] and often occur in response to sea-surface temperature
(SST) anomalies. However there has been indication of an increasing tendency to extreme seasonal
drought or flood occurrences in the Amazon basin [19,39,77,78], including in the southern Bolivian
Amazon [40]. An increase in the intensity of the rainfall has also been observed [39] and is predicted by
multi-model climate projections [18]. We thus intend to analyze new metrics such as rainfall intensity
(e.g., mean daily rainfall, number of rainy days, etc.) and the number and length of extreme events
that occur during the rainy season.

7. Conclusions

Remote sensing data have long been used to monitor rainfall variability but until recently the
short duration of the time series limited the study of climatic trends. We examined the potential of
the PERSIANN-CDR data to monitor rainfall variability in the southern Amazon and identify trends
in precipitation since the early 1980s. For this purpose, we choose to work on the onset and demise
dates of the rainy seasons [33], which appear to be appropriate to monitor the impacts of climate
on society [57].

First, we showed that PERSIANN-CDR data can satisfactorily replicate seasonal regimes
(monthly CC = 0.835) and daily variability (ACC = 0.61) of rainfall across the southern part of the
Amazon Basin. It was also good to estimate the metrics of the rainy season with little tendency to
advance the onset dates (negative bias) and delay the demise dates (positive bias). Second, we provide
evidence for strong heterogeneity of rainfall trends at a regional level with only some regions showing
significant results : delayed onset in Bolivia and early demise in western Mato Grosso and Rondônia.
For most of the southern Amazon, we identified a trend toward a shorter rainy season linked to early
demise. These results confirm the interest of the PERSIANN-CDR product to monitor climate change.
However, it is worth noting that our results differ from those obtained in previous studies whose
authors mainly linked the shortening of the rainy season to delayed onset [16]. This difference can be
explained by: (1) the different data and methods used; (2) sensitivity to extreme events especially at the
beginning or the end of the series; and (3) the larger variability of onset dates compared to demise dates.
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Finally, while the Amazon region plays an important role in regulating climate at regional and
global scales, our results confirm that its own future climate remains uncertain. On the one hand, such
uncertainty raises important socio-economic questions since the economic development of the Amazon
region is widely based on activities that directly depend on climate conditions (agriculture [47,48],
hydropower dams [79], ...). On the other hand, these same anthropogenic activities can have drastic
impacts on the environment and exacerbate the spatio-temporal variability of rainfall regimes across
the basin [13,15]. While we focused our analysis on onset/demise dates, we consider that new
metrics of the rainy season should be further tested in order to better assess climate change in the
Amazon and its links to human activities. In this regard, a special attention should be paid to: (1) the
intensification of extreme events (droughts and floods) [39,80]; (2) the impacts of climate change
on natural ecosystems [7,44]; and (3) the impacts of climate change on anthropogenic activities,
especially agriculture [48].
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