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Abstract: This paper addresses uncertainty modelling of shorelines by comparing fuzzy sets and 
random sets. Both methods quantify extensional uncertainty of shorelines extracted from remote 
sensing images. Two datasets were tested: pan-sharpened Pleiades with four bands (Pleiades) and 
pan-sharpened Pleiades stacked with elevation data as the fifth band (Pleiades + DTM). Both fuzzy 
sets and random sets model the spatial extent of shoreline including its uncertainty. Fuzzy sets 
represent shorelines as a margin determined by upper and lower thresholds and their uncertainty 
as confusion indices. They do not consider randomness. Random sets fit the mixed Gaussian model 
to the image histogram. It represents shorelines as a transition zone between water and non-water. 
Their extensional uncertainty is assessed by the covering function. The results show that fuzzy sets 
and random sets resulted in shorelines that were closely similar. Kappa (κ) values were slightly 
different and McNemar’s test showed high p-values indicating a similar accuracy. Inclusion of the 
DTM (digital terrain model) improved the classification results, especially for roofs, inundated 
houses and inundated land. The shoreline model using Pleiades + DTM performed better than that 
of using Pleiades only, when using either fuzzy sets or random sets. It achieved κ values above 80%. 
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1. Introduction 

Remote sensing offers a practical and economical means for coastal research. A series of remote 
sensing images can be used, for example, for mapping the dynamics of wet grassland and vegetation 
patches [1], mapping depth and water quality [2], coastal erosion [3], and in particular shoreline 
mapping [4–6]. Instantaneous shoreline locations extracted from remote sensing images have become 
popular since mapping shorelines using ground survey and photogrammetry is costly. Several 
methods have been proposed, for example, using manual digitization [7], spectral indices extraction 
such as water and vegetation indices [8], active contour segmentation [6], band ratios [9], and image 
classification [10,11]. Most of these methods are based on hard classifications, and only a few 
considered soft classifications in the context of shoreline mapping [4,5,12]. A hard classifier allocates 
a pixel to one class only based on the highest similarity. Therefore, applying hard classification for 
shoreline mapping could be misleading, since a shoreline is defined as the interface between land 
and water surfaces with its position changing over time. As images only capture a shoreline at a 
particular instant, they convey various kinds of uncertainties. Riesch [13] mentioned that 
uncertainties may be inherent in the system or can arise from incomplete knowledge. This first type 
of uncertainty is classified as errors [14] or as indeterminate boundaries [15,16]. When a shoreline is 
clearly identified, the errors or the kind of indeterminate boundaries may arise, for example, during 
data processing and measurements. Meanwhile, the second type of uncertainty is divided into 
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vagueness and ambiguity [14]. A vague boundary inherently belongs to the nature of the shorelines, 
i.e., it is hardly possible to define the extent of shoreline objects such as coast land, water and their 
gradual transition. The ambiguity may arise owing to the difference in classification system and 
perception of shorelines.  

A common approach to model the uncertainty of objects is based upon probability theory [17]. 
For example, the epsilon band [18] is applied to model positional uncertainties of geographical 
objects. In addition, random sets theory is applied to handle the uncertainty in spatial information, 
for example for the definition of geographical areas, in mathematical morphology and in geostatistics 
[19]. Fuzzy sets theory introduced by Zadeh provides a conceptual framework for solving 
representation and classification problems in an ambiguous environment by means of membership 
functions [20].  

In this study, we focused on the similarity of fuzzy sets and random sets in modelling the 
uncertainty in shoreline locations. Fuzzy sets are sets or classes that allow partial memberships 
[21,22]. A fuzzy set is characterized by a membership function which assigns to each object a grade 
of membership in the range [0,1], with 0 representing the “non-membership” and 1 representing the 
“full-membership” of the set. Two ways are commonly distinguished to develop this membership 
function: the semantic import model (SIM) derived from expert knowledge, and the fuzzy c-means 
classifier (FCM). SIM is subjective in nature [23] since it is based on subjective perceptions of vague 
categories rather than on data in the given problem, i.e., by extending the crisp boundaries into a 
transition zone [24]. In contrast, FCM is obtained from a set of attribute data and results in an objective 
approach. It is a commonly used method to estimate the membership values. FCM was developed 
by Dunn [25] and generalized by Bezdek [26]. Fuzzy sets theory has been widely used in remote 
sensing i.e., for image classification [5,27–29]. Fuzzy sets were applied also in GIS, e.g., for developing 
spatial data models for vague objects and their topological relation [23,30–32].  

A random set is a generalization of a random variable taking subsets as values. Random sets 
theory is an inherent part of probability theory [33–35]. We can estimate the probabilities whether a 
random set is included in a given set, i.e., core, support and α-level sets or not [19]. Random sets 
theory has been employed to develop image segmentation methods [36], to characterize varying 
geometrical shapes [37] and to quantify the extensional uncertainty of spatial objects such as road 
polygons [38] and wetlands [1].  

The connection between fuzzy sets and random sets has been discussed in the past [39–42]. 
Random sets theory is a methodology to deal with the uncertainty of outcomes of random 
phenomena. Fuzzy sets theory describes the uncertainty associated with classification or the 
placement of an outcome in a given class due to imprecision [42]. Goodman et al. [17] stated that 
fuzzy sets are equivalent to a weak specification of random sets. Moreover, Zadeh argued that 
probability theory must be used together with fuzzy logic to enhance its effectiveness and both 
theories are complimentary rather than competitive [39]. Fuzzy sets and random sets can be related 
via the one-point covering function of random sets, defined as the probability that an element is 
covered by a random set. The membership function of fuzzy sets is then considered as the probability 
of a random set covering a point [17,43,44].  

