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Abstract: Lidar data are regularly used to characterize forest structures. In this study, we determine
the effects of three lidar attributes (density, spacing, scanning angle) on the accuracy and the
uncertainty of timber merchantable volume estimates of balsam fir stands (Abies balsamea (L.) Mill.)
in eastern Canada. We used lidar point clouds to compute predictor variables of the merchantable
volume in a nonlinear model. The best model included the mean height of first returns, the proportion
of first returns below 2 m and the canopy surface roughness index. Our analysis shows a high
correlation between lidar and field data of 119 plots (pseudo-R2 = 0.91), however, residuals were
heteroscedastic. More precise parameter estimates were obtained by adding to the model a variance
function of variables describing the mean height of returns and the skewness of the area distribution
of triangulated lidar returns. The residual standard deviation was better estimated (3.7 m3 ha−1

multiplied by the variance function versus 28.0 m3 ha−1). We found no effect of density on the
predictions (p-value = 0.74). This suggests that the height and the spatial pattern of returns, rather than
the density, should be considered to better assess the uncertainty of merchantable volume estimates.

Keywords: lidar; timber merchantable volume; spatial distribution; return density; return spacing;
scanning angle; residual variance

1. Introduction

Airborne Laser Scanning (ALS or lidar) has proven to be a useful 3d tool for the measurement
of forest attributes over the past decades. It generates point clouds which are a three-dimensional
representation of the volumetric interaction between pulse photons and illuminated objects. The spatial
distribution of returns within the point cloud depends on the characteristics of the lidar systems
and the target object [1,2]. The scan mechanisms (e.g., oscillating mirror, rotating mirror, nutating
mirror) mounted on lidar scanners produce different scanning patterns of pulses on the ground [1].
For example, the bi-directional scan mechanism of oscillating mirrors produces a see-saw scanning
pattern where pulses tend to be more homogeneously distributed along the center of the flight line
than at the borders. Consequently, an alternation of local clumps of returns and local gaps will be
observed within the point cloud [3]. Scanning angle is another setting which influences the spatial
distribution pattern. For example, high-scanning angles increase the distance traveled by the incident
pulse. Objects located further from the lidar sensor are likely to be occluded or undetected [4], thus
producing an irregular spatial distribution of returns.
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The effects of the surface characteristics of scanned objects on the scanning pattern are not controlled
by the user. Gatziolis et al. [1], for example, demonstrated that higher return densities are recorded in
forest stands compared to green pastures under similar lidar settings. Korpela et al. [2] noted that leaf size
and orientation and foliage density affect the intensity of lidar returns. Balsa-Barreiro et al. [5] noted that
topography and land cover influence the density and spacing of returns.

Metrics (e.g., height metrics, canopy cover metrics), derived from point clouds are often used
to model forest attributes such as volume [6,7]. Hence, highly correlated models between lidar data
and field volume have been achieved in many studies [8–11]. Studies on lidar modeling focus on
investigating the optimal explanatory variables that best explain the variability of the forest attributes.
The relationship between the explanatory and dependent variable is obtained by means of a regression
model. Least square procedures are commonly used to estimate the parameters of the regression
model [12]. These procedures focus on minimizing the sum of squared residuals. Heteroscedasticity
occurs in a model when the variance of the residuals is not constant [12,13]. Some possible causes of
heteroscedasticity can be measurement errors of the data, autocorrelation or misspecification of the
model. This can lead to a significant loss of precision where the estimated parameters of the model are
inefficient, although unbiased. The standard errors and confidence intervals are also unreliable. In other
words, the forest attribute can still be predicted, but the predictions are uncertain. In an operational
context, uncertain predictions of a forest attribute such as the merchantable volume have a direct effect
on the evaluation of its economic value [14]. Nonetheless, heteroscedasticity may be corrected using
different methods [12,15,16]. Variable transformation for example modifies the measurement scale of
variables in a model and heteroscedasticity may then be corrected [12,17]. Variance modeling identifies
the sources of heteroscedasticity in a model and attempts to better estimate the model uncertainty
through a variance function [15].

