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Abstract: The primary measure of the quality of sea surface temperature (SST) fields obtained from 
satellite-borne infrared sensors has been the bias and variance of matchups with co-located in-situ 
values. Because such matchups tend to be widely separated, these bias and variance estimates are 
not necessarily a good measure of small scale (several pixels) gradients in these fields because one 
of the primary contributors to the uncertainty in satellite retrievals is atmospheric contamination, 
which tends to have large spatial scales compared with the pixel separation of infrared sensors. 
Hence, there is not a good measure to use in selecting SST fields appropriate for the study of 
submesoscale processes and, in particular, of processes associated with near-surface fronts, both of 
which have recently seen a rapid increase in interest. In this study, two methods are examined to 
address this problem, one based on spectra of the SST data and the other on their variograms. To 
evaluate the methods, instrument noise was estimated in Level-2 Visible-Infrared Imager-
Radiometer Suite (VIIRS) and Advanced Very High Resolution Radiometer (AVHRR) SST fields of 
the Sargasso Sea. The two methods provided very nearly identical results for AVHRR: along-scan 
values of approximately 0.18 K for both day and night and along-track values of 0.21 K for day and 
night. By contrast, the instrument noise estimated for VIIRS varied by method, scan geometry and 
day-night. Specifically, daytime, along-scan (along-track), spectral estimates were found to be 
approximately 0.05 K (0.08 K) and the corresponding nighttime values of 0.02 K (0.03 K). Daytime 
estimates based on the variogram were found to be 0.08 K (0.10 K) with the corresponding nighttime 
values of 0.04 K (0.06 K). Taken together, AVHRR instrument noise is significantly larger than VIIRS 
instrument noise, along-track noise is larger than along-scan noise and daytime levels are higher 
than nighttime levels. Given the similarity of results and the less stringent preprocessing 
requirements, the variogram is the preferred method, although there is a suggestion that this 
approach overestimates the noise for high quality data in dynamically quiet regions. Finally, 
simulations of the impact of noise on the determination of SST gradients show that on average the 
gradient magnitude for typical ocean gradients will be accurately estimated with VIIRS but 
substantially overestimated with AVHRR. 
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1. Introduction 

To date, a great deal of attention has been focused on the accuracy of satellite-derived sea surface 
temperature (SST) products (see, for example, [1–5], a very small fraction of the articles addressing 
this issue). By contrast, the spatial precision (defined below) of satellite-derived SST fields has only 
been addressed by Tandeo et al. [6] (Tan14 hereafter), and that peripherally in an analysis of the 
anisotropy of SST fields in the global ocean. Donlon et al. [7] provide an excellent overview of the 
general approach (based on the bias and variance of pixel SST values relative to co-located in situ 
values) used to determine satellite data product accuracy. A feature of this approach is that the 
satellite–in situ matchups are generally widely separated in space and time, because of cloud cover 
and the paucity of in situ data. This often results in a spatially slowly varying bias in the retrieved 
SST values, because a significant contribution to the uncertainty in satellite retrievals results from 
atmospheric contamination, the spatial scales of which are, in general, large compared with the pixel 
separation of infrared sensors. This means that the pixel-to-pixel uncertainty, the spatial precision, 
may be substantially smaller than the accuracy determined from in situ match-ups. Indeed, Tan14 
estimates the spatial precision of Advanced Very High Resolution Radiometer (AVHRR) to be 
approximately 0.2 K, substantially smaller than the estimated accuracy of 0.5 K [1–3] and, as will be 
shown in the following, the difference between the spatial precision and the accuracy of Visible-
Infrared Imager-Radiometer Suite (VIIRS) SST fields is even more pronounced, 0.08 K versus 0.4 

K [4,5]. The lack of knowledge related to the spatial precision of satellite-derived SST fields makes 
selection of the appropriate dataset as well as the combination of datasets derived from different 
sources problematic at best for studies of processes at the one to ten pixel spatial scale. 

We refer to the uncertainty of the retrieved SST relative to the actual SST as the values accuracy. 
By contrast, we refer to the uncertainty in SST following removal of a bias in the field associated with 
long-wavelength phenomena as the spatial precision of the field. The latter is important in studies 
related to the SST gradient, while the former to processes for which the specific value is important, 
such as those directly related to air–sea fluxes of a variety of properties. One might also refer to the 
temporal precision of the retrievals—the uncertainty of SST retrievals at a given location between 
consecutive satellite passes of the sensor from which the fields are being derived. However, the time 
scale separating consecutive retrievals for most satellite-borne infrared sensors is large relative to the 
time scale associated with atmospheric phenomena, hence the temporal precision will be close to the 
accuracy as described above. 

In this study, we investigate the spatial precision of Level-2 (L2) [8] SST fields obtained from the 
VIIRS carried on the Suomi-National Polar-orbiting Partnership (Suomi-NPP) spacecraft launched in 
October 2012 and L2 SST fields obtained from the AVHRR carried on NOAA-15. Note that Tan14’s 
estimate of spatial precision is based on comparisons with L3 fields, adding a processing step that is 
likely to add additional error to the fields. VIIRS fields were selected because of their high spatial 
precision as will be shown in Section 5.1. AVHRR fields were chosen because AVHRR instruments 
comprise the longest, global satellite-derived SST record, dating back to late 1981. L2 data were 
selected because they form the basis of all higher order products obtained from these sensors, hence 
provide a lower limit for the small-scale retrieval noise to be expected in their products. The 
contribution of instrument noise to the spatial precision for each of these datasets will be determined 
using two methods, one based on spectra, the other on variograms of the fields [6]. 

In Section 2, we describe the datasets, the study area and the period covered by the analysis. 
This is followed in Section 3 by a discussion of the preprocessing of the datasets and then of the two 
approaches used to estimate the “instrument” noise and from that the spatial precision under cloud-
free conditions. The results of the analyses are in Section 4 and the related discussions are in Section 5. 

However, first, we describe the error budget associated with satellite-derived SST fields. 