The objective of this research is to compare the performance of fuzzy sets and random sets in 
shoreline mapping. In this case, water and non-water pixels were used as proxies to determine the 
shoreline features extracted from remote sensing images. The comparison between both methods is 
implemented using two types of images: original Pleiades and the combination of Pleiades with an 
airborne LIDAR altimetry data. 

2. Methodology  

2.1. Study Area 

The study was conducted in an area situated along the north coast of Central Java, Indonesia 
(Figure 1). It is 4.6 × 4.2 km, or 4618 × 4262 pixels. The central point of the area is at Geographical 
coordinates 6°56′S and 110°29′E.  
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The study site has an average slope of less than 5.0% and elevation of less than 5.0 m above mean 
sea level (MSL). From 30-year tidal data, the average tidal range of this location was 1.0 m (−0.5 to 
+0.5 m) [45]. The area has a mixed semi-diurnal tide with two high tides and two low tides with 
various heights. Tidal floods occur regularly in line with tidal cycles. Land subsidence with a rate 
approximately 6.0 cm year−1 [46] aggravates the severity of the flooding. Furthermore, the threat 
becomes even higher by the rise of sea level in Indonesia with an average of 0.6 cm year−1 [47]. 

 
Figure 1. The study area, located in Sayung sub-distric, Central Java Province, Indonesia. It is 
presented here as a false colour composite of a Pleiades image with red colour representing the 
vegetation, bluish green showing water area, and greyish and white pixels showing the built-up area. 
Yellow rectangles represent several the selected sites for this work, and black-dashed rectangles show 
four groups of subsets. 

The site is a typical tidal area with a high density of rivers. In the past, it included extensive 
fishponds and rice fields [48] and the rivers were used for irrigations purposes. Rural settlements are 
found along the riverbanks or adjacent to the shorelines. Four villages, Bedono, Sriwulan, Sidogemah 
and Purwosari, are located in the study area, with population sizes equal to approximately 3500, 
12,500, 7000 and 6300 inhabitants, respectively [49]. 

Since 1990s the productive fishponds and rice fields have been submerged and abandoned as 
swamp areas [50,51] leading to shoreline changes [4]. The area is prone to frequent inundations at 
high tide [52,53]. Several measures have been taken to minimize their impact, for example creation 
of dykes along the drainage system near the settlements, dredging the drainage channels, elevating 
roads and house floors, and building a permeable dam as sediment traps [54].  

2.2. Dataset  

We used a high resolution Pleiades image and elevation data. Water level observed from a 
nearby tide station at the time of image acquisition was also used. Those three data sources were 
provided by the Indonesia Geospatial Information Agency (BIG). 
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The image was acquired on 27 February 2013 at the lowest tides (the water level was 0.17 m 
below MSL). Table 1 shows the characteristics of the Pleiades image used. 

Table 1. The characteristics of Pleiades image used. 

Acquisition Date 27 February 2013 
Acquisition time 03:04 UTC 
Incidence angle (deg) 13.66 
Sun elevation (deg) 62.51 
Resolution (m) 0.5 (pan-sharpened product)  
Bands (μm) blue (0.43–0.55), green (0.50–0.62), red (0.59–0.71), NIR (0.74–0.94) 
Map projection UTM WGS84 

The image is a pan-sharpened ortho product obtained in standard processing level at which pan-
sharpening, radiometric and geometric corrections were applied by the image provider.  

The DTM was created from Lidar data recorded in August 2014. The data are in UTM projection 
and elevations are in meters referenced to the Earth Gravitational Model 2008 (EGM 2008). The 
mission report [55] states that the DTM data have a pixel size of 1.0 m, a vertical accuracy of ±0.17 m 
(linear error at 90% confidence, LE90), and a horizontal accuracy of ±0.22 m (circular error at 90% 
confidence, CE90).  

2.3. Pre-Processing 

The DTM was combined with the Pleiades imagery to improve the quality of the classification. 
The DTM data and Pleiades image must be pre-processed before they can be combined. First, the 
Geoid-based DTM data needed to be adjusted, so that it coincided with local MSL. In the study area, 
the Geoid and MSL differ as much as 1.34 m [56]. Second, the DTM data were linearly stretched to 
map its original elevation range (−1.34 to 4.0 m) to the 16-bit range of Pleiades image. Third, the 
histogram minimum method [57] was applied to the image and the average filter was applied in 3 × 
3 window size to reduce the image variance. Fourth, the Pleiades image was co-registered and 
resampled to match the DTM data. 

