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Abstract: Southeast Asia is the epicentre of world palm oil production. Plantations in Malaysia have
increased 150% in area within the last decade, mostly at the expense of tropical forests. Maps of the
aboveground carbon density (ACD) of vegetation generated by remote sensing technologies, such as
airborne LiDAR, are vital for quantifying the effects of land use change for greenhouse gas emissions,
and many papers have developed methods for mapping forests. However, nobody has yet mapped oil
palm ACD from LiDAR. The development of carbon prediction models would open doors to remote
monitoring of plantations as part of efforts to make the industry more environmentally sustainable.
This paper compares the performance of tree-centric and area-based approaches to mapping ACD in
oil palm plantations. We find that an area-based approach gave more accurate estimates of carbon
density than tree-centric methods and that the most accurate estimation model includes LiDAR
measurements of top-of-canopy height and canopy cover. We show that tree crown segmentation is
sensitive to crown density, resulting in less accurate tree density and ACD predictions, but argue that
tree-centric approach can nevertheless be useful for monitoring purposes, providing a method to
detect, extract and count oil palm trees automatically from images.

Keywords: oil palm plantation; aboveground carbon density; laser scanning, LiDAR; crown
segmentation; canopy cover; top of canopy height

1. Introduction

Southeast Asia has been the epicentre of the oil palm industry for over 50 years [1]. Oil palm is
one of the most profitable land uses in the humid tropics [2]. Malaysia has increased its planted area by
150% over the last decade [3] and, along with Indonesia, currently represents over 80% of global palm
oil production [3,4]. The planted area increased from 6 to 16 million hectares between 1990 and 2010,
an area which now accounts for about 10 percent of the world’s permanent cropland [5]. Conversion
of forests to plantation agriculture represents a substantial source of greenhouse gas (GHG) emissions,
especially in tropical peatlands [6], generating 10–20% of net global emissions [7]. Although oil palm
plantations continue to expand, the government of Malaysia has pledged to reduce their projected
GHG emissions by 45% by 2030 [8].

High-resolution forest biomass maps can provide detailed and spatially explicit estimates of
aboveground carbon density (ACD, units of Mg C ha−1) to assist natural resource management and
assess emissions from deforestation. LiDAR (light detection and ranging) has become a commonly
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used technology to remotely predict ACD in many forest types [9–12]. Carbon mapping by airborne
LiDAR is significantly more accurate than approaches based on radar or passive optical measurements
from space [13–15]. Oil palm trees have been counted using airborne imaging spectrometry [16]
and their biomass estimated from satellite images [17–20], but nobody has yet developed equations
to estimate carbon density in oil palm plantations from airborne LiDAR data. The development of
carbon prediction models provides opportunities to assess the aboveground carbon density of oil palm
plantations, which is essential for assessments of the environmental sustainability of human modified
tropical landscapes.

Airborne LiDAR provides detailed information about forest structure within scanned areas, which
can extend over hundreds of square kilometres [21–23], but it also poses the challenge of how best to
use these data to estimate aboveground carbon [24]. It has been demonstrated that top of canopy height
(TCH), as measured by LiDAR, is a useful metric for estimating ACD of natural tropical forests and is
relatively insensitive to sensor and flight specifications [10]. However, the generality of TCH-based
approaches to plot-aggregate carbon stock estimation has not been examined for oil palm plantations.
There is current interest in developing individual-tree-based approaches to make greater use of the
3D information contained in airborne LiDAR data [25–27]. The tree-centric method is fundamentally
similar to field-based approaches based on inventory plots [28,29], so individual-based modelling has
a strong theoretical basis [30]. Nevertheless, over- or under-segmentation of trees can lead to biases in
biomass estimation [12]. To our knowledge, no study has used tree-centric approaches to map carbon
in tropical plantations.