Few studies can be found on the effects of lidar on the uncertainty of predictive models (e.g., [4,18,19]).
Yet, with the increasing use of lidar in forestry, reliable estimates of forest attributes derived from lidar are
necessary. There is, therefore, a need to investigate whether factors like the spatial pattern of returns can
also influence the predictions or the uncertainty of modeled forest attributes. This study, therefore, aims
to analyze the effects of three lidar attributes (return density, return spacing, scanning angle) on the
predictions and the uncertainty of merchantable volume estimates.

2. Materials and Methods

2.1. Study Area

The study was conducted at the Montmorency Forest which is a teaching and research forest
facility of the Université Laval. The forest is located in central Quebec, Canada (47.3◦ N, 71.1◦ W),
about 70 km north of Quebec City (Figure 1). The study site covered an area of 66 km2. Elevation at
the site ranged from approximately 460 to 1040 m above sea level. The average annual precipitation
was 1589 mm, and the mean annual temperature was 0.3 ◦C [20]. The site lies on the Laurentian
Plateau and is part of the boreal forest domain. Balsam fir (Abies balsamea [L.] Miller), black spruce
(Picea mariana [Miller] BSP and white spruce (Pinus glauca [Moench] Voss) are the dominant conifers
found in the forest. White birch (Betula papyrifera Marshall) and trembling aspen (Populus tremuloides)
are also common [21].

2.2. Field Plot Data

The Montmorency Forest has a network of circular permanent plots (radius = 11.28 m,
area = 400 m2). The plots center positions have been georeferenced using a dual-frequency antenna
GPS (Trimble Yuma, accuracy ~30 cm) and were not post-processed. Plots are re-measured on a
five-year cycle. In this study, we used field data that were collected between 2007 and 2014. A sample
of 119 plots was selected following these criteria: the dominant species was balsam fir, the last cut was
before 1996 and the minimum dominant height was 7 m. The merchantable trees with a diameter at
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breast height (dbh) above 9 cm were measured using a diameter tape. Tree height was measured on
eight sample trees per plot using a Vertex hypsometer. A height-diameter relationship was adjusted
for each plot (nonlinear mixed effects model) and then used to calculate the height of the other trees.
The merchantable volume MV was computed using height and diameter based equations as described
in [22]. The total MV was computed as the sum of MVs for all trees. Twenty-four field plots had
been initially inventoried in 2011, the same year as the lidar survey. Attributes of the other plots were
estimated by interpolating field measurements between two dates of inventory. Table 1 presents a
summary of the field data for 2011.
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Table 1. Summary of field plot measurements for the Montmorency Forest study site a.

Field Attributes Mean Std. Range

Diameter at breast height (cm) 21.9 5.2 13.3–38.0
Dominant height (m) 15.1 4.2 9.2–26.6
Density (trees ha−1) 1433.0 536.0 117.0–3078.0
Basal area (m2 ha−1) 25.8 10.9 3.7–49.5

Merchantable volume (m3 ha−1) 144.1 90.2 21.0–411.9
a Std. = standard deviation.

2.3. Lidar Data

Airborne laser data were acquired in August 2011 with an ALTM 3100 discrete return sensor
(Teledyne Optech, Vaughan, ON, Canada). The average flying altitude was 1000 m above ground.
The pulse repetition rate was of 100 kHz with a 50% strip overlap. The scanning angle ranged from 0◦

to 24◦ relative to the nadir. The sensor could record up to four measurements per pulse. Each field
plot was covered by two to four lidar strips. The average above-ground return density was 6.4 m−2.
Information for each return was recorded in las files (version 1.0). The returns classified as ground
(by the vendor) were interpolated to construct a digital terrain model using the LAStools software [6].
Non-ground returns were normalized by measuring the elevation difference with the underlying
terrain model. Table 2 presents a summary of the lidar data of the study site.
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Table 2. Summary of the lidar data for the Montmorency Forest study site (119 plots) a.

