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Abstract: Accurate characterization of the direction of land change is a neglected aspect of land
dynamics. Knowledge on direction of historical land change can be useful information when
understanding relative influence of different land-change drivers is of interest. In this study, we
present a novel perspective on land-change analysis by focusing on directionality of change. To this
end, we employed Maximum Cross-Correlation (MCC) approach to estimate the directional change
in land cover in a dynamic river floodplain environment using Landsat 5 Thematic Mapper (TM)
images. This approach has previously been used for detecting and measuring fluid and ice motions
but not to study directional changes in land cover. We applied the MCC approach on land-cover class
membership layers derived from fuzzy remote-sensing image classification. We tested the sensitivity
of the resulting displacement vectors to three user-defined parameters—template size, search window
size, and a threshold parameter to determine valid (non-noisy) displacement vectors—that directly
affect the generation of change, or displacement, vectors; this has not previously been thoroughly
investigated in any application domain. The results demonstrate that it is possible to quantitatively
measure the rate of directional change in land cover in this floodplain environment using this
particular approach. Sensitivity analyses indicate that template size and MCC threshold parameter
are more influential on the displacement vectors than search window size. The results vary by
land-cover class, suggesting that spatial configuration of land-cover classes should be taken into
consideration in the implementation of the method.

Keywords: land cover; land-change analysis; floodplain; maximum cross-correlation (MCC); fuzzy
memberships; sensitivity analysis

1. Introduction

Land-change analysis generally entails comparisons that are only between pixels or objects at the
exact same respective locations at different times, which is indeed only a temporal comparison [1,2].
In this context, direction of change in land covers of interest has drawn scant attention, if any, except in
gradient analyses [3,4]. Regardless, at present, there are no methods available to land-change scientists
that can produce a truly spatio-temporal analysis of land change by simultaneously quantifying both
the relative location and rate of land change. Such information can be useful in situations where one is
interested in testing the influence of hypothesized drivers on historical land change.

In this study, we present an approach that provides directional change information in the spatial
domain (thus entailing spatio-temporal change-analysis capability). To our knowledge, no previous
study has implemented such an approach for land-cover change analysis. One obstacle to such an
application has been traditional binary/hard image classification results that do not constitute feasible
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inputs to a directional change algorithm that would capture the gradual transition from one land
cover to another. However, utilization of soft classification approaches may overcome this problem.
For example, land-cover class fuzzy membership values comprise continuous fields of land-cover
status, and thus, can be used to capture the transitional and directional movement of land-cover
distributions/areas through time, which can elucidate underlying geophysical (and/or, depending on
the context/application domain, socioeconomic) processes that control such change.

The specific approach we use is the Maximum Cross-Correlation (MCC) method. The MCC
method, first used as an image-registration technique, has been shown to be a useful option for
detecting translational motions [5]. Over the past several decades, scientists in the geophysical and
meteorological research communities have applied this method to estimate the motions of clouds, sea
ice, glaciers, and ocean surface currents, based on multitemporal images [6–12]. Despite its successes
in measuring fluid motion, the MCC method has yet to be employed for applications in terrestrial
land-change analysis.

In general, cross-correlation-based and related methods have been applied in only a limited
number of land-change studies [13–20]. However, these methods simply provide standard pairwise
comparisons between the same pixels or sub-pixel areas, or objects, in images acquired at two different
instances. The outputs are traditional thematic maps indicating whether or not individual pixels or
objects had changed during the time period represented by the images. Thus, implementing the MCC
method to determine the directional change (i.e., via a displacement vector for each image template) in
terrestrial environments constitutes a markedly different, novel means of detecting, quantifying, and
visualizing land change.

Furthermore, there is only limited prior work on determining the influence of different MCC
parameter values on the resultant change vectors [21]. More thorough sensitivity analyses are
needed, particularly when MCC is applied to terrestrial environments, given the absence of any
such prior studies.

Our study provides the first experimental results from MCC terrestrial land-cover change
application. We applied the MCC method to detect and measure the direction of change in land
cover in the floodplain of a dynamic tropical meandering river from Landsat 5 Thematic Mapper
(TM) images. We applied the method to land-cover class membership layers derived from fuzzy
classification of the images. We performed an assessment of MCC land-change analysis results on the
river-class change/displacement vectors. There are three important parameters of MCC method, i.e.,
template size, search window size, and a threshold to determine valid (non-noisy) vectors (i.e., those
vectors exceeding the MCC threshold). Therefore, we also performed a sensitivity analysis to determine
the relative influence of these three parameters on the resultant change or displacement vectors.

2. Methods

2.1. Maximum Cross-Correlation (MCC) Method Overview

The MCC method aims to detect moving or changing features based on a cross-correlation
coefficient. The structural procedure is to cross-correlate a square image subset, referred to as a template,
in a first/initial image with all same-sized subsets within the search window of a subsequent image
(Figure 1). For all possible subsets in the second/subsequent image, only the one that has the maximum
cross-correlation coefficient with the template is considered as the end-point of this transitional motion
or change. This procedure produces displacement vectors for every template, but those with low
cross-correlation coefficients are considered to be random noise. Thus, a user-defined threshold for the
cross-correlation coefficient should be applied to filter the noise [10], and thus, to also retain genuine
(valid) change or displacements.
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Figure 1. Depiction of the Maximum Cross-Correlation (MCC) method, including a template, search 
window, and displacement vector. Example feature (in red) within a given template extent at time t 
is shown, as is the direction and magnitude of shift in the feature position at time t + 1, relative to that 
at time t (after [6]). 