For comparison of the methods, we prepared two types of datasets: (a) pan-sharpened Pleiades 
with four bands (referred to as Pleiades); and (b) pan-sharpened Pleiades with four bands that were 
stacked with the DTM as the fifth band (referred to as Pleiades + DTM). We created 13 subsets and 
grouped them into four groups (Figure 1), denoted as -  as the name of subsets;  is the group 
number ( = 1, . . ,4), and  is the subset number ( = 1,… 13). Each subset consists of 423 × 282 
pixels, except - , which consists of 374 × 381 pixels and - , which has 317 × 478 pixels. We 
grouped the subsets based on land cover similarities; 

a.  is a mix of settlements and vegetation. This group consists of six subsets. They have a similar 
land orientation, stretching from northwest to southeast direction indicating rural settlements 
with a strip land surrounded by inundated fishponds. Rivers with various widths divide each 
island into two sides and small roads are found on either sides of the river. Rural settlements are 
mostly concentrated alongside the roads with sparse vegetation coverage. 

b.  is a mix of settlement and vegetation with more complex composition. Small rivers are clearly 
seen in -  and - . Fishponds with irregular shapes are visible at the northern part of - 	and - .  

c.  is dominated by vegetation coverage. Rural settlements are visible in -  along the river side 
and a wide muddy area can be found in the northern part of the subset close to the mangrove 
area.  

d.  shows rural settlements surrounded by inundated fishponds. The settlements are protected 
by concrete embankment. 
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2.4. Modelling Shoreline Using Fuzzy Sets  

2.4.1. FCM Classification 

Unsupervised FCM was applied as the clustering algorithm [26] to estimate membership values. 
It separates the datasets into two classes allowing each pixel to have a membership value to multiple 
classes. The membership values ( ) range from 0 to 1, and add up to 1 for each pixel. In this work, 
the membership values of the classification follow the trapezoidal membership function [5].  

FCM classification has a parameter  specifying the number of classes, and  specifying 
fuzziness. Bezdek, et al. [26] stated that values of  between 1.5 and 3.0 produced good results while 
Deer and Eklund [58] used = 1.6. In our previous study using Landsat images, we found that =1.7 produced an accurate fuzzy classification. In this study, we investigated values of  from 1.1 to 
3.0 in steps of 0.1 in to identify the optimal value. We also investigated a  value from 2 to 4 in order 
to find the optimal number of classes. In addition, we determined the cluster validity index from Xie 
and Beni [59] as: = ∑ ∑ ‖ − ‖‖ − ‖  (1) 

 refers to the compactness and separation validity function of fuzzy partition of the dataset = (1, 2, … , ), where ( = 1, 2, … , ) is the centroid of class i, N is the number of pixels (or data 
points), and  is the membership of pixel x to class . 

After clustering, membership images were compiled for each class. We labelled one of the two 
membership images as belonging to the water class by using the near infrared (NIR) band of Pleiades. 
The water label was given to the class which has the minimum value of the class mean in the near 
infrared band [5]. 

2.4.2. Image Segmentation 

The possible shoreline location was determined by generating a margin or transition zone 
between classes water and non-water. We applied a similar approach [5], by defining a threshold range 
obtained from parameter estimation in the subsets. We applied thresholding to create crisp 
boundaries of the transition zone determined by lower ( ) and upper thresholds ( ). The class 
water  was defined as: = 1 if ≥0 otherwise (2) 

where  is the membership to water, and  is threshold value. We investigated values of t from 
0.1 to 0.9 in steps of 0.1 to estimate the optimal threshold value.  

2.4.3. Uncertainty Estimation 

The uncertainty of deriving fuzzy shoreline was estimated by a measure of confusion index CI 
for each pixel as follows [15]: = 1 − ( − ) (3) 

where  refers to the first highest membership and  denotes the second highest membership. 
The CI values range from 0 to 1. If the value approaches 1, it means the difference in membership 
value between the first and the second highest membership is small. The uncertainty of the pixel to 
belong to the class with the largest membership is high. 

2.5. Modelling Shoreline by Random Sets 

2.5.1. Parameter Estimation of Random Sets 

Let the intensity of an image  within a window W be denoted as : → [0,1]. Each pixel ∈
 has an intensity value ( ) ∈ [0,1]. The intensity function  can be interpreted as a collection of 
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sets = { ∈ , ∈ [0,1]: ( ) ≥ }.  becomes a random set when  is a random variable. The 
distribution of a random set is determined by  and the random variable  [1]. 

The thresholding was chosen to model the shoreline from the water membership image. 
Thresholding is a process to separate pixels from an image into regions (or clusters) based on their 
intensity. Usually this segmentation process is based on the image histogram [60]. If the image is 
composed of regions with clear separation in its histogram, the histogram is usually bimodal with a 
deep valley. In that case, the bottom of the valley is taken as the threshold for foreground and 
background separation. However, the choice of threshold is not an easy task due to the existence of 
uncertain area in between the two peaks of the histogram. There are various methods to find the 
optimal threshold between the foreground and the background [1,61]. In this study, we consider the 
uncertain area, the transition zone between the foreground and background as the third class, 
shoreline, with intensity values in the interval [ ,	 ], where 0 ≤ ≤ ≤ 1 (Figure 2). We consider 
shoreline as the transition zone between water as the foreground and the coastal land as the 
background. We aim to extract the extent of shoreline and model it as a random set to quantify its 
extensional uncertainty. 

 
Figure 2. Density functions of shoreline object and related mixed Gaussian model. 

The critical part of creating the random sets model is to generate realizations that characterize 
its distribution. To obtain these realizations, the probability distribution of  was determined and 
random numbers in the transition zone [ ,	 ] were generated as multiple thresholds. We chose the 
Gaussian distribution [1,61], based on the assumption that pixel values close to the object boundary 
have a higher probability to be labelled as the boundary than pixels at a distance.  