Lidar Attributes Mean Std. Range

Mean_h (m) 5.9 2.2 1.7–11.5
Above-ground density (m−2) 6.4 1.8 3.2–12.5
Above-ground spacing (dm) 4 1 3–6

Scanning angle (◦) 9.1 4.7 0.0–24.0
Skew_area 1.4 0.5 0.4–3.9

Prop_2m (%) 15.3 13.9 0.2–63.5
Ri 2.7 0.7 1.6–5.2

a Std. = standard deviation, Mean_h = mean height of first returns, Skew_area = skewness of the area distribution
of triangulated returns, Prop_2m = proportion of first returns below 2 m, Ri = rumple index.

2.4. Data Analysis

The data analysis is organized in six sections: (Section 2.4.1) describes the nonlinear generalized
least squares regression; (Section 2.4.2) provides an analysis of the spatial distribution of returns using
an example field plot; (Section 2.4.3) calculates the lidar variables from the point clouds; (Section 2.4.4)
describes the merchantable volume modelling; (Section 2.4.5) analyses the residual variance; and
(Section 2.4.6) provides the model validation.

2.4.1. Generalized Least Squares in Nonlinear Regression

Heteroscedasticity occurs in a nonlinear regression (NLIN-GLS) model when the error variance is
not constant over all the observations [15]:

yi = f (xi; β) + εi with var (εi) = σ2g2(zi; δ) (1)

where yi is the value of the response variable measured on the ith experimental unit, and is expressed
as a known function f (.) of some explanatory variables (xi) and parameters (β) plus a random error
term (εi). In this model, the heteroscedasticity is considered by the fact that the variance σ2 of this latter
term is not constant, but depends on a known function g(.) of some covariates zi and parameters δ.

Equation (1) was used to predict the merchantable volume of our study site. The variance
functions g(.) that we have considered had one of the following expressions [15]:

g(zi; δ) =



|z1i|δ

exp(δz1i)

|z1i|δ1 |z2i|δ2

exp(δ1z1i) exp(δ2z2i)

|z1i|δ1 exp(δ2z2i)

(2)

The first variance function is a power function of the absolute value of the covariate zi, the
second one is an exponential function of this covariate, and the others are various combinations of the
previous ones.

The SP group of covariates, which will be described later, have been included in this model either
in the fixed part through the f (.) function or in the random part through the g(.) function.

2.4.2. Analysis of the Spatial Distribution of Returns

The return density, return spacing and scanning angle play an important role in the spatial
distribution of returns. To provide a visual example of this, we have extracted a sample of the 2d
distribution of all the returns of a given field plot that had been covered by three lidar strips (#8, #9 and
#10) during the survey (Figure 2). The strips had an average return density of 2.15, 2.19 and 2.04 m−2

respectively, an average return spacing of 6.8, 6.8 and 7.0 dm and an average scanning angle of 16◦,
1.6◦, and 9.4◦. The returns were plotted in a 2d geographic grid and a line segment was drawn between
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consecutive returns to show the scanning sequence. Strips #8 and #10 had a heterogeneous spatial
distribution of returns. Local clumps of returns alternated with local gaps. Conversely, strip #9 had a
more homogeneous spatial distribution of returns throughout the plot. When the three strips were
pooled together at the plot level, the return spacing drastically decreased (4.0 dm). However, local
gaps were still observable within the plot.
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We triangulated neighboring returns into a 3d network to analyze the spacing distribution.
This was done using the Delaunay triangulation algorithm of ArcGIS 10.3 (® ESRI). The area of each
triangle was calculated. Figure 3 shows the area distribution of triangulated returns for the previous
example field plot. Strips #8 and #10 which had a heterogeneous pattern (see Figure 2) produced an
asymmetric right-skewed distribution. The areas ranged from 0.2 to 211.44 dm2 and 0.68 to 217.29 dm2

respectively. Conversely, strip #9, which had a homogeneous pattern, produced a symmetric leptokurtic
distribution. The areas ranged from 0.14 to 67.12 dm2. The heterogeneous pattern observed, when
pooling all strips together, induced an asymmetric right-skewed mesokurtic distribution. The number
of small triangles increased. The areas ranged from 0.06 to 53.14 dm2. This example shows that an
irregular distribution of returns persisted locally even with three overlapping strips. Strips were
always pooled together in the following analyses.
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2.4.3. Lidar Variable Generation