The cross-correlation coefficient is calculated by ( , ) = ( , ), ( + , + )( , ) ( + , + )  (1) 

where ( , )	is the set of pixel values within a template centered at ( , ) in an initial image, ( + , + )	is the set of pixel values within the corresponding subset in the subsequent image 
with displacement of ( , ), 	 ( , ) 	and 	 ( , )  are variances, and 	 ( , ), ( +, + ) 	is their covariance [10]. 

2.2. Data, Pre-Processing, Image Classification, and Classification Accuracy Assessment  

The study area is the floodplain of Río Beni, a dynamic tropical meandering river floodplain in 
northern Bolivia (Figure 2a). Land-cover classes in the study area are spatially heterogeneous, and 
we considered the following classes: forest, non-forest vegetation, oxbow lake, river, sand, dry soil, 
and wet soil. In the change-analysis analysis, we utilized three Landsat 5 Thematic Mapper (TM) 
images (Landsat Level 1T terrain-corrected data were obtained from U.S. Geological Survey (USGS); 
30-m pixel size), acquired on 2 August 1987, 27 September 1990, and 5 July 2006, respectively. We 
analyzed land change within two time periods: (1) from 1987 to 1990; and (2) from 1987 to 2006. The 
short time period entails relatively modest changes, and thus constitutes a good test of the MCC 
algorithm as to whether it can detect smaller-magnitude changes, which may be more difficult than 
detecting larger changes in land cover. Analysis of land change over the long time period provides a 
more representative characterization of longer-term fluvial landscape dynamics.  

We first atmospherically corrected the Landsat 5 TM images to surface reflectance via the Fast 
Line-of-sight Atmospheric Analysis of Spectral Hypercube (FLAASH®) radiative transfer model [22]. 
Here, we used a tropical atmospheric model, as well as a rural aerosol model, and for aerosol 
retrieval, we used a 2-band method [22], involving Landsat 5 TM bands 7 and 3. We then performed 
supervised fuzzy classification using the FUZCLASS algorithm [23] to derive class membership 
values for each pixel, where a fuzzy membership image/layer for each land-cover class was 
generated (e.g., Figure 2b). We distinguished forest and non-forest classes in accordance with the 
United Nations Food and Agriculture Organization (FAO) definition of forest (i.e., non-agricultural 
ecosystems with a minimum of 10% crown cover of trees [24]), based on manual/visual image 
interpretation of reference data (discussed below). 

We performed hard classification accuracy assessments, where we jointly used the Landsat TM 
bands, extracted spectral signatures, computed tasseled-cap images, and high-spatial resolution 
Google Earth© images as reference data. Prior to the assessment, we hardened fuzzy classification 
results (i.e., for each pixel, the class with maximum fuzzy membership was used for class 

Figure 1. Depiction of the Maximum Cross-Correlation (MCC) method, including a template, search
window, and displacement vector. Example feature (in red) within a given template extent at time t is
shown, as is the direction and magnitude of shift in the feature position at time t + 1, relative to that at
time t (after [6]).

The cross-correlation coefficient is calculated by

ρ(i, j) =
cov[A(x, y), B(x + i, y + j)]√

var[A(x, y)]var[B(x + i, y + j)]
(1)

where A(x, y) is the set of pixel values within a template centered at (x, y) in an initial image,
B(x + i, y + j) is the set of pixel values within the corresponding subset in the subsequent image with
displacement of (i, j), var [A(x, y)] and var [B(x, y)] are variances, and cov [A(x, y), B(x + i, y + j)] is
their covariance [10].

2.2. Data, Pre-Processing, Image Classification, and Classification Accuracy Assessment

The study area is the floodplain of Río Beni, a dynamic tropical meandering river floodplain in
northern Bolivia (Figure 2a). Land-cover classes in the study area are spatially heterogeneous, and we
considered the following classes: forest, non-forest vegetation, oxbow lake, river, sand, dry soil, and
wet soil. In the change-analysis analysis, we utilized three Landsat 5 Thematic Mapper (TM) images
(Landsat Level 1T terrain-corrected data were obtained from U.S. Geological Survey (USGS); 30-m
pixel size), acquired on 2 August 1987, 27 September 1990, and 5 July 2006, respectively. We analyzed
land change within two time periods: (1) from 1987 to 1990; and (2) from 1987 to 2006. The short
time period entails relatively modest changes, and thus constitutes a good test of the MCC algorithm
as to whether it can detect smaller-magnitude changes, which may be more difficult than detecting
larger changes in land cover. Analysis of land change over the long time period provides a more
representative characterization of longer-term fluvial landscape dynamics.

We first atmospherically corrected the Landsat 5 TM images to surface reflectance via the Fast
Line-of-sight Atmospheric Analysis of Spectral Hypercube (FLAASH®) radiative transfer model [22].
Here, we used a tropical atmospheric model, as well as a rural aerosol model, and for aerosol retrieval,
we used a 2-band method [22], involving Landsat 5 TM bands 7 and 3. We then performed supervised
fuzzy classification using the FUZCLASS algorithm [23] to derive class membership values for each
pixel, where a fuzzy membership image/layer for each land-cover class was generated (e.g., Figure 2b).
We distinguished forest and non-forest classes in accordance with the United Nations Food and
Agriculture Organization (FAO) definition of forest (i.e., non-agricultural ecosystems with a minimum
of 10% crown cover of trees [24]), based on manual/visual image interpretation of reference data
(discussed below).