This paper develops methods for mapping the aboveground carbon density of oil palm plantations
using LiDAR. Sabah has a larger percentage of oil palm plantation than any other state in the world [5],
so has become an important testbed to examine the effects of oil palm plantations within human
modified tropical landscapes. We compare the Dalponte and Coomes (2016) tree-centric approach
with area-based methods [10,12,31], and critically evaluate whether the advantages of working with
individual trees outweigh any disadvantages associated with the accuracy of tree detection. We also
explore the relationship between ACD and canopy gap fraction measured by LiDAR, and then use this
finding to refine the area-based approach. Our study site contained plots with oil palm plantation that
varied in age from 8 to 14 years at the time of sampling, providing an opportunity to test the generality
of the approaches used.

2. Methods

2.1. The SAFE Degradation Landscape

The oil palm plantations are within the Stability of Altered Forest Ecosystem (SAFE) Project
(4◦38′N to 4◦46′N, 116◦57′E to 117◦42′E), located within lowland dipterocarp forest regions of East
Sabah in Malaysian Borneo (Figure 1). SAFE reflects Sabah’s predominant land use change over the past
decades, characterised by industrial harvesting and large-scale forest-to-palm conversions [32]. The
region has a tropical climate with high rainfall (>2000 mm/year) and varying topography, although all
study plots are below 800 m altitude. The geology comprises a mixture of sedimentary rocks, including
siltstones, sandstones and others that are easily eroded [33].
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Figure 1. Panel (a) shows the location of the Stability of Altered Forest Ecosystem (SAFE) landscape 
within Sabah, Malaysia and (b) the LiDAR Canopy Height Model (greener shades corresponding to 
higher heights in metres) of the SAFE Project landscape including 27 plots located in oil palm 
plantations. 

2.2. Field Data 

Twenty-seven vegetation plots (25 m × 25 m, 0.0625 ha) with North–South orientation were set 
out at SAFE in 2010 using a Garmin GPSMap60 device. Vegetation plots were established according 
to a hierarchical sampling design based around a triangular pattern to assess regional forest attributes 
[34]. Plots were located at roughly equal altitude = 400 m and oriented to minimise potentially 
confounding factors such as slope. Oil palm is generally grown on fairly flat surfaces under 
Roundtable on Sustainable Palm Oil guidelines, recommendations from the Malaysian Palm Oil 
Board, and Standards for Oil Palm Production. On top of that, production on flat surfaces is higher. 
Therefore, these conditions will commonly be shared in oil palm plantations across SE Asia and are 
therefore valid. Plots were distributed among three oil palm plantation blocks of two different ages 
(OP1 and OP2 planted in 2006 and OP3 planted in 2000), henceforth referred to as 8-year-old and  
14-year-old plots. In each 0.0625 ha plot, all oil palm individuals had their stem height measured in 
2013 and remeasured in 2015; we used the average height between these years (Figure 2). The average 
height and standard deviation (in metres) was 6.1 ± 2.3 for OP1, 5.4 m ± 1.5 for OP2 and 8.5 ± 2.0 for 
OP3. Palms have vascular bundles embedded in their trunks, in contrast to most tree species which 
have meristem cells just beneath their bark, so trunks do not increase in diameter as the trees grow 
taller. Thus, as secondary thickening does not occur in palm trees, we did not include tree diameter 
in our field measurements or biomass equation. 

A 1-ha plot was created that was centred on each 0.0625-ha plot, to expand the plot size for 
aboveground carbon density calculations and minimize plot size effects on LiDAR model 
performance [15]. We then used Earth Imaging data from the Pléiades satellite constellation (EADS 
Astrium), acquired over the SAFE landscape in June 2016, to visually count the tree density within 
each 1-ha plot. Pléiades data comprises a 0.5-m resolution panchromatic band, and four spectral bands 
(blue, green, red, and near infrared) with a 2.8 m spatial resolution, resampled to 2 m (Figure 3a). The 
panchromatic band has sufficiently high resolution to distinguish the rows of trees in oil palm stands, 
as interrow spacing is approximately 8 m. The average height of each 1-ha plot was assumed to be 
the same as in the 0.0625 ha plots, embedded at the centre. We recognise that spatial autocorrelation 
magnitude could impact the 1-ha plot data; however, we emphasize that the plots are not being used 
for landscape sampling, rather they are intended for calibration and validation purposes only. Areas 
within oil palm are all planted at the same time and managed in the same way, and are therefore 
likely to be extremely homogeneous. 