A mixed Gaussian model was used to fit a density distribution to the image histogram and to 
determine the transition zone [ ,	 ] (Figure 2). When using multi-temporal images for shoreline 
mapping, each image has a different histogram reflecting a different proportion of transition zones. 
An image recorded during a low tide has a broader transition zone than an image recorded at a high 
tide. Hence, we chose the mixed Gaussian model with three components: the distributions of water, 
non-water, and shoreline as the transition zone.  

Let the three classes be denoted as non-water ( ), shoreline ( ) and water ( ). We assumed that 
the intensity of pixels which belong to class , ∈ {1, 2, 3} follows the Gaussian distribution.  has 
the Gaussian distribution ~ (Μ , Σ ) with mean Μ , standard deviation Σ  and density function ( 2 Σ ) − ( − Μ ) /Σ  in a one-dimensional model. The density function of  is the mixed 
density distribution of : 

( ) = ( ; Θ ,Μ , Σ ) = Θ (Μ , Σ )( ) (4) 

where = ( ), Θ  is the weight coefficient for  and ∑ Θ = 1. It is assumed that Μ < Μ <Μ . The lower limit of the shoreline is to be determined at  where Θ (Μ , Σ )( ) =Θ (Μ , Σ )( ), and the upper limit at  where Θ (Μ , Σ )( ) = Θ (Μ , Σ )( ). In this way, we 
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identify three classes as presented in Figure 2: non-water ( ): ( ) < , shoreline ( ):	 ≤ ( ) ≤
, and water ( ):	 ( ) > . The transition interval [ ,	 ] is determined by tuning the weight of the 

shoreline component. For example, suppose that the thresholds 0.4, 0.5, and 0.6 were adopted for 
shoreline hard classification, and then we investigated an interval around these values, to find the 
optimal threshold interval for random sets. 

2.5.2. Modelling the Extent of Shoreline by Random Sets 

We generated  random numbers from the distribution ~ (Μ , Σ ) in [ ,	 ]. This results 
into different realizations of a random set , … ,  by thresholding the water membership image 
using , … ,  as the multiple thresholds: = { ∈ , ∈ {1, … , }, ∈ [ , ]: ( ) ≥ } . We 
investigated the optimal value of n ( = 10,… , 300) in steps of 10. Intuitively, a value closer to the 
optimal n should be more reliable and the variance of random sets Γ becomes stable as n increases. 
For each n, the covering function ( ) can then be determined including the core, median, support 
and level sets. We provided a curve for the core area as a function of n values. If the difference of two 
standardized core area between two successive n (denoted as ) is small (e.g., in the range −1 to +1), 
we accepted this n as the optimal n.  

The idea of the generation of random sets is that the extent of segmented shoreline objects should 
be sensitive to the variance of the parameter in the threshold when we extracted objects with a large 
extensional uncertainty. By slightly changing the threshold values , … , , we obtained a set of 
objects , … ,  and construct a random set Γ. For example, for n = 100 and threshold interval [0.3, 
0.7], this means that we generate 100 thresholds to slice the membership image and make samples as 
binary maps. Each sample is a realization of focal element  of random sets Γ. The focal elements 
are regions which are subsets of : ∈ 	 ( ). If the random set is constructed by n focal elements 
with equal probability, then = 1/ . We need to estimate the covering function ( ) to measure 
the probability of pixel x being covered by random sets. The covering function characterizes the 
distribution of random sets Γ . The covering function ( )  at point x equals (Γ ∩ { } ≠ 0) =( ∈ Γ). It can be described by focal elements  with corresponding uncertainty assignments , 
indicated as a collection of pairs { , }, ∈ (1,… , ) [38]. The covering function of random sets can 
be estimated by [1,38]: 

( ) = 1 ( ) , ∈  (5) 

where  is the indicator function of , ∈ (1,… , ): = 1,0,	 ∈∉ .  

Figure 3a illustrates a simple example for covering function estimations of random sets with 
equal uncertainty assignments reflected by equal interval . Figure 3b shows the covering function 
values at six pixels derived by Equation (5). Table 2 provides the statistical parameters of random 
sets [62].  

 
Figure 3. Focal elements with their equal uncertainty assignments =	 =  to construct a 
realization of random sets (a); and covering function of the random sets (b). These figures are adapted 
from Zhao et al. [62].  
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Table 2. The statistical parameter of random sets.  

Definition Equations 
The -level set: to describe the spatial distribution of the varying sizes of Γ Γ = { ∈ , 0 ≤ ≤ 1:	 ( ) ≥ }

The core set: to describe the certain part of Γ Γ = { ∈ : ( ) = 1} 
The median set: to describe the 0.5-level set Γ . = { ∈ : ( ) = 0.5} 

The support set: to describe the possible part of Γ  Γ = { ∈ : ( ) > 0} 
The mean area of Γ (Γ) = ( )  

The mean set of Γ Γ = { ∈ , 0 ≤ ≤ 1 ∶ 	 ( )≥ } 
The set-theoretic variance Γ ( ) = 1 ( ) − ( )  

The sum of variance SV  = Γ ( )  

The coefficient of variation CV = Γ ( )( )  

2.6. Validation and Comparing Classification Performance 

To quantify the accuracy of each model, we used the error matrix to estimate the κ (kappa) 
values. In this case, we produced a hardened FCM using = 0.5  and the median set Γ . . We 
compared the performance of both approaches using two input images (Pleiades and Pleiades + DTM). 