We performed hard classification accuracy assessments, where we jointly used the Landsat TM
bands, extracted spectral signatures, computed tasseled-cap images, and high-spatial resolution Google
Earth© images as reference data. Prior to the assessment, we hardened fuzzy classification results
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(i.e., for each pixel, the class with maximum fuzzy membership was used for class assignment).
We generated 100 accuracy-assessment sample points per class via stratified random sampling.
We computed overall accuracy and the Kappa coefficient [25,26] to assess the accuracy.
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with bands 4,5,1 as R,G,B (pixel size = 30 m); (b) fuzzy membership image for the forest class, with 
example enlarged spatial subset given in the upper left to facilitate illustration of floodplain 
complexity, and location of spatial subset designated by red box. The study area extends between 
approximately 12°31′34′′ and 13°49′19′′ South latitude, and between 66°54′04′′ and 67°32′05′′ West 
longitude, an area comprising ~2060 km2. 

2.3. Sensitivity Analysis 

We conducted a sensitivity analysis to assess the effectiveness of the MCC method for detecting 
the direction of land change in terrestrial environments. The MCC method utilizes three important 
user-defined parameters: template size, search window size (Figure 1), and cross-correlation 
coefficient threshold. In theory, the size of template is critical, as it controls the range/space over 
which features can be tracked within a template. An optimal template size should contain enough 
information for feature tracking, while not being too large so as to minimize noise (i.e., not 
overgeneralizing or smoothing over too large an area per displacement vector), enabling relatively 
detailed analyses. The heuristic for the search window size is to set it sufficiently large to 
accommodate the largest displacement vector expected for a given area/domain, whereas an 
excessively large search window would lead to unnecessary computation cost. Thus, both the 
template size and search window size are application domain-specific. In our study, they should be 
able to capture land change within a large tropical river floodplain. Moreover, the effect of the 
coefficient threshold on the resultant change/displacement vectors needs attention as well because it 
directly controls the determination of valid change/displacement vectors. Therefore, we conducted a 
series of sensitivity analyses to explicitly investigate the influence of MCC parameter values on the 
MCC results for a terrestrial application, specifically in a dynamic river floodplain environment. 

The general test procedure used here was to systematically change/increment an individual 
parameter value while holding other parameter values constant, and observe the change in the 
resultant displacement vectors. We evaluated change in displacement vector length, as well as the 

Figure 2. (a) Landsat 5 Thematic Mapper (TM) image of the study area, acquired on 2 August 1987,
with bands 4,5,1 as R,G,B (pixel size = 30 m); (b) fuzzy membership image for the forest class, with
example enlarged spatial subset given in the upper left to facilitate illustration of floodplain complexity,
and location of spatial subset designated by red box. The study area extends between approximately
12◦31′34′ ′ and 13◦49′19′ ′ South latitude, and between 66◦54′04′ ′ and 67◦32′05′ ′ West longitude, an area
comprising ~2060 km2.

2.3. Sensitivity Analysis

We conducted a sensitivity analysis to assess the effectiveness of the MCC method for detecting
the direction of land change in terrestrial environments. The MCC method utilizes three important
user-defined parameters: template size, search window size (Figure 1), and cross-correlation coefficient
threshold. In theory, the size of template is critical, as it controls the range/space over which features
can be tracked within a template. An optimal template size should contain enough information
for feature tracking, while not being too large so as to minimize noise (i.e., not overgeneralizing or
smoothing over too large an area per displacement vector), enabling relatively detailed analyses.
The heuristic for the search window size is to set it sufficiently large to accommodate the largest
displacement vector expected for a given area/domain, whereas an excessively large search window
would lead to unnecessary computation cost. Thus, both the template size and search window size
are application domain-specific. In our study, they should be able to capture land change within
a large tropical river floodplain. Moreover, the effect of the coefficient threshold on the resultant
change/displacement vectors needs attention as well because it directly controls the determination
of valid change/displacement vectors. Therefore, we conducted a series of sensitivity analyses to
explicitly investigate the influence of MCC parameter values on the MCC results for a terrestrial
application, specifically in a dynamic river floodplain environment.
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The general test procedure used here was to systematically change/increment an individual
parameter value while holding other parameter values constant, and observe the change in the
resultant displacement vectors. We evaluated change in displacement vector length, as well as the ratio
of the number of valid vectors to the number of possible templates for a given template-size setting.
These two variables reflect, respectively, the lengths and distributions of the displacement vectors,
and they can be quantitatively recorded and analyzed according to the change in MCC parameters.
The length directly indicates the magnitude of displacement related to landscape change; and the
ratio describes how many valid vectors are produced according to different parameter settings, which
links to how much change information can be collected. Both variables characterize the displacement
vectors, including their appearances, and their responses to changes in MCC parameter values illustrate
how the three parameters affect the generation of displacement vectors. We also examined the other
potentially important factors associated with this application domain, including land-cover class and
time period between image acquisitions.

