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Abstract: The inversion of land surface component temperatures is an essential source of
information for mapping heat fluxes and the angular normalization of thermal infrared (TIR)
observations. Leaf and soil temperatures can be retrieved using multiple-view-angle TIR observations.
In a satellite-scale pixel, the clumping effect of vegetation is usually present, but it is not completely
considered during the inversion process. Therefore, we introduced a simple inversion procedure
that uses gap frequency with a clumping index (GCI) for leaf and soil temperatures over both crop
and forest canopies. Simulated datasets corresponding to turbid vegetation, regularly planted crops
and randomly distributed forest were generated using a radiosity model and were used to test the
proposed inversion algorithm. The results indicated that the GCI algorithm performed well for both
crop and forest canopies, with root mean squared errors of less than 1.0 ◦C against simulated values.
The proposed inversion algorithm was also validated using measured datasets over orchard, maize
and wheat canopies. Similar results were achieved, demonstrating that using the clumping index can
improve inversion results. In all evaluations, we recommend using the GCI algorithm as a foundation
for future satellite-based applications due to its straightforward form and robust performance for
both crop and forest canopies using the vegetation clumping index.

Keywords: land surface component temperature; directional remote sensing; vegetation clumping index

1. Introduction

Land surface temperature (LST) is an important forcing variable for physical processes in
surface–atmosphere interactions, including the energy budget and the hydrological cycle [1,2]. In the
context of remote sensing applications, LST inversion can currently be performed at multiple spatial
and temporal scales [3–6], and the accuracy of the satellite-based LST product is close to or less than
1.0 K [7,8]. The importance of the temperature distribution in heterogeneous and non-isothermal pixels
has been increasingly recognized for the full characterization of the surface temperature state.

This issue arises from surface temperature differences between components of a vegetation–soil
system during most of the day because of the inhomogeneity of the intrinsic structures and physical
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properties. These differences can reach up to 11.0 ◦C, as has been reported in many in situ
experiments [9–11]. This temperature information can facilitate understanding the complicated
physical processes in energy and radiative transfers. For instance, these temperature differences
are a factor that leads to the directional anisotropy of measured radiance in the thermal infrared (TIR)
domain. This anisotropy makes directly comparing LSTs retrieved from a study area using different
images difficult due to the viewing angle dependence [6]. To improve the quality of LST to fit a
reference viewing angle, information about the surface temperature difference should be considered.
Moreover, a practical two-source energy balance (TSEB) model developed by Norman et al. [12] and
Kustas et al. [13,14] has been applied for various landscapes, with consideration of the temperature
difference between the leaves and soil. Accurate surface component temperatures are, therefore,
primarily required to derive evapotranspiration [15]. However, no component temperature product
has yet been released despite the wide potential use.

Multi-angle remote sensing has been identified as a useful tool for the separation of leaf and soil
temperatures [16,17]. Previous efforts have been directed toward inverting component temperatures
using both experimental and satellite-borne multi-angle datasets [16–19]. Many directional algorithms
have been proposed based on radiative transfer models (RTMs), such as the geometric model proposed
by Kimes et al. [20] for row-planted crops and the analytical RTM known as FR97 proposed by
Francois et al. [21] for homogenous canopies. Using these RTMs, the temperatures of surface sunlit
and shaded areas and their vertical distributions can be inverted. For instance, Timmermans et al. [16]
retrieved four-component (sunlit and shaded leaves and sunlit and shaded soil) temperatures using
the four-stream scattering by arbitrarily inclined leaves (4SAIL) model. Colaizzi et al. [22] proposed
a radiometer footprint model to estimate sunlit and shaded components for row crops. However,
because most of these algorithms were limited to a specific scene, they are not robust enough for the
several possible landscapes in a satellite pixel.

Li et al. [19] and Jia et al. [18] proposed a practical inversion algorithm that uses the normalized
difference vegetation index (NDVI) to invert leaf and soil temperatures from a satellite pixel.
Shi et al. [23] proposed a combined model with consideration of the bare soil in a satellite pixel.
However, acquiring the rate of bare soil in a satellite pixel is not easy, particularly in the mixed pixels
of sparse forest and bare soil. To some extent, the effects of different types of pixels on component
temperature inversion are due to the vegetation clumping phenomena related to the study objects,
i.e., mostly crop and forest plants. This vegetation clumping effect can be quantitatively described
using the clumping index, which is a vital structural parameter used to accurately estimate the
gap frequency in various landscapes, especially sparse forest [24]. Therefore, using the clumping
index of leaves represents a good option for determining the vegetation distribution pattern in a
satellite pixel. Thus, applying the clumping index to component temperature inversion appears to
be acceptable and practical. Anderson et al. have analyzed the effects of vegetation clumping on
estimating evapotranspiration [25], but its effects on component temperature inversion have not been
completely analyzed.