Lidar returns were clipped to the extent of each plot spatial boundary to extract the corresponding
point cloud. Metrics were computed both at the strip and the plot levels using Fusion software [7].
They were classified into three standard groups of explanatory variables: canopy height variables
(percentiles of height, mean, mode), canopy density variables (proportion of first returns above or
below a 2 m, 5 m or 7 m threshold) and canopy structural heterogeneity variables (standard deviation,
variance, coefficient of variation, canopy surface roughness index). The canopy surface roughness
index, hereafter called rumple index, was computed as the ratio of the canopy outer surface area to the
ground surface area as measured by the lidar-derived canopy surface and digital terrain models in a
1 m × 1 m grid [23].

A fourth group of explanatory variables, SP, was computed to describe the spatial distribution
pattern of returns. Variables included in this group were: density variable (computed as the number of
above ground returns of a given plot divided by its area), area distribution variables (mean, standard
deviation, minimum, maximum, skewness and kurtosis of the area distribution of triangulated returns)
and scanning angle variables (mean, mode, standard deviation, minimum, and maximum of the
scanning angle distribution).

2.4.4. Establishing the Merchantable Volume Model

The basic merchantable volume model was built at the plot level using one variable per standard
group iteratively. Nonlinear relationships were observed between the field MV and the lidar canopy
density/canopy heterogeneity variables. Hence, each subset of variables was combined into the
NLIN-GLS described in Equation (1):

MVi = exp(β0) ∗ Hβ1
i ∗ CDβ2

i ∗ CSHβ3
i + εi (3)

where MV is the merchantable volume, H the canopy height variable, CD the canopy density variable,
CSH the canopy structural heterogeneity variable and ε the residual term.

The SP variables were then added to Equation (3):

MVi = exp(β0) ∗ Hβ1
i ∗ CDβ2

i ∗ CSHβ3
i ∗ SPβ4

i + εi (4)

The best subsets of variables were selected based on the corrected Akaike Information Criterion
AICc, the residual standard deviation RSD, the level of significance of the model p-value, and
the coefficient of determination pseudo-R2. Variable multicollinearity in the model was tested by
measuring the variance inflator factor VIF with the threshold value set to 10 [24]. The statistical analysis
was done with R software [25]. We used the “nlme” package [26] for the model fitting.

2.4.5. Residual Variance

The absolute residuals were regressed against the predicted MVs to verify the heteroscedasticity
of the residuals. A significant p-value of the MV parameter was an indication of heteroscedasticity.
The MV uncertainty was then assessed by iteratively adding an SP variable to the error variance
function (random part of the model):

MVi = exp(β0) ∗ Hβ1
i ∗ CDβ2

i ∗ CSHβ3
i + εi with var (εi) = σ2g2(SPi; δ) (5)

The regression parameters were estimated using an NLIN-GLS regression. The AICc, RSD, p-value
and the 95% confidence intervals (95% CI) were computed to compare models.

2.4.6. Model Validation

The leave-one-out cross-validation was used to assess the accuracy of the merchantable volume
models. A new dataset was created by removing one field plot iteratively. The MV model was fitted
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to the new dataset (training data) and used to predict the MV of the removed field plot (test data).
The procedure was repeated until predicted values were obtained for all the field plots.

3. Results

We found a very good correlation between field and predicted merchantable volumes for balsam
fir stands even before the introduction of the SP variables (pseudo-R2 = 0.91, Table 3, and Figure 4).
The best predictors were the mean height of first returns (Mean_h), the proportion of first returns
below 2 m (Prop_2m) and the rumple index (Ri). The VIF factor was below 10. The RSD was 28.0 m3

ha−1 for the regression model and 28.98 m3 ha−1 after cross-validation. The best equation was:

MV = exp (2.04) ∗ Mean_h1.33 ∗ Prop_2m −0.08 ∗ Ri 0.64 + ε (6)

Table 3. Parameters of the merchantable volume models before and after the addition of the variance
function a.