Figure 1. Panel (a) shows the location of the Stability of Altered Forest Ecosystem (SAFE) landscape
within Sabah, Malaysia and (b) the LiDAR Canopy Height Model (greener shades corresponding
to higher heights in metres) of the SAFE Project landscape including 27 plots located in oil
palm plantations.

2.2. Field Data

Twenty-seven vegetation plots (25 m × 25 m, 0.0625 ha) with North–South orientation were set
out at SAFE in 2010 using a Garmin GPSMap60 device. Vegetation plots were established according to
a hierarchical sampling design based around a triangular pattern to assess regional forest attributes [34].
Plots were located at roughly equal altitude = 400 m and oriented to minimise potentially confounding
factors such as slope. Oil palm is generally grown on fairly flat surfaces under Roundtable on
Sustainable Palm Oil guidelines, recommendations from the Malaysian Palm Oil Board, and Standards
for Oil Palm Production. On top of that, production on flat surfaces is higher. Therefore, these
conditions will commonly be shared in oil palm plantations across SE Asia and are therefore valid.
Plots were distributed among three oil palm plantation blocks of two different ages (OP1 and OP2
planted in 2006 and OP3 planted in 2000), henceforth referred to as 8-year-old and 14-year-old plots.
In each 0.0625 ha plot, all oil palm individuals had their stem height measured in 2013 and remeasured
in 2015; we used the average height between these years (Figure 2). The average height and standard
deviation (in metres) was 6.1 ± 2.3 for OP1, 5.4 m ± 1.5 for OP2 and 8.5 ± 2.0 for OP3. Palms have
vascular bundles embedded in their trunks, in contrast to most tree species which have meristem
cells just beneath their bark, so trunks do not increase in diameter as the trees grow taller. Thus,
as secondary thickening does not occur in palm trees, we did not include tree diameter in our field
measurements or biomass equation.

A 1-ha plot was created that was centred on each 0.0625-ha plot, to expand the plot size
for aboveground carbon density calculations and minimize plot size effects on LiDAR model
performance [15]. We then used Earth Imaging data from the Pléiades satellite constellation (EADS
Astrium), acquired over the SAFE landscape in June 2016, to visually count the tree density within
each 1-ha plot. Pléiades data comprises a 0.5-m resolution panchromatic band, and four spectral bands
(blue, green, red, and near infrared) with a 2.8 m spatial resolution, resampled to 2 m (Figure 3a). The
panchromatic band has sufficiently high resolution to distinguish the rows of trees in oil palm stands,
as interrow spacing is approximately 8 m. The average height of each 1-ha plot was assumed to be
the same as in the 0.0625 ha plots, embedded at the centre. We recognise that spatial autocorrelation
magnitude could impact the 1-ha plot data; however, we emphasize that the plots are not being used
for landscape sampling, rather they are intended for calibration and validation purposes only. Areas
within oil palm are all planted at the same time and managed in the same way, and are therefore likely
to be extremely homogeneous.
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Figure 2. Boxplots contrasting the structural attributes of oil palm plantations of two different ages  
(x-axis), based on measurements taken in 27 1-ha plots. ACD is aboveground carbon density  
(Mg C ha−1).  

 
Figure 3. (a) A monochromatic image from the Pléiades satellite constellation and (b) an airborne 
LiDAR image of a 1-ha plot to show a typical oil palm plantation canopy. The legend refers to height 
in metres of individual palms displayed on the LiDAR image. 

