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1. Introduction

The scientific understanding of the energy and water fluxes between land and atmosphere
primarily predicates our capacity to describe, model, and predict the highly complex Earth system,
which is formed by mutually interlinked components (land, atmosphere, and ocean). A credible
representation of land surface processes and interactions, including energy, mass and momentum
fluxes, as well as biogeochemical cycles, in Earth System Models (ESMs) is crucially important.

Recognizing the importance to better understand these complex processes and interactions,
the World Climate Research Programme (WCRP) launched the Global Energy and Water Cycle
Experiment (GEWEX) in 1990, which has been currently evolved into Phase III as Global Energy and
Water Exchanges (GEWEX), with its mission to measure and predict global and regional energy and
water variations, trends, and extremes, via improved observations and modelling of land, atmosphere,
and their interactions [1].

Tremendous efforts have been devoted to Earth observations (i.e., remote sensing and in situ
sensing) of land-atmosphere interface characteristics, including heat fluxes, soil moisture, land and sea
surface temperature, precipitation, snow, and vegetation, as boundary conditions for climate modelling
studies. One of the pioneering satellite missions was the Heat Capacity Mapping Mission (HCMM),
which was an experimental satellite program launched on 26 April 1978, to observe simultaneously
reflected solar radiation and emitted thermal radiation in its visible and infrared channels, respectively,
either during the day or at night [2]. HCMM was the first cooperation project between the United
States and Europe in the field of space-borne remote sensing [3]. These pioneer efforts were primarily
scientific, to lay the foundations for later practical applications of satellite imaging technologies.

More recently, a new fleet of satellite constellations called Sentinels, particularly designed
for the Copernicus programme (previously known as Global Monitoring for Environment and
Security (GMES) services), includes radar and multi-spectral imaging instruments, meeting various
observational needs for Essential Climate Variables (ECVs) for land, ocean, and atmosphere, as well
as the interactions between them [4]. The aim of this fleet is to provide systematic data services for
value-added products, based on the progress of Earth observation science.

2. Recent Advances in Monitoring Land Surfaces and Interactions

This special issue is a collection of recent advances in using multi-sensor data for monitoring land
surfaces and interactions. The following aspects are addressed.
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2.1. Drought Detection

Drought has wreaked havoc on human societies throughout history, leading to fatal disasters
including devastated crops, famine, conflicts, and wars. The occurrence of drought has been
associated with climatic shifts that caused low rainfall, while being distinguished as meteorological,
soil moisture, and hydrological drought, depending on the dominant controlling factors from the
climatic perspective [5,6]. Many remote sensing-based indices have been developed in past decades to
describe different aspects of droughts, while most of them neglect the changes in total water storage in
an area and can result in certain bias. An integrated approach, not only considering the water and
energy cycles but also the biogeochemical cycle, is needed to achieve a holistic view of the mechanisms
behind drought occurrence.

Bayat et al. [7] used spectroscopic techniques and radiative transfer model (RTM) inversion to
monitor the response to drought stress in a Poa pratensis (or meadow grass) canopy exposed to various
levels of soil moisture deficit. The canopy reflectance and destructive measurements of LAI (Leaf Area
Index) and leaf chlorophyll content (Cab) were taken. They found that spectroscopic techniques can
reveal plant stress up to six days earlier than visual inspection. Furthermore, with the RTM model
inversion by means of an iterative optimization approach, they found that the first strong sign of
water stress on the retrieved grass properties was detected as a change of leaf water content, followed
by Cab and leaf dry matter content in the earlier stages. The results from this study indicate the
potentials of combining spectroscopic techniques and RTM model inversion to detect vegetation stress
before they become visibly apparent, potentially contributing to an effective early warning system for
drought detection.

Wang et al. [8] investigated the corn response to climate stress via identifying the NDVI
(Normalized Difference Vegetation Index) residual, which was derived by using the concept of “normal”
phenology over a decade. They found a significant relationship between crop yield and NDVI residual
during the pre-silking period. The latter was deemed as the indicator to reflect crop stress during the
early growing stage, as well as the early in-season yield prediction. They concluded that dry weather
may hamper potential crop growth, while the oversupply of rainfall at the end of the growing season
does not contribute to crop growth. However, the above-normal precipitation earlier in the growing
season does reduce the risk of yield loss at the watershed scale, indicating a potential agriculture
management strategy for adapting to the projected increase in periods of extreme droughts.