The Error Budget of Satellite-Derived SST Fields 

A number of factors contribute to the uncertainty in satellite-derived SST fields. These are 
described in a White Paper prepared by the National Aeronautics and Space Administration (NASA) 
- National Oceanic and Atmospheric Administration (NOAA) SST Science Team [9] and summarized 



Remote Sens. 2017, 9, 877 3 of 20 

 

in Figure 1. Although the accuracy of an L2 skin temperature dataset is determined by the 
accumulation of the error elements shown in the upper gray box of Figure 1, which also shows the 
relationship between these errors and the level of processing, it is generally dominated by 
contributions from the atmosphere—the green block. As noted above, atmospheric retrieval errors 
tend to be long wavelength, with an e-folding distance of many pixels in the case of infrared 
retrievals. The spatial precision, on the other hand, is dominated by instrument noise and 
classification errors (e.g., cloud-contaminated pixels passing as clear pixels) for skin temperature L2 
and L3U datasets. (In the case of “buoy” temperature L2 and L3U datasets, the error in extrapolating 
from the skin temperature, the quantity actually measured by the satellite, to the temperature at the 
depth of the buoy, generally 1 m below the surface, additional contributions to the spatial precision 
may result from the horizontal variability in the vertical temperature step, the orange block in the 
figure. Only L2 skin temperature SST fields are considered in this study, hence horizontal gradients 
in the surface to buoy depth temperature difference do not contribute to the uncertainty in retrievals 
discussed herein.) For L3C, L3S and L4 datasets, the collation and interpolation schemes used will 
likely contribute to a decrease in spatial precision—an increase in the pixel-to-pixel errors—but the 
degree to which this is the case has yet to be documented. Important in the analysis presented herein 
is the distinction between instrument noise (elements in the yellow block of Figure 1) and the noise 
associated with classification errors (one of the elements in the green block). Classification errors 
generally refer to the improper masking of cloud-contaminated pixels and this misclassification is 
thought to be dependent on cloud cover—the larger the fraction of the area contaminated by clouds, 
the larger the fraction of misclassified pixels. The contribution of misclassified pixels to the local error 
is also likely to depend on cloud type. Together, these observations suggest that the classification 
error may vary significantly geographically. For this reason, our focus is on instrument noise, which 
we assume to be less dependent on location, i.e., the estimates of instrument noise obtained in this 
work are thought to be good estimates in regions of low cloud cover and a lower bound in general. 

 

Figure 1. The error budget developed by the National Aeronautics and Space Administration (NASA) 
- National Oceanic and Atmospheric Administration (NOAA) sea surface temperature (SST) Science 
Team for satellite-derived SST fields. 
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2. Data 

This study makes use of one dataset consisting of thermosalinograph (TEX) sections, one L2 SST 
dataset obtained from VIIRS radiances and one L2 SST dataset obtained from AVHRR radiances. 
These are discussed below along with the study area and period. 

2.1. In Situ Temperature 

The thermosalinograph, on which the in situ data are based, was mounted on the MV 
Oleander, a container ship making weekly round trips between Port Elizabeth, NJ, USA and 
Hamilton Harbor, Bermuda (Figure 2). Thermosalinograph temperature measurements were 
obtained from two thermistors, one from the seawater intake in the interior of the ship and the 
second directly at the intake, i.e., “external” to the hull. The exterior measure (referred to as TEX for 
“exterior” temperatures) is thought to be the most accurate [10] (Sch16 hereafter), hence only these 
are used in the work presented here. The SBE38 remote temperature sensor, on which the TEX data 
are based, has an accuracy of 0.0001 K, a resolution of 0.00025 K (although the TEX instrument noise 
is estimated to be 0.00069 K based on the variogram approach discussed in Section 3.3), and a 
response time of 0.5 s. The TEX sensor sampled every 10 s resulting in an approximate spatial 
resolution of 75 m at the typical 16 knots cruise speed of the Oleander. TEX data for the period 
September 2007 to fall 2013 were obtained from the Atlantic Oceanographic and Meteorological 
Laboratory. The quality control procedures used to screen these data are described in Sch16. 

 

Figure 2. Visible-Infrared Imager-Radiometer Suite (VIIRS) SST image from 12 May 2012. The long 
black line (73.5° W, 40° N to 64.8° W, 32.6° N) indicates the nominal Oleander track. Blue frame 
(longitudes from 63° W to 72° W, and latitudes from 32° N to 36° N) denotes the region of the Sargasso 
Sea considered in this study. Shades of gray denote the location of sections extracted from VIIRS SST 
fields—discussed in Section 3.1.1. The gray scale indicates distance from nadir (discussed in detail in 
subsequent sections). Sections with a constant gray level are along-track sections; those with a 
gradient in gray are along-scan. Along-track (along-scan) sections with a negative slope and along-
scan (along-track) sections with a positive slope are daytime (nighttime) sections. The SST field is 
simply provided as a background reference field and corresponds to only one of the images used. 
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2.2. Visible-Infrared Imager-Radiometer Suite (VIIRS) 

The L2 VIIRS SST retrievals used here were derived from the VIIRS “Moderate Resolution 
Bands”, which have a resolution of approximately 750 m at nadir. Because of the way in which the 
instrument samples, the resolution decreases very slowly (compared with other satellite-borne 
instruments, Figure 3) to approximately 1600 m at the scan edge, a ground distance of approximately 
1500 km from nadir [11,12]. 

For this study, we used the VIIRS SST product obtained from NOAA’s Comprehensive Large 
Array-data Stewardship System (the VIIRS Sea Surface Temperature Environmental Data Record 
(EDR) obtained from: http://www.nsof.class.noaa.gov/saa/products/search?datatype_family= 
VIIRS_EDR) produced with the Joint Polar Satellite System (JPSS). Only quality level 1 data, the 
“best” quality level, were used. Although screening at this level ideally removes all cloud 
contaminated pixels, some are still included in the analysis, leading to the misclassification error 
discussed above. 

2.3. AVHRR Pathfinder SST 

The AVHRR product used was derived with the Pathfinder retrieval algorithm developed at the 
University of Miami [13]. The algorithm was applied to the High Resolution Picture Transmission 
(HRPT) data stream obtained from the AVHRR on NOAA-15. Retrievals were performed at the 
University of Rhode Island. Only pixels with a quality level of 3 or higher were used. The nominal 
pixel spacing is 1.1 km although, as can be seen in Figure 3, it increases significantly from this value. 
This increase is what motivated use of pixels within 500 km of nadir as discussed below. 

 
Figure 3. Spacing in the along-scan direction for Advanced Very High Resolution Radiometer 
(AVHRR) and VIIRS pixels in L2 fields as a function of distance from nadir. 

2.4. The Study Area 

MV Oleander traverses several distinct dynamical regimes: the shelf, the Slope Sea, the Gulf 
Stream, and the Sargasso Sea. In that the focus of this analysis is on the spatial resolving power of 
satellite-derived SST datasets, it is important to select a region in which the geophysical variability of 
the SST field does not overwhelm the uncertainty associated with the SST retrievals, be they driven 
by misclassification errors (the green block in Figure 1) or instrument/calibration issues (the yellow 
block). Specifically, this means selecting a dynamically “quiet” region in the ocean. The Sargasso Sea 
portion of the Oleander track between 32° N and 36° N meets this requirement. In order to increase 
the amount of satellite-derived data used in our analysis, we consider all data in the region between 
63° W and 72° W, and 32° N and 36° N (Figure 2). This region was selected with the expectation that 
the dynamics are similar to those seen along Oleander track between 32° N and 36° N hence the 
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spectra should be similar in both slope and energy. As shown in Sch16, spectra including the Gulf 
Stream are substantially more energetic than those for SST in the Sargasso Sea. 