We examined the sensitivity to template size by incrementing the template size by two pixels
for each trial over a range from 3 × 3 to 31 × 31 pixels (pixel size = 30 m). We set the search window
size to 50 × 50 pixels, which ensured a large search space relative to template size, sufficient to detect
actual land-cover transitional change/movement within the time period of interest (i.e., between two
multitemporal image acquisitions). We set the MCC threshold to 0.6, which means that a vector is
generated only if its maximum cross-correlation coefficient is greater than 0.6. This setting is based
on [6], where they conducted an analysis of the relation between a cut-off value (threshold) and the
search range, and they demonstrated that a value of 0.6 filtered coincidental pattern matches well
(i.e., false displacement vectors) when the search range was less than 5 km. Although their analysis
was based on a coastal ocean environment, we utilized this threshold value in the present study as
a reference, or baseline, starting point for experiments in this new terrestrial domain. Similarly, to
examine the sensitivity to search window size, we used six different search windows ranging from
19 × 19 pixels to 49× 49 pixels in increments of six pixels. We set the template size to 13× 13 pixels and
MCC threshold to 0.6. In the MCC threshold sensitivity experiment, we used six different thresholds,
ranging from 0.5 to 0.9 in increments of 0.1, and set the template size to 13 × 13 pixels, and the search
window size to 31 × 31 pixels.

We conducted the sensitivity analysis for each of the seven fuzzy membership maps corresponding
to the seven land-cover classes (i.e., forest, non-forest vegetation, oxbow lake, river, sand, dry soil, and
wet soil). For each trial, we calculated the average length of valid displacement vectors and the ratio of
the number of these vectors to the number of possible templates for a given template size.

3. Results and Discussion

3.1. Classification Accuracy Assessment

Classification accuracy assessments for each of the (hardened) fuzzy image classifications are
as follows: overall classification accuracies for images acquired in 1987, 1990, and 2006 are 90.17%,
90.33%, 90.00%, respectively; and the Kappa coefficients for the three images are 0.882, 0.884, 0.880,
respectively. The producer’s and user’s accuracies of the land-cover classes are all relatively high; with
some of the highest such accuracies being attained for the water and sand classes (Table 1). Note that
we merged the river and oxbow-lake classes into one water class prior to accuracy assessment, given
their relative spectral similarities.
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Table 1. Producer’s and user’s classification accuracies for the (hardened) fuzzy classified Landsat
images acquired in 1987, 1990, and 2006, respectively.

Accuracy (%) Year

1987 1990 2006

Overall 90.17 90.33 90.00
By land cover class Producer’s User’s Producer’s User’s Producer’s User’s

Forest 90.91 90.00 85.32 93.00 86.11 93.00
Non-forest vegetation 84.31 86.00 87.76 86.00 83.00 83.00
River and oxbow lake 86.21 100.00 94.34 100.00 95.24 100.00
Sand 100.00 90.00 95.88 93.00 100.00 92.00
Dry soil 88.46 92.00 91.58 87.00 90.70 78.00
Wet soil 93.26 83.00 87.37 83.00 78.90 86.00

Kappa coefficient 0.882 0.884 0.880

3.2. Sensitivity to Template Size

The average valid displacement vector length over all vectors in the image is high for small
template sizes; and as template size increases, the average length decreases (Figure 3). For a small
template size, the land-cover patches encompassed within it are also small in extent. Movement of
land-cover patches over relatively large distances, or marked changes in areal extent, are possible,
yielding a large displacement vector length. However, as template size increases, computed
displacement vectors for possibly larger (or even small) land-cover patches within the template
would be expected to indicate movement/change over a relatively small distance (or perhaps no
movement/change would be detected at all), unless a marked or more dramatic change has occurred
during the time period considered. Thus, larger template sizes tend to be less sensitive to changes in
the spatial distribution of land-cover patches (Figure 3).
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Figure 3. Sensitivity of MCC method to template size. Average valid displacement vector length for the
periods of (a) 1987–1990 and (b) 1987–2006 and the ratio of the number of valid displacement vectors
(NVDV) to the number of possible templates (NPT) for the periods of (c) 1987–1990 and (d) 1987–2006
as a function of template size. Search window size = 50 × 50 pixels, MCC threshold = 0.6.
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Between 1987 and 1990, some land covers show a decreasing trend, similar to a power function,
as the template size increases linearly. For the two vegetation classes, forest and non-forest vegetation,
in particular, the downward trends are precipitous over smaller template sizes, yet become relatively
stable approximately at template size 11× 11 pixels (Figure 3). Such trends may be related to landscape
spatial scale for these classes. A similar situation exists with the two soil classes, wet and dry soil,
though it is not as pronounced as with the vegetation classes. Such phenomena may contribute to the
formulation of guidelines for selecting useful template sizes for applications of this nature. Excessively
small templates may not capture representative land-cover membership features, whereas very large
templates tend to overly smooth features. Furthermore, different land-cover classes may require
different template sizes in order to effectively capture the changes. Between 1987 and 2006, the longer
time period between the two images analyzed, the overall trends of the various curves look similar
to their respective counterparts from the shorter time period (Figure 3). The average lengths of valid
displacement vectors are higher than those between 1987 and 1990, which indicates larger-magnitude
landscape changes over a longer time period. Additionally, we computed the standard deviation to
determine the variability of vector lengths as a function of template size. Results indicate that all
seven land-cover classes demonstrate similar patterns, i.e., the variability of vector lengths decreases
gradually as the template sizes increase. Also, ranges of vector lengths in all classes show linear
decreases as the template sizes increase.

As a given template can only generate one vector, increasing template size must cause a decrease
in the vectors produced as the total number of templates decreases. However, this is not necessarily
the case for the ratio of the number of valid displacement vectors (NVDV) to the number of possible
templates (NPT) for a given template size (Figure 3). The ratio can actually increase as template
size increases. The ratio-based patterns for most classes are somewhat similar to those regarding the
average valid displacement vector length (Figure 3), which may underscore the importance of selecting
an appropriate template size for land-change analysis. That is, both the average valid displacement
vector length and ratio of NVDV to NPT change from steep downward trends to more modest, less
steep trends after a certain template size is reached; those specific template sizes, or inflection points,
may relate to some underlying land process or information.