Reference data were derived from the 0.5 m Pleiades image acquired in 2013. Using stratified 
random sampling, approximately 138 points were randomly selected for each subset. A visual 
interpretation approach was performed to distinguish a land cover class for each selected point.  

To test the significance of the difference between: a) fuzzy sets and random sets; b) Pleiades and 
Pleiades + DTM, we performed McNemar’s test [63–65]. McNemar’s test is based on confusion 
matrices that are 2 by 2 in dimension. The null hypothesis stated that both input images produced 
similar accuracy. The test is based on chi-square statistics at the 95% level of confidence, and 
computed as follows: = ( − )( + )  (6) 

where  denotes number of cases that are incorrectly classified by the first method or the first 
image but correctly classified by the second method or the second image, and  denotes number 
of cases that are correctly classified by the first method or the first image but incorrectly classified by 
the second method or the second image. 

3. Results 

3.1. Modelling Shoreline Using Fuzzy Sets 

3.1.1. Parameter Estimation of FCM Classification 

Figure S1 shows the  values when we estimated c and m values for all subsets of the Pleiades + 
DTM image. For low m (e.g., m = 1.1–1.6), classifications show a comparable  for all thresholds, and 
the highest  was obtained for c = 2, while by setting a high m (m = 2.0–3.0), high  values were 
obtained only for certain t values. For example, when we set m = 1.5 and c = 2, high  were obtained 
for t = 0.2–0.8 while for m = 3 and c = 3, high  were only obtained for t = 0.2. In this case, for a high 
m value, the choice of t becomes more sensitive. In addition, Table S1 shows the cluster validity 
measures as an alternative approach to determine the number of classes for FCM classification. From 
the results, c = 2 obtained the minimum values for all m which indicates a partition in which all 
clusters are overall compact, and separate from each other. Based on both approaches in estimating 
the suitable number of classes for FCM classification, we decided c = 2 was the optimal number of 
classes for further image processing steps.  
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Figure S2 shows the results of threshold range estimation when we set a constant c (c = 2) for 
various m. We can see that t = 0.5 gave a highest  value for all subsets while the threshold range 
0.3–0.7 provided high  values. High values of m resulted in a low  value, especially at a low t (t < 
0.3) and a high t value (t > 0.6). Given the fact that the threshold range 0.3–0.7 produced high  
values, we selected those values as the threshold range at which the boundary between water and 
land can probably be distinguished. 

In Figure S2, we can also see that m = 1.5 and m = 1.6 are comparable as indicated by the stability 
of  value, whereas, for m > 1.6, the choice of t becomes more sensitive. Given the results, we chose 
m = 1.6 as the optimal m value for FCM. 

3.1.2. Hardened FCM and Accuracy Comparison 

Figures 4 and 5 show the comparison of thresholding results for hardened FCM at t = 0.5 for 
both input images. The inclusion of DTM data has improved the classification results. In Figure 4, an 
example is presented at which roofs (non-water) were correctly classified by Pleiades + DTM, but were 
classified incorrectly by Pleiades. The classification improvement also can be seen from Figure 5 
provides an example in which inundated land was clearly identified by Pleiades + DTM. 

Table 3 shows the comparison of the accuracy between Pleiades and Pleiades + DTM. For all 
subsets, Pleiades + DTM outperformed Pleiades. Table S2 presents the significance of the different 
accuracies given by both images. Seven of the tests show significant improvement of the Pleiades + 
DTM over the Pleiades, as shown by very low p-values, whereas, few results have similar accuracies, 
as shown by p-value ≥ 0.05.  

 
Figure 4. Comparison of the fuzzy classification results between: Pleiades (a,c); and Pleiades + DTM 
(b,d). Pleiades 0.5 m (e); and elevation data (f) are displayed to interpret the attribute of yellow points. 
In (c,d), we can see that Pleiades misclassified pixels as water instead of roofs (non-water), as can be 
seen in (e). 
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Figure 5. An example of inundated land that was: incorrectly classified by Pleiades (a,c); and classified 
successfully by Pleiades + DTM (b,d). Pleiades 0.5 m (e); and elevation data (f) are presented to 
interpret the yellow points.  

Table 3. The accuracy comparison between Pleiades and Pleiades + DTM using FCM classification with 
thresholding (c = 2, m = 1.6, t = 0.5). The inclusion of DTM in classifications clearly improved the 
classification results. - : the name of subsets,  is the group number ( = 1, . . ,4) and  is the 
subset number ( = 1,…13). 

Subset Pleiades Pleaides + DTM –  0.77 0.86 –  0.62 0.86 –  0.76 0.88 –  0.48 0.84 –  0.56 0.87 –  0.74 0.88 –  0.74 0.91 –  0.74 0.87 –  0.78 0.87 –  0.50 0.82 –  0.74 0.89 –  0.65 0.88 –  0.67 0.81 

3.1.3. Fuzzy Shoreline and Uncertainty Estimation 

Figure 6 shows an illustration of shoreline margin with fuzziness generated by setting t = 0.3 as 
the lower t and t = 0.7 as the upper t by using Pleiades + DTM (for other results, see Figure S3). In this 
figure, the shoreline (in light green colour) represents the transition zone between water (in blue 
colour) and non-water (in black colour). The combination of the shoreline image and the confusion 
index is provided in Figure 6d. In this figure, a wider shoreline indicates a wider gradual transition 
between water and non-water representing a more gently sloping beach or muddy coastal area, while 
a narrow shoreline indicates a steeper sloping beach.  
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Figure 6. The shoreline as the transition zone between water and non-water (a); the fuzziness of the 
shoreline is represented by the confusion index denoting the uncertainty of pixels to be classified to 
the largest membership (b); zooming into the white-dashed rectangle sites (c); and shoreline image 
with fuzziness represented by the confusion index (d). 