2.3. LiDAR Data Acquisition and Processing 

Airborne LiDAR data were acquired on 5 November 2014 using a Leica LiDAR50-II flown at  
1850 m altitude on a Dornier 228–201 travelling at 135 knots. The LiDAR sensor emitted pulses at 83.1 
Hz with a field of view of 12.0°, and a footprint of about 40 cm diameter. The average pulse density was 
7.3/m2. The Leica LiDAR50-II sensor records full waveform LiDAR, but for the purposes of this study 
the data were discretised, with up to four returns recorded per pulse. Accurate georeferencing of LiDAR 
point cloud was ensured by incorporating data from a Leica base station running in the study area 
concurrently to the flight. The LiDAR data were pre-processed by NERC’s Data Analysis Node and 
delivered in standard LAS format. All further processing was undertaken using LAStools [35]. Points 
were classified as ground and non-ground, and a digital elevation model (DEM) was fitted to the 
ground returns, producing a raster of 1 m resolution. The DEM elevations were subtracted from 
elevations of all non-ground returns to produce a normalised point cloud, and a canopy height model 
(CHM) was constructed from this on a 0.5 m raster by averaging the first returns. Finally, holes in the 
raster were filled by averaging neighbouring cells (Figure 3b). 

Figure 2. Boxplots contrasting the structural attributes of oil palm plantations of two different
ages (x-axis), based on measurements taken in 27 1-ha plots. ACD is aboveground carbon density
(Mg C ha−1).
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Figure 3. (a) A monochromatic image from the Pléiades satellite constellation and (b) an airborne
LiDAR image of a 1-ha plot to show a typical oil palm plantation canopy. The legend refers to height in
metres of individual palms displayed on the LiDAR image.

2.3. LiDAR Data Acquisition and Processing

Airborne LiDAR data were acquired on 5 November 2014 using a Leica LiDAR50-II flown at
1850 m altitude on a Dornier 228–201 travelling at 135 knots. The LiDAR sensor emitted pulses at
83.1 Hz with a field of view of 12.0◦, and a footprint of about 40 cm diameter. The average pulse density
was 7.3/m2. The Leica LiDAR50-II sensor records full waveform LiDAR, but for the purposes of this
study the data were discretised, with up to four returns recorded per pulse. Accurate georeferencing of
LiDAR point cloud was ensured by incorporating data from a Leica base station running in the study
area concurrently to the flight. The LiDAR data were pre-processed by NERC’s Data Analysis Node
and delivered in standard LAS format. All further processing was undertaken using LAStools [35].
Points were classified as ground and non-ground, and a digital elevation model (DEM) was fitted to
the ground returns, producing a raster of 1 m resolution. The DEM elevations were subtracted from
elevations of all non-ground returns to produce a normalised point cloud, and a canopy height model
(CHM) was constructed from this on a 0.5 m raster by averaging the first returns. Finally, holes in the
raster were filled by averaging neighbouring cells (Figure 3b).
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2.4. Estimating Tree- and Plot-Level Aboveground Carbon Density

Oil palm aboveground biomass (AGBpalm) was computed as dry mass in kg for each palm tree
from its height (H) in metres using the equation of [17]:

AGBpalm = 37.47 ×H + 3.6334 (1)

Note, as explained above, palm trees do not increase in diameter as they increase in height, so
the formula is based only on height. The average AGBpalm within the field plot was multiplied by the
number of individuals counted in the 1-ha plots from the Pléiades images to give the total AGB within
each 1 ha plot. A carbon content conversion factor of 0.47 was then applied, following [36].

2.5. Area-Based Approach

The authors of [10] proposed a generalised approach to estimate ACD using top of canopy height
estimated by LiDAR. As recommended by [10], least squares regression was used to relate field
measured TCH and ACD as follows:

ACD = a TCHb (2)

This model was fitted to data from the 27 1-ha SAFE plots and the estimates were obtained
by leave-one-out cross validation. TCH was the mean height of CHM pixels within each 1-ha plot
extracted using the raster package of R, while a and b are the parameters of the nonlinear model.

We also tested whether canopy cover (CC)—the proportion of area occupied by crowns at a given
height aboveground—could be used as an alternative LiDAR metric to predict ACD. CC is calculated
by creating a horizontal plane in the canopy height model (CHM) at height h above ground, and
calculating the number of pixels for which the CHM lies beneath the plane divided by the total number
of pixels in the plot. CC was calculated for h from 1 m to the maximum canopy height encountered in
the plots (23 m). There were a few individuals of other tree species encountered in the 1-ha plots.