Across the land-cover classes, there is more variability in the ratio than in the average valid
displacement vector length (Figure 3). Between 1987 and 1990, for the two vegetation classes, the ratio
decreases rapidly between 3- and 9-pixel template sizes, but then stabilizes at ~0.5 (and then increases
slightly) for larger template sizes. The two soil classes exhibit trends somewhat similar to those for
vegetation, where there is a steep initial decline in the ratio, and it then stabilizes at ~0.2. The remaining
ratio curves indicate only more modest decreases as a function of increasing template size.

In the case of the wet soil class, for example, for template sizes up to ~5 × 5 pixels, >90% of the
vectors are valid, meaning that vectors produced by almost all of the templates pass the threshold;
thus, there is change detected by nearly all of the templates. As template size increases, there is a
dramatic decrease in the number of valid vectors, indicating that there is not a detectable change in
most of the templates. Thus, since the sizes of the wet-soil patches are small, smaller template sizes,
i.e., no larger than 5 × 5 pixels, are needed to capture change in this class. However, the river class, for
example, appears to be less sensitive to the template size. These findings could likely be attributable to
the size of the patches of various land-cover classes, as well as possibly the degree of homogeneity of
land-cover patches, or features, as indicated by the respective class-specific fuzzy membership layers.
The two soil classes only cover small areas within the images, and the fuzzy membership layers for
these classes indicate quite small patch sizes, likely translating to higher sensitivities with respect to
template size.

There are some notable differences between the results for the short time period and the long:
sand and dry soil classes entail higher ratios, whereas the river class has lower ratios relative to the
shorter time period. For other land-cover classes, the patterns are similar to those seen between 1987
and 1990 (Figure 3).
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3.3. Sensitivity to Search Window Size

The average valid displacement vector length increases as search window size increases (Figure 4).
For the period of 1987–1990, most land-cover classes demonstrate linearly increasing vector lengths
with increasing window size, with the exception of vegetation and wet soil classes. Vector lengths for
these classes increase but at much slower rate once the search window size reaches at 37 × 37 pixels.
Increase in the displacement vector lengths of all land-covers in the shorter time period (1987–1990) is
smaller than that in the longer time period (1987–2006) (Figure 4). Also, the change in vector lengths is
relatively small (usually about or less than 30 m), considering the ground sampling distance (GSD) or
pixel size is 30 m in this image.Remote Sens. 2017, 9, 850  8 of 18 
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Figure 4. Sensitivity of MCC method to search window size. Average valid displacement vector length
for the periods of (a) 1987–1990 and (b) 1987–2006, and the ratio of the number of valid displacement
vectors (NVDV) to the number of possible templates (NPT) for the periods of (c) 1987–1990 and (d)
1987–2006 as a function of search window size. Template size = 13 × 13 pixels, MCC threshold = 0.6.

Between 1987 and 1990, the ratio of the number of valid displacement vectors (NVDV) to the
number of possible templates remains nearly the same for the vegetation classes and wet soil class
(Figure 4). For the other land-cover classes, the ratios become stable after about 31 × 31 pixels of
search window size. Between 1987 and 2006, the increase in the ratios with increasing search window
size is more noticeable compared to that between 1987 and 1990, especially for river and sand classes.
However, such increases tend to stabilize beyond a search window size of 37 × 37 pixels (Figure 4).

These results indicate that search window size usually has a minimal effect on the estimation
of direction of change if a search window size is sufficiently large to capture transitional
movement/change. We recommend conducting experiments on search window size for each given
application domain in order to optimize the computation cost and the ability to detect change in
features of interest. Based on our experimental results, a search window size set to at least twice the
template size appears to be an effective choice for studies performed in similar terrestrial environments.
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3.4. Sensitivity to MCC Threshold

The sensitivity of the average valid displacement vector lengths to MCC threshold value is low for
most land-cover classes, and also for both the shorter (1987–1990) and longer time periods (1987–2006)
(Figure 5). There is some variability in the vector lengths for the various land-cover classes for different
threshold values; however, considering the 30-m pixel size, the changes exhibited in average valid
displacement vector length are not marked as a function of change in the threshold.Remote Sens. 2017, 9, 850  9 of 18 
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Figure 5. Sensitivity of MCC method to MCC threshold. Average valid displacement vector length
for the periods of (a) 1987–1990 and (b) 1987–2006, and the ratio of the number of valid displacement
vectors (NVDV) to the number of possible templates (NPT) for the periods of (c) 1987–1990 and (d)
1987–2006 as a function of MCC threshold. Template size = 13 × 13 pixels, search window size = 31 ×
31 pixels.