3.2. Modelling Shoreline by Random Sets 

3.2.1. Parameter Estimation Results 

Table S3 show the results of parameter n and threshold interval estimation of random sets with 
the related κ values estimated from the Γ . . In Table S3 and Figure 7, it can be seen that threshold 
interval = 0.3–0.7 generally produced the highest  value.  

We plotted the curves of the Γ  area for four subsets by setting the selected threshold interval = 
0.3–0.7 (see Figures 8 and S4). From these curves, we can assess the optimal n at which we obtained 
a stabile Γ  area. Each subset has a different n to reach a stabile Γ  area, which might be influenced 
by the land cover characteristics of the study area. In Figure 8, the curve of –  reached the highest 
n value to achieve the stability of the Γ  area, whereas –  reached the lowest n.  

 
Figure 7. Estimation of threshold interval for random sets based on the optimal n selected for each 
subset. Threshold interval = 0.3–0.7 generally produced the highest  value. - : the name of 
subsets,  is the group number ( = 1, . . ,4) and  is the subset number ( = 1,…13). 
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Figure 8. The curve of differences between two successive standardized core sets . When  is in 
the range −1 to +1, we determined this n value for performing random sets (see notations in Figure 7 
for the name of subsets). 

3.2.2. Uncertainty Modelling of Shoreline Objects 

Figure 9 shows some examples of binary images and the related covering functions that resulted 
from slicing water membership images determined by the optimal n (the other results can be seen in 
Figure S5). By slightly changing the threshold for , we obtained binary maps as a realization of 
focal element  with various extents. From these focal elements, we constructed random sets by 
estimating the covering function, as can be seen in Figure 9f. 

We plotted the area of focal elements to explore information on the extent of random sets (see 
Figure 10). From the plot in Figure 10, we can see that - , - , and -  have the largest variance, 
whereas - , -  and -  have the smallest variance. 

 
Figure 9. Samples of the random sets with various extents and their covering function. (a–e) Samples 
are at 	= 0.3–0.7. Pixels in white indicate the water area and pixels in black indicate the non-water 
area. (f) The related covering functions, where 0 indicates a low probability and 1 indicates a high 
probability to be covered by the random sets. Various extents of focal elements at each binary map 
can be seen when zooming into the yellow rectangle site. 
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Figure 10. Statistical distribution of area of focal elements sampled from 13 random sets (see notations 
in Figure 7 for the name of subsets). 

In Table 4, we can see that subset -  has the lowest CV value. A lower CV indicates that the 
random sets have small Γ , reflecting a lower uncertainty. By checking the Pleiades image in Figure 
1, it is obvious that -  comprises a rural settlement with concrete roads. The settlement was 
protected by embankment from its surrounding open water. For an object with little uncertainty, the 
membership values are homogenous. Therefore, the resulting samples , … ,  have similar extents 
(see Figure 10 subset - ) . On the contrary, -  has the highest CV value, which obviously 
indicates the highest uncertainty. For an object with a high uncertainty, the membership values are 
heterogeneous. Hence, the resulting samples , … ,  have various extents and are very sensitive to 
small variations in t value (see Figure 10 subset - ).  

In Figure 11a, the set-theoretic variance Γ  is presented in grey scale values with light colour 
denoting high variations in uncertain transition zones and dark colour denoting low variations of 
water and non-water (the other results can be seen in Figure S6). For pixels inside Γ  or outside Γ , 
Γ  equals 0, whereas pixels close to the contours of Γ  or Γ  have Γ  values in the range [0,1]. 
Figure 11b shows the contours of Γ , Γ  and Γ  of random sets. The yellow rectangle sites (1) in 
Figure 11a,b have a different extent implying that these sites have a wider, more gradual transition 
(see Figure 11c), mainly caused by the location close to the mangrove forest in a muddy area. For the 
yellow sites (2), however, the contours of Γ , Γ  and Γ  are similar and the segmentation 
boundaries show small variation (see Figure 11d).  

More pixels with a non-zero Γ  in the objects indicate a large uncertainty area. SV values are 
the largest for – , – , and –  (see Table 4) because the number of pixels with non-zero Γ  
values in those subsets are the largest (see Figure S6). Subsets – , –  and –  have the smallest 
CV, which can be observed well in Figure S6 indicating a small number of pixels with a non-zero Γ .  

The extent of the shoreline is represented by a random sets model in Figure 12 as an example of 
the representations of the core set Γ , the support set Γ , and the covering function ( ) of random 
sets (see Figure S7 for other results). Figure 12a shows the Γ  (in blue pixels) representing the area 
that obviously belongs to water. Figures 12b displays the Γ  (in blue colour) indicating the possible 
part of the area that belongs to water, whereas the area outside this Γ  belongs to non-water (see black 
pixels in Figure 12d). The gradual changes in the transition zone representing the shoreline are 
represented by the set-theoretic variance Γ . Pixels with value close to 1 have a high variation 
indicating a high uncertainty, whereas, pixels with value close to 0 have a low variation indicating a 
low uncertainty (Figure 12d,e). A clear distinction exists between a narrow transition zone, for 
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example, which separates settlements and open water (Figure 12e, e.g., grid cells A2 and B2), and 
broad transition zones between open water and vegetation (Figure 12e, e.g., grid cells B3). 