Before (no Variance Function) After (with Variance Function)

Value Std. Err. p-Value 95% CI Value Std. Err. p-Value 95% CI

Parameters of the
fixed part of the

model
Variables

β0 Intercept 2.04 0.17 <0.001 [1.77–2.42] 1.97 0.16 <0.001 [1.76–2.34]
β1 Mean_h 1.33 0.10 <0.001 [1.14–1.52] 1.33 0.11 <0.001 [1.12–1.55]
β2 Prop_2m −0.08 0.03 0.020 [−0.13–−0.02] −0.07 0.03 0.020 [−0.07–−0.02]
β3 Ri 0.64 0.12 <0.001 [0.40–0.88] 0.71 0.13 <0.001 [0.64–0.87]

Parameters of the
variance function Variables

δ1 Mean_h — — — — 0.85 <0.001 [0.50–1.20]
δ2 Skew_area — — — — 0.31 <0.001 [0.05–0.57]

a Variance function = Mean_hδ1 ∗ exp (δ2 ∗ Skew_area). Mean_h = mean height of first returns, Prop_2m =
proportion of first returns below 2 m, Ri = rumple index, Skew_area = skewness of the area distribution of
triangulated returns, Std. Err. = standard error.
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Figure 5 shows plots of the model residuals versus the predicted MV, Mean_h and Skew_area
variables. Residuals had an outward-opening funnel form: they were more variable as the predicted
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MVs increased. The MV parameter was significant (p = 0.02) when regressing the absolute residuals
against the predicted MVs. This indicated the presence of heteroscedasticity and needed to be corrected.
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Figure 5. Scatter plots of standardized model residuals versus predicted merchantable volume (MV),
observed mean heights of first returns (Mean_h) and skewness of the area distribution of triangulated
returns (Skew_area) of plots. The upper scatter plots show the relationship before addition of the
variance function to the model (see Equation (3)) and the lower scatter plots, after the addition
(see Equation (5)).

The spatial distribution of returns barely influenced the predicted MV. We found no significant
improvement when adding an SP predictor to the fixed part of the MV model. Table 4 shows a model
comparison between the basic MV model and 3 MV models built with an additional SP variable:

MV = exp (2.01) ∗Mean_h1.34 ∗ Prop_2m−0.08 ∗ Ri0.68 ∗ Skew_area−0.06 + ε (7)

MV = exp (2.25) ∗Mean_h1.32 ∗ Prop_2m−0.08 ∗ Ri0.66 ∗Mean_angle−0.09 + ε (8)

MV = exp (2.00) ∗ Mean_h1.34 ∗ Prop_2m−0.08 ∗ Ri0.63 ∗ Density0.02 + ε (9)

The additional SP variables did not improve the basic model (AICc = 1137.79, 1137.48 and 1139.32
respectively for Equations (7) – (9) versus 1137.23 for Equation (6)). The density variable (Equation (9))
was the least significant (p = 0.74). RSDs were however similar for all models.

Table 4. Comparison of four predictive merchantable volume MV models before (basic model) and
after addition of a spatial distribution variable a.

MV Model AICc p-Value Pseudo R2 RSD

Basic model 1137.23 <0.001 0.91 28.0
Basic model + Density 1139.32 0.74 * 0.91 28.0

Basic model + Mean_angle 1137.79 0.21 * 0.91 28.0
Basic model + Skew_area 1137.48 0.17 * 0.91 27.9

a Basic model = exp (2.04) ∗ Mean_h1.33 ∗ Prop_2m −0.08 ∗ Ri 0.64 + ε Mean_h = mean height of first returns,
Prop_2m = proportion of first returns below 2 m, Ri = rumple index, Density = return density, Mean_angle = mean
scanning angle of returns, Skew_area = skewness of the area distribution of triangulated returns, RSD = Residual
standard deviation. * The shown value represents the level of significance of the additional variable.
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Table 5 shows a comparison between MV models before (basic model) and after addition of
a variance function (corrected models). Adding SP variables to the random part of the MV model
improved the precision. The corrected MV models had lower AICc value (1110.32, 1123.58 and 1106.72
versus 1137.23 for the basic model). Mean_h and Skew_area had the most effect on the unexplained
variance as residuals were more variable when these variables increased (Figure 5, Table 6). The MV
uncertainty was better assessed by adding the following variance function to Equation (6):

var(εi) = σ
2 ∗

[
Mean_h0.85 ∗ exp (0.31 ∗ Skew_area)