2.5. The Study Period 

The analyses presented here are based on SST fields from the summer of 2012 only—June, July 
and August. Sch16 show that spring (March, April and May) and summer spectra tend to be about 
twice as energetic, over the spectral range examined, 1 to 100 km, as fall and winter spectra suggesting 
that the latter would be more appropriate for the evaluation proposed here, but the summer months 
are also substantially less cloud contaminated than the other seasons. Furthermore, the increased 
spectral energy is likely due in part to diurnal warming, the effect of which may be mitigated by 
selecting nighttime fields only as shown in Section 4.2. This raises a concern with regard to the TEX 
data because TEX sections are not synoptic, taking approximately 20 h to cross the study area. 
However, since the TEX samples between 5 and 6 m below the surface, diurnal warming is not 
thought to be a significant problem [14]. 

3. Methodology 

3.1. The Spectral Approach 

The spectral method, to determine retrieval noise at the pixel level, is based on an analysis of the 
large wavenumber tail of the power spectral density of SST temperature sections extracted from the 
SST fields. Spectra are based on the Discrete Fourier Transform (DFT) determined from the Fast 
Fourier Transform (FFT) (see Sch16 or Wang et al. [15], who also used the DFT to analyze TEX 
spectra). The FFT requires equally spaced, gap-free data, i.e., gaps, if they exist in the original series, 
must be filled and the data must be interpolated to equal spacing, if not already equally spaced, prior 
to applying the FFT algorithm. For satellite-derived fields, gaps result from cloud cover, intervening 
land values (not an issue for the region studied here) or missing scans while pixel spacing depends 
on the product. (The filling of gaps is discussed in Section 3.1.1.) In the case of L2 products the spacing 
of pixels in the along-scan direction varies with distance from nadir (Figure 3), as does the along-
track spacing, although much less so (<0.5% change from nadir to the swath edge for both AVHRR 
and VIIRS). For the in situ data, intermittent system failures resulted in gaps although not to the 
extent of those in the satellite data and sample spacing depends on the ship speed, which varies. 

Of importance to the analysis presented here is that interpolation, either to fill gaps or to 
regularize the spacing of samples on a section, impacts the resulting spectrum, with the impact 
generally increasing as the wavenumber increases, i.e., in the spatial range of most importance to the 
analysis here. Furthermore, the impact is a function both of the fraction of “good” values (defined as Q by Sch16), and the degree to which the “missing” data are clustered (referred to as cohesion and 
assigned the symbol ܥ by Schl16). Sch16 found that “…spectral slopes are increasingly biased low 
as ܳ decreases and ܥ increases, and this effect becomes more pronounced as the true spectral slope 
increases”. Based on this they only considered VIIRS spectra for ܳ − ܥ > 0.1 and ܳ > 0.5 in their 
analysis. We found these thresholds to be too permissive for our purposes; the impact of interpolation 
on spectra in the 1 to 10 pixel range can overwhelm the underlying spectrum as will be shown below. 
We therefore chose more stringent constraints on ܳ, generally resulting in ܳ > 0.9. At this level, the 
cohesion of the data has a relatively small impact on the spectra for slopes in the range of those 
observed in the Sargasso Sea [10], so we did not impose an additional constraint on cohesion. 

3.1.1. Selection of the Sections 

Satellite-Derived Fields. The satellite-derived SST fields evaluated here are obtained from 
scanning radiometers, the characteristics of which may differ in the along-scan versus along-track 
directions. This is indeed the case for VIIRS due to the use of multiple detectors for each scan, which 
results in striping of the fields [17]. The decision was therefore made to separate the data into along-
scan and along-track sections. The data were farther divided into day and night fields to allow 
analysis of the possible effect of diurnal warming on the spectral characteristics of the fields. This is 
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of particular importance given the selection of the Sargasso Sea in summer months, a period when 
diurnal warming is significant [18]. 

Also with regard to the selection of sections from the L2 datasets is their distance from nadir. 
Both the area of each pixel (approximately the along-track spacing, 741 m for VIIRS and 1115 m for 
AVHRR, times the along-scan spacing) and the spacing of pixels along the scan increases away from 
nadir (Figure 3). Both of these factors impact along-scan spectra at small scales, while the increase in 
pixel size impacts along-track spectra, again at these scales. Although the pixel spacing of along-track 
sections is virtually independent of the distance from nadir, the size of the pixel is not, i.e., the SST 
values associated with pixels is averaged over increasingly larger areas away from nadir. This is 
similar to smoothing along-track with a moving average, which in turn depresses the power spectral 
density at small scales, this, independent of the preprocessing performed on the data and it affects 
along-track and along-scan spectra equally. Along-track interpolation (discussed below) to address 
the change in pixel spacing in the along-scan direction (Figure 3) also impacts the resulting spectra. 
In order to reduce the impact of both of these effects, only sections within 500 km of nadir are used 
for this analysis. 

The final criterion used to select sections from the L2 fields relates to the gappiness of the data. 
For clarity, we combine this step with the interpolation to fill missing pixel values in the study area. 
The actual implementation of the algorithm is slightly different, to reduce processing time, but the 
result is the same. Missing values in the study area were replaced using a Barnes filter if 13 of the 24 
pixels in a 5 × 5 pixel square surrounding the pixel of interest are cloud-free, otherwise the pixel 
remains flagged as missing. This corresponds to a decay scale associated with the averaging of 1.5 

km for VIIRS and 2 km for AVHRR and follows the approach taken by Sch16. Following this gap 
filling, all complete (no missing values) 256 pixel, non-overlapping sections in the along-track 
direction meeting the distance from nadir criterion were selected as were all non-overlapping along-
scan sections. Only a small fraction of sections used in the final analysis had more than 15 missing 
pixels in the original data (more than 6% of the pixels were filled on <10% sections). The impact of 
this on the final spectra was evaluated for the worst case scenario by using the Barnes filter to fill 
every point on a section (gap filling was still possible in that adjacent pixels were left as is, i.e., not 
set to missing values), not just the pixels with missing values. The result suggests that the gap filling 
performed only for pixels with missing values has little impact on the final spectra, because the 
number of missing values is in general small; less than 0.6% of all values contributing were replaced 
with the Barnes filter. 