ACD = a CCb (3)

We also tested whether TCH and canopy cover could both be included as a predictor of ACD [12,31].
The model requires accounting for multicollinearity, considering that TCH is closely correlated to CC.
This can be done by regressing one variable against the other, and replacing the variable with the
residuals from the regression [37]. We therefore first modelled the relationship between CC and TCH
using logistic regression, validated the model using a leave-one-out procedure, and then used the
residuals of this model (CCres in Equation (4)) to identify plots that have higher or lower than expected
canopy cover for a given TCH. Equation (5) was used following [31], who carefully compared alternative
functional forms.

CCres = CC− 1
1 + e−dTCH − f (4)

ACD = a TCHb (1 + c CCres), (5)

where lowercase letters indicate regression coefficients. To aid interpretation, Spearman rank
correlation coefficients (r) between structural variables and area-based approach metrics were
calculated to investigate the relationship of both average tree height and tree density with both
TCH and CC LiDAR metrics.
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2.6. Tree-Centric Approach

As an alternative to area-based approaches, we tested whether ACD could be estimated accurately
by summing the biomass of individual tree crowns (ITCs; Figure 1). The itcSegment algorithm was
used to delineate trees within each of the 27 plots and determine the tree heights and individual crown
areas. itcSegment is implemented in R and made freely available on CRAN [38]. It works by finding
local maxima in the raster CHM, regarding these maxima as tree tops, then growing crowns around
them by local searching of the raster CHM and point cloud. This approach was initially developed for
coniferous forests [27,39–41] following the concept of [42], and modified in this manuscript to adapt to
forests with low variation in height (i.e., oil palm plantations). The tree-centric approach consists of
three stages [43]: (1) a Guassian low-pass filter to smooth the canopy height model; (2) an iterative
search for local maximum in the CHM, which are assumed to represent the tops of tree crown, using
a window size that varied with the height of the CHM; we included a weighting exponent in the
itcSegment function to increase the contrast in the CHM and found this greatly improved the accuracy
of segmentation; (3) a region-growing step then searches for crowns around each local maximum,
constraining the search with pre-determined crown width and depth information. The itcSegment
algorithm has been upgraded in R after inclusion of the weighting exponent.

The next step was to calculate a correction factor to account for the fact that the individual tree
heights obtained by the ITC approach overestimated the oil palm tree heights, because large oil palm
fronds arch up beyond the meristem at the top of the trunk, which were not accounted for in field
measurements. This correction factor was obtained by fitting a nonlinear regression as follows:

Hc = a HITC
b (6)

where Hc is the mean field-estimated height within the 27 0.0625 ha plots and HITC is the mean
LiDAR-esimated height within the surrounding 1-ha plots, and a and b are parameters estimated by
nonlinear least squares regression. The model was validated using the leave-one-out procedure.

The next step was to estimate individual biomass, by entering HC values into equation 1. We
then summed the AGB of segmented trees, and multiplied by a carbon density of 0.47 to obtain ACD
estimates as before. The accuracy of the ITC delineation was assessed by comparing the numbers of
delineated trees with the numbers observed in the field plots and ACD predicted from the summed
individual biomasses.

Goodness of fit of models and the tree-centric approach are compared by reporting the normalised

RMSE (%), calculated as
√

∑(y − ŷ)2

n × 100/y, and bias (%) as ∑(y− ŷ) × 100/(Ny), where y are
the field data, y is the mean, ŷ are the model estimates and N is the number of observations [12,44].