]2
(10)

The RSD, which was 28.0 m3 ha−1 initially, was estimated to 3.7 m3 ha−1 multiplied by the
variance function, when considering the heteroscedasticity of residuals.

Table 5. Comparison of the merchantable volume MV models before (basic model) and after addition
of a variance covariate a.

MV Model AICc p-Value RSD

Basic model 1137.23 <0.001 28.0
Basic model + Mean_h variance covariate 1110.32 <0.001 * 9.0

Basic model + Skew_area variance covariate 1123.58 <0.001 * 13.5
Basic model + Mean_h + Skew_area variance covariates 1106.72 <0.001 * 3.7

a Basic model = exp (2.04) ∗ Mean_h1.33 ∗ Prop_2m −0.08 ∗ Ri 0.64 + ε Mean_h = mean height of first returns,
Prop_2m = proportion of first returns below 2 m, Ri = rumple index, Skew_area = skewness of the area distribution
of triangulated returns, RSD = Residual standard deviation. * The shown value represents the level of significance
of the additional variance function.

Table 6. Effects of Mean_h and Skew_area variables on the variance of predicted merchantable volume a.

Skew_Area Mean_h (m)

— 2.0 4.0 6.0 8.0 10.0 12.0

RSD (m3 ha−1)

0.5 7.8 14.0 19.8 25.3 30.6 35.7
1.0 9.1 16.4 23.1 29.5 35.7 41.7
1.5 10.6 19.1 27.0 34.5 41.7 48.7
2.0 12.4 22.3 31.5 40.3 48.7 56.9
2.5 14.5 26.1 36.8 47.0 56.9 66.4
3.0 16.9 30.5 43.0 54.9 66.4 77.5
3.5 19.7 35.6 50.2 64.1 77.5 90.5
4.0 23.0 41.5 58.6 74.9 90.5 105.7

a RSD = Residual standard deviation.

4. Discussion

This study aimed to develop an efficient lidar model to predict merchantable volume in balsam
fir stands and to better assess the model uncertainty. As uncertainty increases, the model parameters
can still be estimated but the confidence intervals are unreliable [12,27]. Uncertain predictions induce
measurement errors in the volume of stands and consequently on the evaluation of their economic
value [14]. The uncertainty of merchantable volume should, therefore, be correctly estimated.

As expected, highly significant model for predicting the MV could be developed using standard
lidar metrics (pseudo-R2 = 0.91, RSD = 28.0 m3 ha−1). This is consistent with other studies indicating
that lidar variables can accurately predict forest structure attributes in the eastern Canadian boreal
forest [11,28,29]. The optimal explanatory variables of the model were the mean height of first returns,
the proportion of first returns below 2 m and the rumple index. Mean height is a good predictor of
volume as shown in many studies (e.g.: [8,11]). The variable was positively correlated to the MV in the
model as shown in Table 3.
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The proportion of first returns below 2 m variable could be correlated with the fraction of canopy
gaps. Canopy gaps are small openings of stands where there are smaller or no trees [30]. They are
often found in mature stands, and reduce the overall stand volume. Several plots of our study site
were within mature forest stands. The variable was negatively correlated to the MV in our model as
shown in Table 3.

The rumple index measures the canopy surface roughness or structural complexity. It has also
been defined as a 3d measure of canopy heterogeneity [23]. It can be used to characterize multi-cohorts
stands such as those present in our study site. Mature trees, which have bigger volume, are more likely
to be present in multi-aged stands [31,32]. The variable was positively correlated to the MV in the
model as shown in Table 3.