Oleander Sections. Only TEX sections that met the selection criteria of Sch16 were considered. 
Of these only sections with a maximum pixel separation of 150 m in the Sargasso Sea were selected. 
(Selection of temperature sections with maximum sample spacing in excess of 150 m resulted in a 
significant steepening of the spectral slope for wavelengths smaller than approximately 1 km. This 
is due to the nearest neighbor interpolation to 75 m spacing, which repeats samples for these large 
separations.) Barnes filtering with a decay scale of 0.2 km was used to fill these gaps and the 
resulting sections were nearest neighbor interpolated to a mean spacing of 74.9 m, the mean spacing 
averaged over all sections; the mean spacing varies from section-to-section with a minimum of 74.6 

m and a maximum of 75.0 m [19]. 
Table 1 lists the number of satellite-derived sections by along-scan/along-track, day/night 

combination for the summer (June–August) of 2012 and the number of Oleander TEX sections for 
the summers of 2008–2013. 

Table 1. Number of sections meeting the given selection criteria discussed in this section and in 
Sections 2.4 and 2.5. 

 
Day Night

Along-Scan Along-Track Along-Scan Along-Track 
VIIRS 126 517 561 615 

AVHRR 266 256 104 193 
Oleander 42 
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3.1.2. Interpolation to Equal Spacing 

Satellite-Derived Fields. As previously noted the pixel separation in the along-scan direction 
changes with distance from nadir. Because the spectral energy determined with the standard FFT is 
a function of pixel spacing and the number of pixels in the section, combining data with different 
spatial resolutions tends to add noise to the spectra. To address this, along-scan sections were divided 
into three groups each for VIIRS and AVHRR based on mean pixel spacing. First, all adjacent 
temperature sections for a given satellite pass were grouped into subgroups and the mean separation 
of pixels for the subgroup was calculated. (The subgroups ranged in size from 1 to O (100) sections 
depending on cloud cover.) Each subgroup was then assigned to the group indicated in Table 2 based 
on the mean pixel spacing of the subgroup. All of the temperature sections falling in a given group 
were then interpolated to the same pixel spacing, also shown in Table 2. This pixel spacing was 
determined from the mean pixel spacing determined from the contributing temperature sections for 
the given group. This, together with the relatively small size of the ranges, tended to eliminate 
problems associated with different spatial sampling and with an interference between the sampling 
frequency along the original section and that along the interpolated section. Nearest neighbor 
interpolation was used. Figure 4 shows the effective transfer function of three different interpolation 
algorithms available in Matlab: linear, nearest neighbor and cubic spline. To determine the most 
appropriate resampling strategy, SST values on the VIIRS sections were replaced with white noise 
and interpolated. Linear interpolation smooths the field the most resulting in a significant loss of 
energy at small wavelengths, the portion of the spectrum of most interest here. Cubic spline does 
better but still results in a loss of energy at small wavelengths. Nearest neighbor interpolation does 
not significantly alter the distribution of values but does alter the effective wavelength—by shifting 
the values in space. However, the effect on the spectrum is small since the values have been shifted 
to locations, which are on average relatively close to the original values—the use of the mean spacing 
of pixels (which varies from group-to-group) rather than a fixed spacing for all sections. 

Table 2. Grouping of along-scan sections based on mean pixel spacing of the temperature section. The 
values indicated correspond to the lower limit on the range—the value to which temperature sections 
in the range is interpolated—the upper limit on the range. 

 Group 1 (m) Group 2 (m) Group 3 (m) 

VIIRS 770-805-820 860-885-910 940-995-980 

AVHRR 760-765-810 820-865-920 940-947-980 

 

Figure 4. Spectral response of the interpolation methods applied to white noise. 
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3.1.3. Detrending 

Typically, a windowing function is applied to time series (or temperature sections in this case) 
prior to obtaining the spectrum so as to reduce leakage between frequencies and the introduction of 
spectral energy due to step changes at the ends of the section. However, windowing functions tend 
to depress the amount of energy in the spectrum, which results in an underestimate of the instrument 
noise, so we elected not to window the data. Specifically, several different windowing functions, as 
well as simple detrending, were applied to simulations generated by adding white noise to randomly 
generated temperature sections with a linear power spectral density (in log-log space) typical of the 
spectra obtained from the SST sections but with random phase of the spectral elements between −π 
and +π. Detrending provided the most accurate estimate of the imposed noise when compared to 
analysis of the data with the various windowing functions or to analysis of the data with no 
preprocessing. 

3.1.4. FFT 

Finally, the FFT function available in Matlab was used to obtain the spectra from the detrended 
temperature sections. For the along-scan direction, power spectral densities were ensemble averaged 
over each of the subgroups defined in Section 3.1.1. This resulted in approximately 100 subgroups 
for all groups of the AVHRR/VIIRS, day/night combinations, i.e., there was an average of eight 
subgroups for each of the defined groups. Similar averaging was performed for the subgroups of the 
along-track direction. 

Oleander spectra were ensemble averaged over all of the selected sections. 

3.2. Estimation of Instrument Noise 

Instrument noise in the satellite-derived fields is estimated from the shape of the power spectral 
density on the short wavelength (large wavenumber) end of the retrieved spectra. To better 
understand the approach, consider the factors contributing to this portion of the spectrum. If adjacent 
values on a given temperature section are independent with no noise, then the shape of the spectrum 
is defined by the geophysical processes in the region. If the field has been smoothed or averaged over 
a significant region, there is little additional information in the value of one point relative to an 
adjacent one and the spectrum falls off more rapidly than the shape associated with geophysical 
processes. This is what we found for the spectra of the AVHRR SST fields associated with large scan 
angles (not shown here) as well as with the oversampled TEX sections with maximum spacing of 
samples in excess of 150 m resampled to a spacing of 75 m discussed in Section 3.1.1. To avoid the 
roll-off of the spectra at small wavelengths the data were not smoothed. If the field is not smoothed 
and, white noise is added to the values at individual pixels, the spectrum will tend to level off; the 
point at which it begins to do so being a function of the level of the added noise. Finally, if energy 
remains in the geophysical spectrum at wavenumbers larger than those at the end of the retrieved 
satellite-derived spectra, the spectra will also tend to level off near their end as a result of energy 
aliased from the larger wavenumbers. This is likely the reason the ensemble averaged Oleander TEX 
spectrum levels off (Figure 5). (It is not clear whether the slight fall off in the TEX spectrum beginning 
at approximately 1 km is a result of a fall-off in the geophysical signal or some form of averaging of 
the TEX data. However, this roll-off is very slight and ignored here.) In summary, the large 
wavenumber tail of the satellite-derived spectra is subject to the following: 

• An increase in the magnitude of the slope of the spectrum due to averaging over the footprint 
of the sensor; 

• A decrease in the slope due to geophysical noise aliased into the spectrum, especially at high 
wavenumbers; and 

• A decrease in the slope due to instrument noise, the quantity of interest here. 
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Figure 5. Power spectral density from Oleander TEX for all Oleander summer sections (June–August) 
of 2008 through 2013 with maximum sample separation less than 150 m. Temperature sections 
detrended prior to determining and ensemble averaging the spectra. Straight red line: least squares 
best fit straight line (slope = −2.12) of log10 (PSD) to log10 (wavenumber) between 10−5 and 10−3 m−1. 