Table 4. The quantification of the extensional uncertainty of the all subsets (the SV is the sum of 
variance, and CV denotes the coefficient of variance). See notations in Table 3 for the name of subsets. 

Subset SV CV - 657 0.007- 811 0.009 - 915 0.010 - 901 0.010 - 466 0.005 - 574 0.008 - 953 0.009 - 1525 0.032 - 1710 0.017 - 1490 0.025 - 883 0.014 - 441 0.005 - 580 0.006 

 
Figure 11. The set-theoretic variance (a); some examples of the contour of Γ , Γ .  and Γ  (b); and a 
detail representing the yellow rectangle sites as an example of contours with a broad variation (c); 
and contours with a small variation indicating a narrow shoreline (d). 
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Figure 12. An example of a random set: the core set  and its contour (a); the support set  and its 
contour (b); the set-theoretic variance image (c); the transition zone between water and non-water 
represented by the set-theoretic variance values (d); and zoom-in to the yellow rectangle site (e). 

3.2.3. Accuracy Assessment of Random Sets Results 

Table 5 shows the comparison of accuracy between Pleiades and Pleiades + DTM by using random 
sets. Similar to fuzzy sets, using random sets, Pleiades + DTM outperformed Pleiades. McNemar’s test 
results of random sets using Pleiades and Pleiades + DTM are shown in Table S4. Seven of the subsets 
show significant improvement of the Pleiades + DTM over the Pleiades image, as shown by their very 
low p-values (see Table S4 subsets - , - , - , - , - , - , and - ), whereas the rest of the 
results show that similar accuracies were obtained from both of them. 

Table 5. The accuracy comparison between Pleiades and Pleiades + DTM by random sets (see notations 
in Table 3 for the name of subsets).  

Subset Pleiades Pleiades + DTM -  0.76 0.89 -  0.58 0.86 -  0.76 0.88 -  0.48 0.84 -  0.56 0.87 -  0.74 0.88 -  0.75 0.87 -  0.74 0.87 -  0.79 0.81 -  0.56 0.90 -  0.77 0.90 -  0.66 0.88 -  0.67 0.81 
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3.3. Comparing Classification Performance 

Table S5 presents the McNemar’s test results by fuzzy sets and random sets using Pleiades image. 
The table indicates that the methods agree on f22 and f11 but disagree on f12 and f21 cases. From the 
test results, we can see that p-values are relatively high (≥0.05) implying that both methods obtained 
a similar accuracy when using Pleiades. 

Table S6 presents the McNemar’s test results by fuzzy sets and random sets using Pleiades + DTM 
image as input data. From the test results, we can see that p-values are relatively high (≥0.05) implying 
that both methods obtained a similar accuracy when using Pleiades + DTM. 

4. Discussion 

This research compared two methods for handling the uncertainty of shorelines: fuzzy sets and 
random sets. Shoreline is a spatial object with inherent uncertainty that cannot be extracted effectively 
from satellite images by means of a crisp-based classification, since these methods ignore uncertain 
areas or gradual transition zones. This paper demonstrates that fuzzy sets and random sets produced 
comparable results for modelling the uncertainty of fuzzy shorelines. When using fuzzy sets, the 
same results can be achieved without taking randomness into account, as confirmed by Zadeh [39].  

The κ accuracies from both fuzzy sets and random sets are slightly different (see Tables 3 and 
5). In addition, the McNemar’s test failed to reject the null hypothesis of equal performance of both 
methods by using either Pleiades or Pleiades + DTM (see Tables S5 and S6). Although fuzzy sets and 
random sets were not identical, shorelines resulted from both methods were close to each other (see 
Figures 6d and 12e) and neither could be considered more accurate, as confirmed by the literature 
[43,44]. This is probably related to the fact that each segmentation of random sets can be interpreted 
as a different interpretation of a fuzzy concept, since the multiple thresholds to generate the segments 
are selected among the possible interpretations [43]. Furthermore, Goodman argued that any given 
fuzzy sets is equal to one nested random set [44].  

Both methods were successful in identifying the spatial extent of shorelines including their 
extensional uncertainties. Fuzzy sets present a shoreline as a margin derived from a crisp boundary 
determined by t values. Here, the extensional uncertainty of shoreline represented by a confusion 
index values implies that the shoreline can be detected with limited certainty. Through the confusion 
index, the presence of a gradual transition was distinguished when the values of an adjacent grid are 
very similar. When using random sets, a shoreline is presented as the third class, the transition zone 
between water and non-water. The extensional uncertainty of a shoreline was assessed by using the 
covering function of random sets and its statistical parameters (Γ , Γ , Γ  and Γ ). By using these 
parameters, we demonstrated that the randomness of segmentation parameters, i.e., multiple 
thresholds, has a different effect on extracted features when objects have different extensional 
uncertainties (see Figure 9). Moreover, there are other indicators such as SV and CV to summarize 
the size of extensional uncertainties. A high SV and CV indicate a high extensional uncertainty.  