Figure 2 shows that the spatial distribution of returns can remain irregular despite a high return
density or the presence of overlapping strips. The consequences of an irregular spacing pattern are
directly evident when building, for example, canopy surface models or digital elevation models [3,33,34].
In our case study, the irregular pattern induced an alternation of local clumps (overscanned areas) and
local gaps (areas without data) within the point cloud. This pattern did not affect the accuracy of
the model as adding an SP variable to the fixed part did not improve the predictions. However, the
residuals were affected by the pattern. This shows that an irregular spatial distribution of returns can
increase the uncertainty of predictive models.

The variance function helped to identify the sources of heteroscedasticity of residuals. Residuals
were more heteroscedastic with increases of the mean height of returns (Mean_h) and the skewness of
the area distribution of triangulated returns (Skew_area); see Figure 5 and Table 6. This suggests a
higher MV uncertainty in high stands (e.g., mature forest stands) and with irregular lidar scanning
patterns. Natural high stands tend to have a more heterogeneous canopy height structure compared
to low stands [35]. An irregular scanning pattern over these stands could over or under characterize
the height distribution substantially. Yet these stands are preferentially cut during forest operations.
Their MV, therefore, need to be precisely predicted. Conversely, low stands, tend to have a more
homogeneous canopy height structure. The over or under characterization of the height distribution
due to the irregular scanning pattern would be less substantial.

We further tested the robustness of the corrected MV model for a low-density scenario like in
some operational context (pulse density≤ 2 m−2). We obtained similar results to the previous analyses.
The RSD was 27.4 m3 ha−1 initially and was estimated to 3.7 m3 ha−1 multiplied by the variance
function when considering the heteroscedasticity of residuals. Mean_h and Skew_area remained the
best combination of covariates for the variance function. The spacing distribution of returns should
also be considered when planning lidar surveys or, at least, when analyzing acquired lidar data.

Pooling lidar strips together at the plot level increased the return density (6.4 m−2 on average).
However, our analysis shows that the return density did not influence the prediction of the
merchantable volume estimates for the study site (p = 0.74). This result is in accordance with other
studies (e.g., [10,11,36]) done even in low return density contexts.

We tested variable transformation to correct for heteroscedasticity. The response and explanatory
variables of the MV model were strictly positive (see Tables 1 and 2), and three variables (MV, Prop_2m,
and Ri) had a right-skewed distribution. We thus tested a square root, a cube root, and a logarithmic
transformation. The heteroscedasticity was best reduced with the logarithmic transformation. The p-value
for the predicted MV parameter was improved, however, it remained significant (0.01). The model had
the following form:

log(MV) = 1.99 + 1.18 ∗ log (Mean_h) − 0.08 ∗ log (Prop_2m) + 0.95 ∗ log (Ri) + ε

Acquiring lidar data with a small scanning angle would also be an ideal solution to obtain more
homogeneous data but the acquisition costs would also be greatly increased. Other authors have
chosen to exclude from the point clouds either pulses transmitted at high scanning angles [18,37] or
irregularly spaced sectors within strips [3]. However, these changes would substantially alter the
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point cloud structure. A statistical approach, as the one we have proposed, has the advantage of
alleviating these problems while entailing no additional costs. We recommend the use of an additional
spatial distribution variable when modeling forest attributes models from lidar point clouds having an
irregular spatial distribution of returns.

A practical application of our study is the establishment of reliable uncertainty maps of predicted
merchantable volumes. Users can then confidently assess the reliability of the estimates and consequently
better plan their harvesting operations.

5. Conclusions

While lidar return density and scanning angle have little impact on the timber merchantable
volume parameter estimates, an irregular spacing among returns influences a model uncertainty.
Residuals of a standard merchantable volume predictive model were found to be correlated with
the mean height of returns and a variable accounting for the irregularity of spatial distribution of
returns. We included these variables in a variance function to correct for the heteroscedasticity.
The residual standard deviation was better estimated (3.7 m3 ha−1 multiplied by a variance function
versus 28.0 m3 ha−1 without the variance function. Therefore, the mean height of returns and the
return spatial distributions should be considered for reliable estimates of forest attributes.
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