In order to determine the instrument noise, i.e., to separate it from the other factors cited above, 
we defined a two-step process based on the following three assumptions: 
1. log10 of the geophysical power spectral density in the study area falls off linearly with log10 of 

the wavenumber over the spectral range sampled by the satellite-borne sensors (1.5 to order 
100 km). 

2. The spectrum continues to roll-off with approximately the same slope, at wavenumbers larger 
than those associated with the Nyquist frequency of the satellite temperature sections. This and 
the previous assumption are borne out by the mean TEX spectrum shown in Figure 5 as well as 
from the analysis of the spectra from the two sensors. 

3. The instrument noise for both sensors is white; i.e., it contributes equally at all wavenumbers 
associated with the given temperature sections. This is not quite the case for VIIRS hence one 
has to take a bit more caution with the results presented herein. 

In the first step, the slope, intercept and noise level of a hypothetical spectrum yielding the best 
fit to the satellite spectrum is determined in a least squares sense. This is done by minimizing γ, the 
sum of the squared difference between the hypothetical spectrum and the satellite spectrum: 

,݁݌݋݈ݏ)ߛ ,ݐ݌݁ܿݎ݁ݐ݊݅ (݁ݏ݅݋݊ =  ෍ ቀ൫10(௦௟௢௣௘∗௟௢௚భబ௞೔ା௜௡௧௘௥௖௘௣௧) + ൯݁ݏ݅݋݊ − ௜௦௔௧ቁଶேܦܵܲ
௜ୀଵ  (1) 

where slope and intercept define the straight line portion of the best fit spectrum in log-log space 
(assumption 1 above), noise is the noise level (assumption 3) also in spectral space, ki is the 
wavenumber of the ith spectral component and ܲܵܦ௜௦௔௧ the corresponding power spectral density of 
the satellite spectrum. In the second step, the constant noise level used to generate the spectrum in 
Equation (1) is related to white noise in the spatial domain. Specifically, 1000 noise-free temperature 
sections, with one tenth the sample spacing of that associated with the sensor of interest, are 
generated by inverse Fourier transforming spectra with the same slope and intercept found with 
Equation (1) but with the phase of each spectral component randomly selected between −π and π. A 
10-point moving average is then applied to each temperature section and the result is decimated by 
10. Gaussian white noise of magnitude σ is then added to each point on each section, the sections are 
Fourier transformed, ensemble averaged and a new figure of merit is obtained: 
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(ߪ)ߛ =  ෍(ܲܵܦ௜ௌ௜௠௨௟௔௧௘ௗ(ߪ) − ௜஻௘௦௧ܦܵܲ ௙௜௧(݁݌݋݈ݏ, ,ݐ݌݁ܿݎ݁ݐ݊݅ ଶே((݁ݏ݅݋݊
௜ୀଵ  (2) 

where ܲܵܦ௜ௌ௜௠௨௟௔௧௘ௗ(ߪ)  is the ensemble averaged power spectral density of the simulated 
temperature sections and ܲܵܦ௜஻௘௦௧ ௙௜௧(݁݌݋݈ݏ, ,ݐ݌݁ܿݎ݁ݐ݊݅  is the best fit power spectral density to (݁ݏ݅݋݊
the satellite-derived power spectral density based on the slope, intercept and noise found with 
Equation (1). This is repeated over a range of white noise levels σ to find the level, which best 
corresponds to the noise level obtained with Equation (1). Of importance, is that generating 
temperature sections with 1/10 the spacing of the data associated with the sensors of interest, the 
energy at higher wavenumbers than those resolved by the instrument are aliased into the results thus 
allowing for a more accurate estimate of the instrument noise. In addition, averaging the 
oversampled temperature section simulates averaging performed over the footprint of the sensor. 
However, this does not take into account additional averaging, which takes place in the 2nd 
dimension of the sensor’s footprint. This is not thought to contribute significantly to the 
determination of instrument noise outlined above. 

3.3. The Variogram Approach 

To determine instrument noise from variograms, a model, which includes instrument noise as 
one of its parameters, is fit to the empirical variogram. The model is intended to reflect the spatial 
characteristics of the underlying data, hence selection of an appropriate model for the data of interest 
is critical. Various models have been identified in the literature [20]. Tan14 used an exponential model 
of the form: 

௫ ୭୰߂൫ߛ ௬൯ = ఖଶߪ + ଶ(1ߪ − ݁൬ି௱ೣ ౥౨ ೤௅ ൰) (3) 

where ߪఖଶ, referred to as the nugget, is the variance of the difference in the retrieval at a given location 
from that at a neighboring location as the separation between the two locations goes to zero, i.e., the 
instrument noise in this case, ߪଶ, referred to as the sill, is the variance associated with the variability 
for a spatial separation of L, the decorrelation scale. Note that the sill is a measure of the geophysical 
variance of the field, ߪ௚௘௢ଶ , plus the “large” scale retrieval variance, which depends on the variance in 
the atmosphere, the variance of the surface emissivity, instrument noise, etc. So,  ߪଶ ≈ ௚௘௢ଶߪ  + ௥௘௧௥௜௘௩௔௟ଶߪ) −  ఖଶ) (4)ߪ

where ߪ௥௘௧௥௜௘௩௔௟ଶ  is the total variance of the retrieval. 
The formulation used by Tan14 works well for relatively homogeneous datasets for which the 

underlying variogram has an exponential form [6]. However, in the Sargasso Sea, the shape of the 
empirical variograms, for the L2 SST fields of interest, differ from subregion-to-subregion, not only 
in terms of parameters but also in terms of the model itself, with an exponential model fitting in some 
cases and a Gaussian model in others. In light of this, we have elected to use the “stable 
semivariogram” [20], a slightly modified single model, of the form:  ߛ൫߂௫ ୭୰ ௬൯ = ఖଶߪ + ଶ(1ߪ − ݁ି(௱ೣ ౥౨ ೤௅ )ೢ) (5) 