The ratio of the NVDV to the NPT for a given template size (13 × 13 pixels, in this case) for
all land-cover classes, on the other hand, decreases markedly and linearly as the threshold value
increases (Figure 5). Between 1987 and 1990, the initial ratios vary among all land-covers, but all of
them drop to below 0.1 (or 10%), except for the two water classes, river and oxbow lake. These water
classes have very high vector ratios and still have more than 30% of the templates able to generate
change/displacement vectors when the threshold is at 0.9. This means that the change/displacement
vectors detected for these two classes usually have very high correlations. However, the two soil
classes show relatively low vector percentages. For even the laxest condition, where the threshold
is only 0.5, less than 40% of the templates entail valid change/displacement vectors. Between 1987
and 2006, the patterns are similar, but exhibit lower ratios for some of the classes compared with the
shorter time period (1987–1990). However, the sand and dry soil classes show higher ratios for both
periods. In short, the MCC threshold markedly affects the displacement vectors, as it rules out vectors
with MCC below the threshold. Different land-cover membership layers exhibit differing sensitivities
to this parameter; thus, this threshold needs to be specified for each land-cover class based on the
characteristics of each respective individual membership layer.
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3.5. MCC Land-Change Analysis

Given that the lengths of the displacement vectors are very small compared with the overall
size/extent of the Landsat image subsets analyzed here, it is only possible to display in a figure a
portion of the study area while still depicting the displacement vectors in a clear manner. Thus, as
an example, for a spatial subset of the image/study area where there has been some marked change in
the river planform, we present the computed change/displacement vectors resulting from application
of the MCC algorithm to the respective river class membership layers from each set of image
dates considered (i.e., 1987 and 1990, and 1987 and 2006, respectively). We focus on the river-class
change/displacement vectors since the river class is a relatively spatially coherent/homogenous class,
represented by well-defined patches; thus, MCC results for this class particularly lend themselves to
visual interpretation. However, we also quantitatively summarize the change/displacement vector
information via rose diagrams and associated statistics, discussed below. We provide a more detailed
view of the change/displacement vectors for a given image pair in four inset sub-windows for selected
areas along the river reach (Figures 6 and 7).
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Figure 6. River class-membership images for 1987 and 1990, and MCC vectors (in red) derived from
this pair of images. The 1987 river layer and the 1990 river layer (after change) are shown in blue and
black, respectively (blue is 30% transparent and overlaid on black layer). Four inset zoom-in windows
along the figure margins correspond to their respective specific areas along the river reach, identified
by their corresponding labels (a–d).
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Figure 7. River class-membership images for 1987 and 2006, and MCC vectors (in red) derived from
this pair of images. The 1987 river layer and the 2006 river layer (after change) are shown in blue and
black, respectively (blue is 30% transparent and overlaid on black layer). Four inset zoom-in windows
along the figure margins correspond to their respective specific areas along the river reach, identified
by their corresponding labels (a–d).

In a change-analysis study, an accuracy assessment is typically performed in order to evaluate
the performance of a given change-analysis method. A conventional method consists of utilization
of per-pixel ground-reference data for the purpose of constructing an error matrix. However, such a
method is not suitable to MCC application because the class of change that is detected is not based on
individual pixel pairs between images. Some MCC applications that computed ocean current vectors
analyzed the accuracies of the MCC method by comparing MCC displacement vectors derived from
images to other independent measurements (e.g., Tokmakian et al. [27] compared MCC currents to
acoustic Doppler current profiler data and geostrophic velocities computed from dynamic height data).
Regarding estimating sea surface velocities from multitemporal satellite images, results indicated that
the lowest root-mean-square errors (RMSEs) generated by their MCC implementation when used with
real AVHRR satellite images were accrued via averaging three AVHRR fields entailing time separations
of 12 h (RMSE = 0.18 m s−1). Experiments involving synthetic images found that, if images that are
separated by 6 h are available, such error may be decreased to approximately 0.10–0.15 m·s−1 [27].)
For glacier tracking via the MCC method, comparisons between MCC displacement vectors and
actual displacements are not likely, as true displacement data are not usually available for such
moving masses [21]. Visualization-based qualitative evaluation is a solution for identifying observable
gross errors; however, more quantitative error measurements/metrics for displacement vectors are
desired [28]. Debella-Gilo and Kääb [21] devised a method that assumed the Earth surface entities
retain their radiometric characteristics after displacement; thus, when comparing the intensities of
pixels at the original location and those after displacement in the second image, the difference should
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be low if the displacement is genuine. However, such a method is not likely to work for general
land-cover change, as the algorithm is not necessarily tracking any specific entity; thus, the assumption
of radiometric retention or similarity does not hold. So far, there is no standard or established procedure
available to quantitatively assess change-analysis accuracy of the MCC algorithm in the terrestrial
land-cover domain since the present study constitutes the first such application, to our knowledge.
Therefore, in this study, we performed a graphical assessment, involving both the MCC change-analysis
results themselves for an example class, as well as a comparison to results from the standard spectral
change vector analysis (CVA) algorithm [29], to provide a preliminary indication of change-analysis
performance. CVA computes a multi-dimensional change vector in spectral space for each pair of
pixels from two images acquired at different times to represent the corresponding change magnitude
and direction during this period. Pixels with change magnitude higher than a given threshold are
considered as changed pixels, and the “from-to” change class are determined by their change-vector
directions. CVA output is a discrete map showing the change status and land-cover class of each pixel.
We chose CVA as a baseline, or reference, change-analysis algorithm, as it is a well-established and
commonly-used algorithm [30].

In general, we observe that most change/displacement vectors appeared where actual change
occurred, and the directions to which the vectors pointed generally matched-up with the prevailing
directions of change in the landscape class (river planform, in this case) as assessed via manual
image interpretation. Comparing Figures 6 and 7, which were generated based on shorter and longer
time-interval image pairs, respectively, we observe that the larger number of vectors and the longer
vectors (relative to Figure 6) appear in Figure 7, which is expected, as the river planform experienced
more overall change over the longer time period.