Exploring a new approach to estimate the time lag between anomalies in precipitation and
vegetation activity, Van Hoek et al. [9] investigated the spatial distribution of the differences of the
time lags between a wet year and a dry year in a drought-prone region of China. They used the phase
spectrum of the cross-spectral density to measure the time lag in the response of vegetation activity
to precipitation. This cross-spectral analysis approach can simultaneously determine the strength
of the relationship and the phase lag for all significant periodic components. These results provide
useful insights on vegetation response to precipitation as well as additional information for areas
which are more susceptible to drought, particularly considering that drought usually originates from a
lack of sufficient precipitation. The developed novel method can be applied to estimate the time lag
between time series of satellite observations capturing paired forcing and response signals, in addition
to providing useful information to improve early drought detection.

Using SPOT-5 Take-5 (as a proxy of Sentinel-2), Navarro et al. [10] investigated the
complementarity and interoperability of optical and synthetic aperture radar (SAR) data for crop
parameter retrieval and crop type classification, with a focus on crop water requirements. The crop
parameter includes the basal crop coefficient K, values and the length of the crop’s development
stages. The combined optical and microwave images provide useful information on qualitative and
quantitative land cover changes, supporting land cover monitoring in different agriculture scenarios,
with enhanced temporal resolution for agricultural applications. The determined K, was used to
compute the crop’s evapotranspiration and to subsequently estimate the crop irrigation requirements
based on a soil water balance model. They concluded that optical data can be replaced by microwave
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data in the presence of cloud cover. Unfortunately, lack of data for a part of the growing season made
it impossible to properly identify each stage of the crop cycle.

2.2. Surface Energy Fluxes

The GEWEX LandFlux evaluation [11] indicates various systematic errors (e.g., induced by
different considerations of model structures/physical processes) in the existing evaporation models,
and it calls for caution in using a single model for any large-scale evaluation of the water cycle
(e.g., components of which are mainly produced/investigated separately). Similar conclusions were
also derived by the GEWEX radiative flux assessment, which attributes the patterns of disagreement
among the flux products to ancillary data differences (e.g., atmospheric temperature-humidity, surface
temperature, aerosols, etc.). The aforementioned discrepancy issues can be further exaggerated at
the regional scale, where the appropriate land surface parameterization may differ dramatically over
different biomes and climates [12-14]. The following papers in this special issue discussed some of
these challenges.

Faivre et al. [15] introduced a Digital Surface Model (DSM) in a Computational Fluid Dynamics
(CFD) Model to reproduce 3D wind fields, and to invert them for retrieving a spatialized surface
roughness length for momentum (Z,,). It was found that The DSM-CFD approach can estimate the
roughness length well, similar to Brutsaert-based models [16], according to the estimated heat fluxes at
the footprint scale. They claimed that for regional application, the likely uncertainty of the roughness
information will be significant, as most NWP (Numerical Weather Prediction) models use land cover
classification combined with phenological data to estimate the roughness length.

To account for the impact of topography on the spatial distribution of the solar radiative budget,
Roupioz et al. [17] used the observed surface and atmosphere properties and topography to derive
high temporal and spatial resolution solar radiative fluxes over the Tibetan Plateau (i.e., daily at 1 km
resolution). The validation showed that, although the solar radiation estimates are satisfying in clear
sky conditions, the algorithm is less reliable under cloudy sky conditions. Furthermore, it was found
that the albedo product used has a too coarse temporal resolution and is therefore not accurate enough
over rugged terrain.

The topography also controls the distribution of land surface temperature (LST), as well as the
relationship between LST and near-surface air temperature (Ta, 1.5-2 m above surface). Lin et al. [18]
parameterized the physiographic variables based on the terrain relief into a Ta estimation algorithm
using both Terra and Aqua MODIS LST. Before taking into account the physiographic features, they
concluded that the Terra nighttime LST has a strong linear relationship with Ta, especially for flat
terrain areas, while in mountainous areas the relationship differed significantly from a simple linear
correlation. After considering the topographic effect, as well as seasonal vegetation cover, altitudinal
gradient, and the ambient absolute humidity, the accuracy of deriving Ta from LST was substantially
improved. These results indicated that the relevant environmental factors must be considered when
interpreting the spatiotemporal variation of the surface energy flux over complex topography.