Note, in comparison to Equation (3), Equation (5) includes an extra parameter, w, which ranges 
from 1 for the exponential form to 2 for the Gaussian form. Although variograms can be developed 
in two dimensions for the model of interest, we chose to use variograms for the along-scan and along-
track directions separately for much the same reasons presented in the discussion of the preliminary 
processing of the data, 

As in Tan14 we use the formulation given by Cressie to estimate the variogram [21]: 

௫ ୭୰ ௬൯߂ො൫ߛ = ∑ ቀܵܵܶ(ݏ௜) − ܵܵܶ൫ݏ௝൯ቁଶ(௦೔,௦ೕ) 2݊  (6) 
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where ܵܵܶ(ݏ௜) is ܵܵܶ at location ݏ௜, Δx or y is the spatial separation in kilometers of (ݏ௜,  ௝) pairs inݏ
the along-scan (x) and along-track (y) directions, and ݊ is the number of such pairs, which varies 
with ݔ߂ or ݕ and the number of cloud contaminated pixels. 

For each of the combinations of interest (along-scan/along-track, day/night), a variogram was 
obtained (Equation (6)) for each of the interpolated, equally spaced temperature sections used in the 
spectral approach and described in Sections 3.1.1 and 3.1.2. Next, for each variogram, the values of ߪ௢, 
σ, ܮ and w of Equation (5), which minimized the weighted squared difference between Equation (5) 
and the variogram, were obtained. The fit was performed over separations up to 20 km. (The nugget 
did not vary significantly for fits up to approximately 40 km. However, fitting to a larger range 
generally resulted in an increase in the nugget, which was thought to be unrealistic—the nugget 
wandered away from the variance at the smallest observed separation.) The weight assigned to each 
separation was equal to the number of pairs at that separation over the total number of separations 
contributing to the variogram, i.e., the weight assigned to a given separation decreased as the 
separation increased. The best-fit nuggets were then averaged for all temperature sections 
corresponding to a given sensor/day-night combination to obtain the estimate for instrument noise for 
that combination. Nuggets were also averaged by the subgroups identified in Section 3.1.1. 

4. Results 

The spatial precision of satellite-derived SST retrievals, the noise resulting from processes in the 
yellow and green boxes of Figure 1, which we refer to as instrument noise here, is shown in Table 3 
for each of the along-scan/along-track, day/night combinations. The first row for each sensor (labeled 
Spectra) corresponds to the estimates obtained from the spectral method. Only subgroups consisting 
of five or more temperature sections and with a spectral slope steeper than −1 were used. The 
instrument noise for subgroups with shallower spectral slopes tended to dominate the geophysical 
signal increasing the uncertainty in the fit of Equation (1). The noise estimates provided in the table 
are the means of the estimates associated with each subgroup. The uncertainty is the square root of 
the variance of these means over the number of contributing subgroups. Variogram estimates follow 
in the next row (labeled Variogram) for each sensor. The means of the estimates are from the same 
subgroups used in the spectral approach and the uncertainties are calculated as for the spectral 
approach. The final row of the table (labeled Upper Limit) for each sensor is an “upper limit” on the 
instrument noise assuming that the pixel-to-pixel noise is white. This was obtained by noting that the 
variance of the difference of adjacent SST values, ߪଶ(Δݔ୫୧୬), is the sum of the variances of the noise 
of each of the two values, 2ߪ௜ଶ, plus the contribution due to the geophysical variance between the 
two values, ߪ௚௘௢ଶ (Δݔ୫୧୬): ߪଶ(Δݔ୫୧୬) = ௜ଶߪ2  + ௚௘௢ଶߪ (Δݔ୫୧୬) ⟹ ௜ߪ ≤ 2√(୫୧୬ݔΔ)ߪ  (7) 

If the noise is not white, for example, the actual level of noise may, in fact, be larger than the 
“upper limit”. 

4.1. AVHRR 

Day-versus-night, along-scan instrument noise levels obtained for the AVHRR data are not 
statistically distinguishable. Nor are the along-track levels. The levels for the variogram estimates 
based on the same subgroups as the spectral estimates (2nd row) are also statistically similar. 
Furthermore, although somewhat larger, the variogram estimates are quite close to the spectral 
estimates, and all of the estimates are close to the upper limit (Equation (7) ) for the given sensor/day-
night/scan-track combination, suggesting that the instrument noise is white. It is possible that the 
pixel noise is correlated at small scales but, again, the mechanism for this is not obvious. 
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Table 3. Estimated instrument noise in satellite-derived SST fields. Numbers in parentheses are the 
number of subgroups from which the means are determined. The indicated uncertainty of the means 
is the square root of the variance of the contributing subgroups over the number of subgroups. 

 Method 
Day (K) Night (K) 

Along-Scan Along-Track Along- Scan Along-Track 

AVHRR 
Spectra 0.172 ± 0.001 (5) 0.209 ± 0.001 (7) 0.173 ± 0.003 (2) 0.209 ± 0.008 (4) 

Variogram 0.185 ± 0.004 (5) 0.219 ± 0.006 (7) 0.183 ± 0.001 (2) 0.219 ± 0.006 (4) 
Upper Limit 0.189 0.218 0.194 0.208 

VIIRS 
Spectra 0.046 ± 0.001 (4) 0.076 ± 0.002 (10) 0.021 ± 0.001 (24) 0.032 ± 0.002 (14) 

Variogram 0.081 ± 0.013 (4) 0.097 ± 0.006 (10) 0.042 ± 0.004 (24) 0.056 ± 0.004 (13) 
Upper Limit 0.078 0.101 0.050 0.057 

The along-scan AVHRR spectra are shown in Figure 6 for a daytime subgroup and a nighttime 
subgroup. The best-fit linear spectra with noise are also shown in Figure 6, obtained as discussed in 
Section 3.2. Figure 7 shows the corresponding along-track AVHRR spectra. In all four cases, noise is 
seen to impact the spectrum for wavelengths (wavenumbers) up (down) to approximately 25 km (0.04 

km−1). The approximately linear portion of the AVHRR spectrum corresponds to a small fraction 
(~10%) of the 129 spectral values, which is also apparent from these plots. This means that relatively 
small changes in the low wavenumber end of these spectra will have a more significant impact on 
the estimated background slope than for spectra less impacted by noise. However, the spectral 
method for determining instrument noise is relatively insensitive to this; significant changes in slope 
and intercept result in virtually identical values of instrument noise. For example, for the spectrum 
shown in the left panel of Figure 7, a slope, offset combination of (−1.7570, −6.2730) yields the same 
level of instrument noise. This is because the instrument noise is one to two orders of magnitude 
larger that the assumed geophysical signal, the straight line portion of the spectrum, over a significant 
fraction of the spectrum (remember the fits are in regular, not log-log space) so changes in the slope 
do not result in a significant difference in the squared sum of the differences between the model and 
the observed spectrum. For spectra that level off substantially at large wavenumbers, the noise is 
effectively determined by the power spectral density level at these wavenumbers. This is readily seen 
in Figures 6 and 7; the high wavenumber end of the simulated spectra with noise are at a similar level 
for the along-scan sections and at a slightly higher level for the along-track sections. Care must be 
taken however when the level of instrument noise is similar, or smaller, in magnitude to the 
geophysical signal at these wavenumbers, as will become clear in the analysis of the VIIRS spectra. 