Upon close examination of the areas in the inset sub-windows as well as the overall study
area, we observe that the lengths of vectors (vector magnitudes) also correspond very well to the
exhibited change/displacement within the river class; this appears to provide a new possibility for
quantitative characterization of directional and magnitude change of landscape features and related
geomorphological processes. However, at least at the level of the information class (i.e., the river class)
considered here in this change-analysis, we also observe some apparently incorrect vectors where no
actual change occurred or where the directions indicated were incorrect. Most of these instances involve
relatively short displacement vectors. These incorrect vectors may potentially be showing change in
membership values not associated with actual landscape change (from-to class change), but rather
change in intra-class composition (e.g., within-class river water-quality change/variability between
two images). Thus, although the MCC change/displacement vectors contain valuable information, for
terrestrial landscape change analysis, further consideration regarding filtering is necessary.

For the change period between 1987 and 2006, as an example, the spectral CVA change-analysis
overall accuracy is 83.20%, with a Kappa coefficient of 0.664. Figure 8 shows the CVA change
pixels associated with the river class, with MCC change/displacement vectors for the same area
superimposed on the map. We observe that most of the MCC displacement vectors spatially correspond
with the areas that indicate change related to the river according to the CVA result. Also, the
directions of the MCC displacement vectors demonstrate good alignment with the change directions
of the river channel given by the CVA “from-to” change classes. Thus, the CVA accuracy and the
correspondence between CVA and MCC results jointly support the validity of MCC application to a
terrestrial landscape—a tropical meandering-river floodplain in this case.
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189 vectors were computed, with a mean vector length of 435 m, a mean vector angle of 8°, and 
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Figure 8. CVA result associated with the river class for the time period 1987 to 2006, with MCC vectors
(in red) derived from this pair of images. As determined by CVA, pixels that changed from the river
class over this time period are colored green, whereas pixels that changed to the river class are in blue.
Four inset zoom-in windows along the figure margins correspond to their respective specific areas
along the river reach, identified by their corresponding labels (a–d).

We also examined the distribution of the MCC displacement vectors associated with river channel
change for the example river section (Figures 6 and 7) for both time periods. For this purpose, we used
the moving average rose diagram (MARD) approach [31], which facilitates emphasizing significant
circular trends while reducing background noise. MARD requires two major parameters: the averaging
window (or aperture)—i.e., the angular range over which the data are averaged, and a weighting
factor that controls the smoothness of plot appearance. We selected an averaging window of 5◦ and
weighting factor of 0.95 based on recommendations in Munro and Blenkinsop [31] and our empirical
experimentation. We computed three circular statistics, including vector mean angle, circular variance,
and the number of vectors, as well as the mean vector length [31].

For the 1987–1990 period, 194 vectors were observed, with a mean vector length of 230 m, a
mean vector angle of 14◦, and circular variance of 0.720. On the other hand, for the 1987–2006 period,
189 vectors were computed, with a mean vector length of 435 m, a mean vector angle of 8◦, and
circular variance of 0.847. The longer time period exhibits a higher circular variance, as well as a
markedly higher-magnitude mean vector length, than the shorter time period. We also observed
that the vector angles period pointed upwards more frequently than not, indicating that more river
channel segments shifted towards the upstream direction during this period. However, in the MARD
for the 1987–2006, the displacement vectors have multiple dominant directions (Figure 9). These
results correspond with the visualization of the displacement vectors in Figures 6 and 7 and indicate
that MARDs and the associated statistics can provide a useful, quantitative summary of the MCC
change/displacement vectors.
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Figure 9. Moving average rose diagrams (MARDs) summarizing the MCC change/displacement
vectors for the river class within the example river reach given in Figures 7 and 8, for the periods of (a)
1987–1990; and (b) 1987–2006. Values on the radar plot axes indicate average weighted frequencies
of azimuths.

There have been studies on estimating directional channel change of river planforms using
satellite and aerial imagery. For example, Dewan et al. (2017) [32] and Midha and Mathur (2014) [33]
studied the channel changes of Ganges and Padma from 1973 to 2011 and of the Sharda River
from 1977 to 2001, respectively, using satellite imagery. In both studies, the researchers manually
delineated the river-channel boundaries for different dates during the studied period. They then
analyzed the movements/shifting directions of river banks on several river transects along the studied
channel. Güneralp and Rhoads (2009; 2010) [34,35], for example, also performed a similar type of
river planform-change analysis, but employed aerial photography. In contrast, the MCC application
proposed in the present study automatically generates directional landscape changes; no manual
digitization step is utilized or required, even though manual digitization of river planforms is common
practice (e.g., [36]). Yang et al. (2015) [37] determined river-channel migration, or shift, direction,
based on sequential satellite images; however, this shifting direction focuses on the migration of
the centerline and is only comprised of a “left” or “right” designation. That is, the river shifting
direction in [37] is based on the migration area of the centerline (i.e., area enclosed by sequential
channel centerlines), where that area is divided into left and right portions relative to the river flow
direction, employing the old centerline as the reference. The river shifting direction is determined
by which migration is larger—the left or right migration. In contrast, in the present study, MCC
displacement vectors are characterized by both a length and angle, as noted above, rather than just
returning a nominal directional designation. Thus, the explicit directionality of the MCC method
fundamentally differs from the river shifting direction of [37] or any other prior similar study, to our
knowledge. Furthermore, and importantly, the landscape changes detected by MCC application are
not limited to a single entity type (e.g., a river channel) or certain directions (e.g., along river transects),
but may demonstrate directional changes of land-covers that do not have complete or well-defined
boundaries. Thus, for any land-cover class or set of land-cover classes of interest, MCC application
on terrestrial environments can provide additional and useful information on directional landscape
changes compared with traditional change-detection methods.
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3.6. Suggestions for Future Research