Aerosol Optical Depth (AOD) is of importance for understanding the Earth radiation budget. Wu
et al. [19] investigated the sensitivity of AOD to aerosol vertical profile and type, using the MODIS
collection 6 algorithm over land. The results show that the AOD retrieval is highly sensitive to aerosol
vertical profile and type. Errors in aerosol type assumption in the algorithm can lead to errors of up to
8% in the AOD retrieval, while the interplay effect can contribute to errors over 6%. They concluded
that more attention should be paid to the case of the air pollutions caused by forest fires or extreme
dust events, in order to improve the AOD retrieval.

The evaporation flux over water bodies can be influenced by water salinity significantly, as salinity
affects the density of water and the latent heat of vaporization. To take into account the influence
of water salinity on the evaporation rate, Abdelrady et al. [20] adapted the SEBS (Surface Energy
Balance System) model for large water bodies (AquaSEBS) via parameterizing the water heat flux (the
analogy of ground heat flux over water) and the sensible heat flux by adapting the roughness heights
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for momentum and heat transfer. Furthermore, they introduced a salinity conversion factor over
saline water bodies. The verification of AquaSEBS over Lake Ijsselmeer (the Netherlands) as well as
Victoria and Tana freshwater lakes (Africa) showed that the calculated latent heat fluxes agree well with
eddy covariance measurements. The comparison with ECMWEF (European Centre for Medium-Range
Weather Forecasts) data showed that the salinity reduced the evaporation by up to 27% in the Great Salt
Lake and by 1% in Open Ocean. These findings indicate the importance of salinity to the evaporation
rate and the suitability of the AquaSEBS for fresh and saline waters.

2.3. Water Cycle and Climate from Space

Satellite remote sensing (SRS) has provided major advances in understanding the water, energy,
and carbon cycles, and through this, the understanding of the climate system and its change.
In particular, SRS has contributed significantly to the generation of Essential Climate Variables (ECVs)
for addressing the closure of the aforementioned three climate cycles. Closing the cycles allows us to
identify gaps and where the SRS ECVs contribute to the fundamental understanding of the natural
processes. This subsequently supports the improvement of forecasting climate change impacts. On the
other hand, closing the cycles through SRS observation remains an outstanding scientific issue that
requires high quality Climate Data Records (CDRs) of ECVs [21,22]. It is well recognized that satellite
data often contain uncertainties caused by biases in sensors and retrieval algorithms [23], as well as
inconsistencies between consecutive satellite missions with the same sensors, or between different
sensors aiming at the same ECVs.

Serrat-Capdevila et al. [24] evaluated the performance of three satellite precipitation products over
Africa (i.e., TRMM-TMPA, PERSIANN, and CMORPH), using the GPCP-1dd as a reference dataset
for years 2001 to 2013. They identified different types of errors for each season as a function of spatial
classification (latitudinal bands, climatic zones, and topography) as well as its relationship with the
Intertropical Convergence Zone (ITCZ) and the East African Monsoon. A bias correction based on these
identified errors were implemented to correct the satellite precipitation products. The bias-corrected
precipitation products can follow the position of the ITCZ oscillating seasonally over the equator,
illustrating that the performance of satellite precipitation products can be improved substantially after
taking into account different types of errors.

To address the challenge of deriving soil moisture (SM) data with a complete coverage of the
Tibetan Plateau (TP) for an extended period of time for climate change studies, Zeng et al. [25]
combined satellite-observed, model-simulated, and in situ measured SM over the Tibetan Plateau.
The in situ SM networks, combined with the classification of climate zones over the TP, were used to
produce the in situ measured soil moisture climatology at the plateau scale, which was subsequently
used to scale the model-simulated SM. The bias-corrected, model-simulated SM were then used to
scale the satellite SM products. The three climatology-scaled SM products were blended objectively,
by applying the triple collocation and least squares method. The final blended SM can replicate the
SM dynamics across different climatic zones, from sub-humid regions to semi-arid and arid regions
over the TP. This approach indicates the need to constrain model-simulated SM estimates with in situ
measurements before their further application in scaling climatology of satellite SM products.