3. Results

3.1. Relating LiDAR Metrics to Oil Palm Plantation Structure

Both LiDAR area-based approach metrics, top of canopy height and canopy cover, are correlated
to tree density and average plot tree height (Figure 4a–d). Canopy cover (CC) at 3 m height was chosen
after a comparison of different models that included heights between 1 and 23 m, to include a few
individuals other than oil palm trees within the 1-ha plots. Top of canopy height was more strongly
influenced by height, whereas CC at 3 m was more influenced by tree density.
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Figure 4. Spearman correlation (r) between field-measured average tree height per plot and
LiDAR-derived (a) top-of-canopy-height (TCH), and (b) canopy cover (CC) at 3 m height, as well as
between field-measured tree density (#.ha−1) and (c) TCH and (d) CC.

3.2. Area-Based Approaches

The local model obtained by fitting a power-law model to the data available from SAFE oil palm
plantations yielded the following relationship between top of canopy height (TCH) and aboveground
carbon density (Figure 5a):

ACDHTC = 1.494TCH1.107 (7)

A TCH exponent of just over 1 indicates a near-linear relationship between TCH and carbon
density in oil palm plantations, as expected from the straight-line relationship between individual
biomass and height (i.e., Equation (1)). The relationship between ACD and CC follows instead
an exponential relationship (Figure 5b):

ACDcc = 22.991CC2.744 (8)

In comparison, when ACD was expressed a function of both TCH and residual CC, we obtained
the following model:

ACD = 1.31 TCH1.17 (1 + 3.52 CCres) (9)

where CCres can be obtained by subtracting the actual CC by the model that predicted CC from logistic
regression with TCH as the predictor variable:

CCres = CC− 1

1 + e0.77 TCH−0.37 (10)



Remote Sens. 2017, 9, 816 8 of 13

The model based on TCH generated unbiased ACD predictions with RMSE of 26.3%, whereas the
model based on CC showed a bias of 1.2% with similar RMSE of 26.4%, with both models yielding
an R2 = 0.62 (Figure 6a,b). The inclusion of both TCH and residual canopy cover into the model reduced
RMSE to 23.9% and improved the strength of relationship to R2 = 0.69 (Figure 6c). The predictions were
obtained from the validation datasets using the leave-one-out procedure. Neither approach showed
any trend with oil palm plantation age (e.g., plots deviating from the 1:1 line), which indicates that the
equations can be applied to plantations of different ages and to faster and slower growing stands of
the same age.
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3.3. Individual Tree Crown Approach

ITCsegment used variable window sizes when searching for local maxima, which avoided omitting
small palms when the window was large, or over-segmenting large palms when the window was
small (Figure 7a). Heights obtained from the individual tree crown segmentation (HITC) included the
upward pointing fronds of palms. The relationship between stem height and HITC (Figure 7b) was:

Hc = 0.61HITC
1.02 (11)
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This equation was used to predict the tree stem height (Hc) of all trees in the plots, from their
segmented heights.Remote Sens. 2017, 9, 816  9 of 13 
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Figure 7. (a) Detection of individual tree crowns in a 1-ha plot LiDAR imagery using itcSegment
(Dalponte and Coomes, 2016) for oil palm plantations; (b) The relationship between tree stem height
obtained from field data and tree height obtained from the individual tree crown segmentation (HITC).
The regression line fitted to all 27 plots is shown as a red line and the 1:1 line as a black dashed line.

A comparison of the number of delineated trees with the tree density obtained from the Pléiades
optical imagery was used to estimate the accuracy of the ITC delineation for all the 1-ha plots (Figure 8a).
ACD of individual oil palm trees was summed to estimate plot ACD at the 1-ha plot level (Figure 8b).
The ITC approach gave a percentage RMSE of 25.9% and was biased (−11.6%), showing a slight
trend from over-estimation of lower carbon density values and under-estimation of higher carbon
density values.
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4. Discussion

We have demonstrated that the ACD of oil palm plantations can be assessed accurately using
airborne LiDAR and can give better results compared to estimates using satellites [18]. Our ACD
estimates of 10.0 Mg C ha−1 for a 8-year-old plantation and 18.3 Mg C ha−1 for a 14-year-old plantation
are similar to those reported in previous studies. mean ACD of oil palm in the SAFE landscape was
estimated as 17.9 Mg C ha−1 by [45] using optical satellite imagery (age of stands not distinguished),
while elsewhere in Sabah, the ACD of a 3-year-old oil palm plantation was given as 1.1 Mg C/ha,
rising to an average value of 24.4 Mg C ha−1 for plantations ranging from 4 to 19 years old [18].