This implementation of the Maximum Cross-Correlation (MCC) method for change analysis of
terrestrial landscapes is unique, and the results in this study indicate distinctive information that can
be derived to assist with land-change analysis. However, there are some uncertainties associated with
the use of MCC in this domain that should be addressed in future research:

1. An appropriate change-analysis accuracy-assessment procedure needs to be developed for the
MCC algorithm in this context. Accuracy assessment is necessary to validate a change-analysis
technique. However, given the specialized nature of the combination of the change-analysis
method (involving MCC displacement vectors) and the application domain considered, a
graphical correspondence assessment was performed in the present research. Although the
results of the present research are promising, a more rigorous assessment procedure needs to
be developed. Perhaps one possible means of accuracy assessment would be to measure angles
and distances/change magnitudes for a given phenomenon, for example, at time t and the
same phenomenon at time t + 1. Such measurements could be performed in situ at different
times, or perhaps utilizing higher spatial-resolution multitemporal images. Also note that, as
discussed in Foody (2004; 2008) [38,39], comparison of accuracies between different methods
can be conducted by comparing Kappa coefficients derived from the confusion matrices or
other statistical approaches. However, for the MCC application presented here, MCC provides
directional change information for quantitative historical land-cover change analysis, which is
unlike information produced by other traditional change-detection methods. Thus, a conventional
confusion matrix-based assessment method cannot be used to evaluate the accuracy of the
directional information contained in the MCC displacement vectors. Based on the MCC results
though, from-to class change information could possibly be derived, at least at the template
level. Results from other change-detection methods (e.g., CVA) could be generalized via, for
example, resampling from the pixel up to the template level, and based on the majority class
of the pixels within a given template area. This could potentially allow comparison of MCC
class results with those from other change-detection methods. However, again, MCC output is
primarily comprised of directional information (i.e., class-by-class spatial displacements across
the landscape) in the form of the MCC displacement vectors, which is not comparable to results
from traditional change-detection approaches.

2. An improved filtering rule is needed. Besides the MCC threshold, some original MCC applications
to ocean currents applied other criteria, e.g., displacement vector length compared with physical
movement and velocity of currents in order to filter-out invalid vectors [7]. As noted above, our
terrestrial application entailed several invalid vectors that had not been rejected. Thus, a stricter
filtering rule based on certain physical/geomorphological/ecological criteria related to the scene
is worth investigation in order to eliminate such invalid vectors.

3. Comprehensive interpretation of MCC change/displacement vectors would likely be beneficial.
Unlike original ocean-current applications, terrestrial MCC applications contain multiple sets of
vectors, where a set of displacement vectors corresponds to a given land-cover class. As different
land-cover classes interact with each other during the process of land change, in addition to
a separate interpretation for each set of MCC land-cover change/displacement vectors for a
given land-cover class, a joint interpretation of multiple or all sets of change/displacement
vectors associated with the different respective land-cover classes should be considered. Such a
combined analysis may provide a more comprehensive synthesis and assessment of land change.
Comprehension of such multifaceted data sets (e.g., regarding how MCC change/displacement
vectors represent underlying interactions and processes among multiple land-cover classes)
based on visualization will be challenging, and quantitative methods for such joint analyses
should thus be a focus of further research. For instance, part of such research may involve
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converting change/displacement vector information for each fuzzy membership layer into
from-to change-analysis information.

4. Finally, note that there are some classes of landscape change for which MCC may not be ideally
suited. If a vegetation assemblage, for example, were to completely disappear/be removed
from the study area during the time period between two image-acquisition dates, MCC may
not capture such a change. Thus, in some such land-change scenarios, MCC may be used in
conjunction with other change-analysis algorithms (i.e., pixel- and/or object-based algorithms),
with MCC providing a unique and complementary class of change-analysis information.

4. Conclusions

One aspect that has not drawn much attention in land-change analyses to date is the direction of
change in land classes of interest. The information on the direction of land-change can be important in
situations where, for example, the influence of a hypothesized land-change driver needs to be tested.
In this study, we analyze the direction of change in land-cover classes in a floodplain landscape where
the land-cover patterns and processes are influenced by a dynamic tropical meandering river. To
quantitatively characterize transitional and directional movement of land-covers across the landscape
through time, we employ the Maximum Cross-Correlation (MCC) approach, originally developed to
track movement of atmospheric, oceanic, and glacial landscape features. Our sensitivity analysis in
this first application of MCC to land-change analysis indicates that the results are most sensitive to
template size, MCC threshold, and the particular spatial configuration of land-cover classes. Other
study areas that one may analyze would almost certainly entail different classes and different spatial
configurations of those land-cover classes (relative to the present study). Nevertheless, we posit that
the ranges of MCC parameter values tested in this study and the results that were accrued will provide
useful guidance for MCC-based directional land-change analyses in the future for similar, and possibly,
for other types of environments. Although issues remain associated with the application of MCC to
terrestrial environments (e.g., how to effectively assess the accuracy of actual transitional change or
movement in a terrestrial environment), this study opens a new avenue for land-change analysis, and
presents MCC as a potentially effective method where the direction of change or transition is at least
as important as the location of change.
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