 

Figure 6. Mean AVHRR spectra for contiguous along-scan sections (black). Best-fit linear spectra with 
noise to the mean VIIRS spectra (green). Best-fit linear portion of the best-fit linear spectra with noise 
(red). Mean TEX spectrum shifted vertically to allow for comparison (magenta). 
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Figure 7. Mean AVHRR spectra similar to Figure 6 except for along-track sections. Daytime spectrum 
is for 21:08 GMT on 10 June 2012. Nighttime spectrum is for 09:34 GMT on 23 June 2012. 

AVHRR along-track instrument noise is approximately 20% larger than along-scan instrument 
noise. This is presumably due to the line-by-line calibration undertaken in the development of the 
L1b data product used as input to the L2 retrieval algorithm. 

4.2. VIIRS 

Mean VIIRS spectra similar to those shown for AVHRR in Figures 6 and 7 are shown in Figures 
8 and 9, respectively. The spectra in these figures differ in several key ways from those associated 
with AVHRR. First, the level of instrument noise is, in all cases, substantially lower than that for 
AVHRR. Second, spectral peaks, especially in the daytime spectra, are evident at 1.5, 2.2, and 2.9 

km as well as a broad peak at 12 km in the along-track spectra (Figure 9). There are 16 detectors for 
each of the VIIRS moderate resolution bands used for SST retrievals, hence, one scan of the 
instrument consists of 16 scan lines. The gain of these detectors may differ slightly and this 
difference is not regular, i.e., it changes along-scan and between scans. This is what gives rise to the 
observed peaks; the peaks at 1.5, 2.2, and 2.9 km correspond to a separation of one, two and three 
pixels and the peak at 12 km corresponds to the 16 pixel repeat scans of the instrument (750 m × 16 
detectors = 12 km). Reassuringly, the along-scan spectra do not show these peaks. In addition, note 
that the noise from the different detectors contributes to a general elevation of the large 
wavenumber end of the spectrum—the simulated spectra with noise in Figure 9 tend to separate 
from the associated straight line spectrum at wavelengths smaller than approximately 8 km for 
along-track sections compared with approximately 5 km for along-scan sections. The point of 
separation is, of course, a function of the magnitude of the geophysical signal. In regions with a 
significantly larger geophysical signal, in the vicinity of the Gulf Stream for example, instrument 
noise will likely have no effect on the spectrum, with the possible exception of a few of the peaks. 

The third significant difference between AVHRR and VIIRS spectra relates to the daytime 
spectra compared with the nighttime spectra. Specifically, there is a statistically significant 
difference between daytime and nighttime VIIRS spectra, with the daytime spectra being more 
energetic at wavelengths smaller than approximately 100 km. This is likely due to diurnal warming, 
which occurs frequently in the Sargasso Sea in summer months [14,18]. In addition, note that the 
slope of nighttime spectra for both along-scan and along-track sections is closer to that of the TEX 
spectrum than the daytime spectra. Surprisingly, the level of instrument noise is also larger at 
daytime than at nighttime as is evident both from the figures and from Table 3. This may result 
from the sensitivity of the banding to the energy in the SST field. Banding is difficult to correct for 
because it is not the entire scan line that has higher values than its neighbors, but rather, what 
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appear to be randomly located segments of a given scan line. Furthermore, the magnitude of the 
difference in these regions appears to be related to the magnitude of the retrieved temperature. 

Finally, the level of instrument noise estimated with the spectral approach is substantially 
smaller than (as much as one half) estimates based on the variogram. The reason for this is not clear. 
Although the spectral approach provides slightly better estimates of the noise added to simulated 
temperature sections than the approach based on the variogram, the estimates do not differ by the 
amounts seen in the actual data for VIIRS. 

 

Figure 8. Mean VIIRS spectra similar to the AVHRR spectra in Figure 6. 

 

Figure 9. Mean VIIRS spectra similar to the AVHRR spectra in Figure 7. 
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5. Discussion 

5.1. Comparison of the AVHRR L2 Instrument Noise Estimates with the Results of Tandeo et al. 

Tan14 estimated the nugget in the L3 Meteosat AVHRR data set produced by the O&SI SAF 
Project Team [6,22]. This product was assembled by remapping the full resolution nighttime 
AVHRR fields onto a regular 0.05° × 0.05° global grid and averaging the results into 12 h fields. They 
found ߪ௢ ≈ 0.14 K for the study area. This is larger than would be expected if instrument noise of 
the full resolution Meteosat AVHRR data is similar to that found for NOAA-15 AVHRR (on the 
order of 0.20 K) and if this noise is uncorrelated from pixel-to-pixel, the assumption made in the 
analyses presented herein. Specifically, we would expect the noise for the L3 product to be 
approximately 0.05 K since order 25 pixels are averaged for each 0.05° × 0.05° SST estimate. It is 
possible that the level of instrument noise (elements in the yellow block of Figure 1) associated with 
the AVHRR on Meteosat is higher than that of NOAA-15. More likely however is that the difference 
results from misclassification errors associated with cloud flagging (the most significant element in 
the green block). Specifically, Tan14 processed all of the data for one year, 2008, i.e., they did not 
constrain their analysis to relatively cloud free fields as we did. Cloud-contaminated L2 pixels were, 
of course, excluded from the production of the L3 fields and Tan14 also excluded L3 pixels flagged 
as cloud-contaminated. However, the likelihood of misclassification, cloud-contaminated pixels not 
being flagged as such, increases as the fraction of cloud cover increases. Furthermore, classification 
errors tend to be small-scale errors, a small number of pixels here, a small number of pixels there, 
as opposed to large regions, which are misclassified. This means that such errors will likely 
contribute to noise at small spatial scales. A histogram of Tan14 nuggets (not shown here) shows a 
broad distribution ranging from ߪ௢ in the 0.05 K range to order 0.3 K with a peak around 0.14 K. If 
the nugget resulted primarily from instrument errors (those in the yellow block), one would expect 
a relatively narrow peak; the instrument noise is unlikely to vary substantially for the region. Thus, 
the broad ߪఖ range suggests that it is a combination of classification errors and instrument noise. 
Because our analysis required long sections of cloud-free pixels the data were likely much more 
clear, on average, than those of Tan14. Noise may be added through the combination of L2 fields to 
obtain the L3 product, which also contributes to the difference between our estimate of local noise 
and that of Tan14. Using nighttime only data, as Tan14 have done, will minimize, but not 
completely remove, this. Finally, we found that the model, which best fits the SST field in the 
Sargasso Sea, varies from an exponential form to a Gaussian form, hence our use of the standard 
model. Tan14 used the exponential form. This will likely also contribute to an overestimate of the 
instrument noise in regions in which a mixed form is more appropriate. 