Fuzzy sets were applied by first estimating the membership function. In this study, we 
computed the membership value by performing FCM classification. On the one hand, this method is 
less subjective as compared to the semantic import model [24,66], while, on the other hand, the choice 
of values for c and m influence the results of the classification. In contrast, random sets as a 
probabilistic approach avoid user interference [34,67] in generating random sets.  

The random sets model was combined with thresholding to model shorelines from water 
membership images. Here, the choice of n as the number of focal elements was critical. Improper 
threshold values , … , , from the worst n values in segmentation will result in errant segments. At 
low n, the Γ  area changed abruptly, and by the increasing of n values, the Γ  area reached its 
stability. In fact, by increasing n, we increase the chance to have optimal threshold values for 
segmentation of random sets. Performing random sets modelling with such large n values was 
computationally expensive. Comparing random sets to fuzzy sets, fuzzy sets were relatively 
computationally less expensive. However, the choice of optimal c, m, and t values for classification 
influences the results and requires a thorough investigation. 



Remote Sens. 2017, 9, 885  17 of 20 

 

To model a shoreline using fuzzy sets, we need to adopt other concepts to quantify the 
extensional uncertainty of the shoreline, such as α-cut, shoreline as a margin, and fuzzy-crisp object 
[4,5,28], whereas a random sets approach through its covering function and statistical parameters 
directly quantifies the extensional uncertainty of shoreline without resorting to other concepts.  

The integration of DTM data improved the results of both fuzzy sets and random sets. The 
integration of Pleiades and elevation has higher accuracy than Pleiades only. The additional DTM 
band leads to an improvement in the classification accuracy for roofs, inundated houses and 
inundated land. After this integration, roofs were clearly distinguished and separated from their 
surroundings (i.e., water and inundated soil). Usually, the ground close to the building location is 
slightly higher than its surroundings while water area or an inundated land clearly has a lower 
elevation. By using only Pleiades, it was difficult to discriminate dark roofs and water or inundated 
soil, since they are often have similar spectral characteristics. The ability to discriminate two similar 
characteristics is influenced by the number of spectral bands available. The other objects that were 
successfully classified from the addition of DTM were inundated houses and land. In this case, the 
elevation data help to identify the water area. In addition to the benefit given by addition of the DTM 
in the classification, a downside could be found as well, especially for tree objects. This is due to the 
time difference between Pleiades and DTM data of one and half years. In several locations, trees were 
submerged and finally no longer exist in newer data and these changes caused loss of accuracy. In 
this case, the use of DTM data that have the same date of acquisition as the remote sensing image is 
preferable. 

5. Conclusions 

In this paper, fuzzy sets and random sets are compared for shoreline detection. Both methods 
performed well in modelling the uncertainty of shorelines and had similar results when using either 
Pleiades or Pleiades + DTM.  

Application of fuzzy sets produced a higher classification accuracy for Pleiades + DTM than for 
Pleiades. Similarly, for random sets, Pleiades + DTM gained a significant improvement over Pleiades. 
Considerable improvements were achieved for objects, e.g., roofs, inundated houses and yards. 
Pleiades + DTM achieved an accuracy above 80%, demonstrating that it provides a valuable data 
source for shoreline mapping. In the absence of elevation data, we may overestimate in particular the 
water area. The research further confirmed the need of DTM integration to remote sensing images to 
provide reliable and accurate shoreline mapping that may give benefit to coastal planners and 
managers. The proposed methods are to be further applied in other areas for future study. This will 
help to better understand how different condition of the area can influence the results and to upscale 
the methods to larger areas of land. 

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/9/9/895/s1, Figure 
S1: The estimation results of c and m for FCM classification; Table S1: The cluster validity index showing the 
compactness and the separateness among all clusters (applied using m = 1.6); Figure S2: The estimation of 
threshold interval for c = 2 and various m values for FCM classification; Table S2: The results of McNemar’s test 
showing the significance of the different accuracies given by Pleiades and Pleiades + DTM (α = 0.05) in FCM 
classification with thresholding; Figure S3: The shoreline as the transition zone between water and non-water 
(Columns 1 and 5); confusion index images (Columns 2 and 6); zooming into the white-dashed rectangle sites 
(Columns 3 and 7); and shoreline images with fuzziness represented by the confusion index (Columns 4 and 8); 
Table S3: The optimal n selected for each threshold interval and the related κ values for generation of random 
sets; Figure S4: The curve of differences between two successive standardized core sets ; Figure S5: Samples 
of the random sets with various extents and their covering functions; Figure S6: The set-theoretic variance and 
the contour of random sets; Figure S7: An example of random sets; the core set Γ  and its contour (Columns 1 
and 5); the support set Γ  and its contour (Columns 2 and 6); the transition zone between water and non-water 
represented by the set-theoretic variance (Columns 3 and 7); and zooming into the yellow rectangle sites 
(Columns 4 and 8); Table S4: The results of McNemar’s test showing the significance of the different accuracies 
given by Pleiades and Pleiades + DTM (α = 0.05) in random sets; Table S5: The results of McNemar’s test showing 
the significance of the difference given by fuzzy sets and random sets (α = 0.05) by using Pleiades; Table S6: The 
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results of McNemar’s test showing the significance of the difference given by fuzzy sets and random sets (α =0.05) using Pleiades + DTM data.  
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