Song and Jia [26] used the theory of Apparent Thermal Inertia (ATI), under bare surface or sparse
vegetation-covered land surface, to downscale FengYun-3B (FY-3B) soil moisture product from 25-km
to 1-km spatial resolution. This downscaling was achieved by establishing the relationship between
soil moisture and the ATI, the coefficients of which were obtained directly from 25-km FY-3B SM
product and the ATI derived from MODIS data. The downscaled SM showed promising results when
compared with the in situ SM measurements. They concluded that the accuracy of the FY-3B 25-km
SM product determines the reliability of the coefficients of regression between SM and ATI, and that
the proposed method is more applicable to areas with NDVI values smaller than 0.4. This limitation is
mainly due to the fact that MODIS can only sense vegetation conditions, which reflect more the root
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zone soil water content than the surface soil moisture. The use of high resolution SAR data was further
suggested to downscale SM over densely vegetated areas.

From the perspective of radiative transfer theory, Lv et al. [27] discussed how to determine the
optimal mounting depth of soil moisture and soil temperature (SMST) sensors, for calculating soil
effective temperature (T,y) from satellite microwave sensors at the L-band, based on Lv’s multilayer
T scheme [28,29]. It was found that, on average, nearly 20% of the T, signal cannot be captured by
the Maqu in situ SMST network, using the currently assumed common installation configurations
(i.e., 5 cm, 10 cm, 20 cm, 40 cm, and 80 cm). Furthermore, they identified the optimal mounting
depths for the SMST observation pair as 5 cm and 20 cm by calculating T,y at the center station in
the Maqu Network. The findings can help to establish an optimal SMST network and improve the
representativeness of the existing networks regarding the calculation of Ty

Zhou et al. [30] explored the linkage between soil moisture and the Qinghai-Xizang Plateau
monsoon evolution, and proposed a new plateau monsoon index (ZPMI). The ZPMI was compared
with the existing Plateau Monsoon Indices (PMI): the Traditional Plateau Monsoon Index (TPMI), the
Dynamic Plateau Monsoon Index (DPMI), and the QPMI (i.e., PMI developed by Qi et al.). The results
show that the onset and retreat of plateau monsoons determined by the TPMI are approximately 1-2
months earlier than those of the ZPMI and DPMI, while the ZPMI can better reflect seasonal and
inter-annual variations in precipitation over the plateau. They found that the plateau summer and
winter monsoons have similar inter-annual and inter-decadal variation characteristics and show a
rising trend, although the increasing trend of the summer monsoon is more significant. The analysis of
ZPMI and SM in April and May revealed that when the SM over the central and eastern plateau is
higher than normal, the plateau summer monsoon is stronger, and vice versa.

Phan et al. [31] assessed the orographic variability in glacial thickness changes at the Tibetan
Plateau using ICESat laser altimetry, in combination with the SRTM DEM and the GLIMS glacier
mask. Using the ICESat elevations acquired over terrain with a slope below 20° and a roughness at the
footprint scale below 15 m, they identified 90 glaciated areas and investigated their changes. The results
show that most of observed glaciated areas over the Tibetan Plateau are thinning, except for some
glaciers in the northwest. Particularly, most north-facing glaciers increase in thickness. They concluded
that glacial thickness changes depend strongly on the relative position in a mountain range.

Due to satellite configuration and errors from spatial sampling, daily time series of microwave
radiometer data obtained in one-orbit direction are suffering observation gaps. On the other hand,
such time series carry information about the surface and atmosphere signal including emittance and
attenuation. Shang et al. [32] developed the Time Series Analysis Procedure (TSAP) to extract the
surface signal from the noisy time series, based on the properties of the Discrete Fourier Transform
(DFT). In particular, the Polarization Difference Brightness Temperature (PDBT) at 37 GHz data were
used to explain the implementation of TSAP. The use of PDBT is beneficial for noise reduction, as the
PDBT range between dryland and open water is about 20 k. Furthermore, since the PDBT at 37 GHz is
mainly attenuated by hydrometeors that yield precipitation, the time series of rain-gauge data can help
to reveal the spectral feature of the atmospheric signal. Thus, the spectral features of the surface signal
were identified in the PDBT time series with the help of the rain-gauge data, as well as the Harmonic
Analysis of Time Series (HANTS) algorithm correcting for atmospheric influence.

3. Concluding Remarks

The presented results are highlights of the recent advancements in Earth observation of land
surface processes and interactions. Nevertheless, they represent the latest scientific results well and
show how, from the challenges related to the first HCMM images, remote sensing has developed into
a matured technology, capable of providing sophisticated methods to analyze the enormous data flow
of the Sentinels to meet the information demands of diverse applications.
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