Lending credence to the values we find, approximately 0.2 K for at both day and night, are the 
estimates of uncertainty found by Keogh et al. [23] when they compare AVHRR SST values with the 
values obtained from a ship-borne radiometer. They examined eight sections in eight images, five 
nighttime and three daytime. The SST values were close in space, most probably consisting of 
adjacent pixels and were obtained within three hours of the satellite pass. The resulting standard 
deviations thus represent a lower limit on the spatial precision of the AVHRR SST fields at that 
location (the English Channel). They obtained a standard deviation of the differences for each section. 
The average of these standard deviations is 0.22 K. 

5.2. Impact of Noise on Sobel Gradient 

Of interest is how levels of noise, typical of the values found thus far, impact gradients and 
fronts. In order to address this, we simulated 10,000 3 × 3 pixel squares for a given gradient in x, 
added Gaussian white noise to each of the elements, applied the 3 × 3 Sobel gradient operator in x 
and y to these squares and then determined the mean gradient and the standard deviation of the 
gradient. This was done for gradients ranging from 0.001 to 0.1 K km−1, values typical in the ocean, 
and for levels of instrument noise ranging from 0.01 K to 0.2 K. Figures 10 and 11 show the means 
and standard deviations of the x- and y-components of the gradient, respectively. The mean x- and 
y-components are unaffected by the noise; the mean x-component is the same as the initial value and 
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the mean y-component is very nearly zero. The standard deviation of the components is very nearly 
independent of the imposed noise. For a noise level typical of VIIRS, 0.05 K, the vertical white lines 
in the figures, the uncertainty of each of the components is approximately 0.022 K and for a level 
typical of AVHRR, 0.2 K, the uncertainty in the components is 0.09 K. In general, the uncertainty in 
the given component is approximately one half of the level of imposed noise. 

 

Figure 10. Simulated impact of Gaussian white noise of magnitude sigma imposed on a field with an 
x-gradient indicated on the vertical axis. The vertical white line is an imposed noise level typical of 
VIIRS values. 

 

Figure 11. As in Figure 10 except for the y-component of the gradient. 

The impact on the gradient magnitude (Figure 12) is more dramatic. The mean of the estimated 
gradient is no longer equal to the magnitude of the imposed gradient. For example, for a relatively 
robust gradient of 0.05 K/km, the mean of the estimated gradient ranges from 0.05 to in excess of  0.1 

K/km as the imposed noise increases from 0 to 0.2 K/km. Note that contours of the estimated gradient 
tend to become level for imposed noise levels less than approximately 0.07 K. This means that VIIRS 
estimates of the mean gradient magnitude will be centered on the actual value of the gradient, but 
that the gradient magnitude will be substantially overestimated in AVHRR fields. The uncertainty of 
the estimated gradient magnitude increases with the imposed noise, nearly doubling from the value 
associated with a zero imposed gradient to an imposed gradient of 0.1 K/km. These observations do 
not mean that a front with a gradient of this magnitude (0.05 K/km) is undetectable in a field with an 
AVHRR noise level but detection will be problematic. Simulations using front detection algorithms 
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need to be undertaken to evaluate this. Although none of this is surprising, we are not aware of any 
studies involving the gradient magnitude of satellite-derived SST fields accounting for this—
including many of our own. 

 

Figure 12. As for Figure 10 except for the gradient magnitude. 

6. Conclusions 

The accuracy with which the local gradient of any digital field can be determined is a function 
of the spatial precision of the underlying data, where the spatial precision is defined as the square 
root of the variance of individual pixel values following removal of real trends in the data and 
removal of noise that is correlated over scales that are large compared with the scale used to calculate 
the gradient. In the case of fields obtained from satellite-borne sensors, this noise is attributed to 
characteristics of the sensor, “instrument noise”, and to the retrieval process, “retrieval noise”. Two 
approaches, a spectral-based approach and a variogram-based approach, were used to estimate the 
instrument portion of this noise in L2 AVHRR and VIIRS SST fields. To reduce the non-instrument 
portion of the local noise in the analysis, only cloud free sections were used, the assumption being 
that the dominant contribution to the non-instrument local noise is due to the misclassification of 
clouds. Because instrument noise was thought to differ between the along-scan and along-track 
directions and because the geophysical variance was thought to differ between day and night, the 
analysis was performed separately for the four along-scan/along-track and day/night combinations. 

Both methods yielded similar results for AVHRR, with daytime and nighttime along-scan values 
of ~0.18 K and along-track values of 0.21 K. VIIRS instrument noise, on the other hand, was found to 
differ by method, scan geometry and day-versus-night–ranging from 0.021 K for the nighttime, along-
scan spectral estimate to 0.097 K for the daytime, along-track variogram estimate. Day and night 
along-scan estimates based on the spectral approach are close to one half those based on the 
variogram. For both methods, the nighttime estimates are also roughly one half the corresponding 
daytime estimates. Finally, the along-track estimates are roughly 50% larger than the along-scan 
estimates for the spectral approach but only about 25% larger when based on the variogram. In all 
cases, the estimates were smaller than the “upper limit”. 

In summary, VIIRS instrument noise is substantially smaller than AVHRR instrument noise, 
with levels as low as 0.02 K in the along-scan direction at nighttime. In fact, VIIRS instrument noise 
under these conditions is near the level of the geophysical signal in the dynamically quietest regions 
in the ocean. 
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Acronyms 

AVHRR Advanced Very High Resolution Radiometer 
DFT Discrete Fourier Transform 
FFT Fast Fourier Transform 
GHRSST Group on High Resolution Sea Surface Temperature 
HRPT High Resolution Picture Transmission 
JPSS Joint Polar Satellite System 
NPP National Polar-orbiting Partnership 
PSD Power Spectral Density 
SST Sea Surface Temperature 
VIIRS Visible-Infrared Imager-Radiometer Suite 
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