Area-based approaches yielded more accurate carbon stock predictions in oil palm plantations
than the tree-centric approach. ACD predictions were most accurate when incorporating both TCH
and canopy cover as predictors [10]. Power-law modelling incorporates basal area and wood density
relating to TCH; however, our function assumes that wood density and basal area are both constant,
as the field biomass equation that was used to predict individual biomass, used tree height only. The
authors of [12] found that the crown area of each forest tree scales with its basal area, so the gap
fraction at ground level of a plot is negatively related to the basal area of its trees. The authors of [12]
showed that incorporating canopy cover in tropical forests into ACD models gave more accurate
results, as ACD is more closely related to basal area than to height. However, secondary thickening
does not occur in palm trees, with basal area increase instead being due to division and enlargement
of parenchyma cells [46]. Thus, cover fraction is not necessarily correlated to basal area, but more
dependent on tree density and height. When incorporating both TCH and CC, the model yielded
better results as a result of complementarity, by taking into account the high correlations between tree
height and TCH as well as with tree density and CC.

The tree-centric approach was less accurate. It showed a slight tendency to over-estimate the
number of trees in younger plantations. A likely reason for this oversegmentation is overlap of palm
crowns of similar heights. In mature plantations, crowns were more likely to be connected to other
tree crowns, making them difficult to distinguish and resulting in miscounting of trees. Other studies
focussing on tropical rainforests have also found the tree-centric approach to perform slightly less
well than area-based methods [12,26], due to over-segmentation of emergent trees and incomplete
detection of sub-canopy trees. Here, the problem is instead the under-segmentation of large crowns,
which merge into one another, owing to their similar height.

Although the tree-centric approach gives less accurate results, it can still be advantageous
to segment individual trees for precision agriculture [47], particularly in oil palm plantations as
individual trees are long-lived. Field-based tree counting is labour intensive, and the use of
remote-sensing using high-resolution optical imagery from satellites has been suggested as a cost
efficient alternative [48]. A semi-automatic technique to count oil palm trees using high-resolution
airborne imaging spectrometer data has also been developed [16], and LiDAR has been used to
detect and classify oil palm diseases [49]. The detection of diseases, such as the Ganoderma basal
stem rot, using airborne spectral imagery [50]) and space-borne multispectral sensors [51] has also
been demonstrated.

The Roundtable on Sustainable Palm Oil, the major accreditation body for sustainable palm oil
production, recognises the importance of developing approaches for growers to monitor emissions
across their estates. However, it has been recognised that emission cannot be monitored completely, or
accurately, using current methodologies [52]. Studies indicate that remote sensing missions should
estimate carbon with an error within 20% of field estimates [53,54]. Both area-based and individual
tree-centric approaches offer reliable opportunities to map oil palm plantation ACD, within acceptable
standards of estimation. High-resolution LiDAR techniques are a reliable tool to collect reference data,
in order to decrease the uncertainty associated with satellite-based mapping projects. It is through the
integration of optical and samples of LiDAR data, based upon the above findings, that measures in
support of carbon sequestration programs may be generated.
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5. Conclusions

Area-based modelling proved more effective at mapping ACD in oil palm plantations than a more
sophisticated tree-centric approach. Using both canopy cover and top-of-canopy height in the model
generated the most accurate ACD predictions. Canopy cover is related primarily to tree density and
secondarily to tree height, so provides complementary information to TCH and improves accuracy.
The tree-centric approach underestimated the density of trees, particularly in older plantations, because
tree crowns were overlapping and our segmentation algorithm recognised overlapping crowns as
a single tree. Nevertheless, the tree-centric approach may prove useful in the future for detecting
individual trees and for monitoring growth and foliar properties.
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