In this paper, we propose an inversion procedure for leaf and soil surface temperatures using
the gap frequency with clumping index (hereafter referred to as GCI). This algorithm was evaluated
against both simulated and measured surface temperatures over several small-scale scenes. We selected
a novel radiosity model, i.e., radiosity applicable to porous individual objects (RAPID) proposed by
Huang et al. [26], as the benchmark for forward simulations. The measured dataset was collected by the
wide-angle infrared dual mode line/area array scanner (WIDAS) sensor over orchard, maize and wheat
canopies. In this paper, the evaluations mostly depend on simulated datasets because of the scarcity
of experimental datasets that provide surface directional observations and synchronous component
temperatures. Although a temperature difference between sunlit and shaded portions exists, only two
components of the leaf and soil were assumed in the paper. In Section 2, the GCI inversion algorithm
is introduced. Then, this proposed inversion algorithm is evaluated using simulated and measured
datasets in Sections 3 and 4, respectively. Section 5 provides a short summary of the paper.
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2. Inversion Algorithm

2.1. Inversion Method

Thermal radiance, as observed by an infrared sensor aboard an aircraft or satellite, is usually
treated as a linear combination of the radiance from the land surface and the upward radiance from
the atmosphere, as shown in Equation (1). The radiance from the land surface can also be divided
into an emission term due to surface components (leaves and soil) and a ground-reflected term due to
the downward radiance from the atmosphere, as shown in Equation (2). In these two equations, each
component is assumed to have a homogeneous temperature.

Lobs(θ, ϕ) = Ls(θ, ϕ)τ(θ, ϕ) + L↑a (1)

Ls(θ, ϕ) = εe,s(θ, ϕ)B(Ts) + εe,l(θ, ϕ)B(Tl) + (1 − εe,c(θ, ϕ))L↓a (2)

where θ and ϕ represent the viewing zenith angle (VZA) and viewing azimuth angle (VAA),
respectively; Ls is the radiance observed at ground level; τ is the effective transmittance of the
atmosphere; L↑a and L↓a are the upward and downward atmospheric radiances, respectively; B(T) is the
Planck radiative function; T and εe are the component temperature and component effective emissivity
(CEE), respectively; εe,c represents the surface total effective emissivity; and the subscripts l and s
represent the leaves and soil, respectively.

In this paper, the CEE is defined differently from the material emissivity because multiple
scattering radiation and the visible proportions of the components are both considered according to the
conceptual model of Chen et al. [27]. This effective emissivity is related to the viewing angle and is used
to explain the directional anisotropy of measurements in the TIR domain [28]. Because the estimation
error of the atmospheric effect appears equivalent in different algorithms according to Equation (2), we
assume that this effect can be eliminated in the data pre-processing, despite the fact that atmospheric
correction always plays an important role in LST inversion. The inversion equation can be simplified
to a linear equation after atmospheric correction. In general, the temperature emissivity separation is
an underdetermined problem. For the component temperature inversion, the emissivity values of the
leaf and soil are known. Therefore, the inversion results are directly related to the accuracy of the CEE
as reported in Equations (3) and (4).

B(Tl) =
εe,s(θ2)L(θ1)− εe,s(θ1)L(θ2)

εe,l(θ1)εe,s(θ2)− εe,l(θ2)εe,s(θ1)
(3)

B(Ts) =
εe,l(θ2)L(θ1)− εe,l(θ1)L(θ2)

εe,s(θ1)εe,l(θ2)− εe,l(θ1)εe,s(θ2)
(4)

where θ1 and θ2 represent the zenith angles of the two observations. Many optimized algorithms,
such as least-square, Bayes, and genetic algorithms have been proposed to improve the inversion
results [16,29–31]. Since only two observed angles are used and direct results can be clear, we do not
use an optimization algorithm in this paper. Thus, the estimation of the CEE and the analysis of the
effects on the inversion results are the core of the component temperature inversion.

2.2. Component Effective Emissivity

According to many radiative transfer theories, such as 4SAIL and FR97, the CEE is mainly
composed of (1) the direct emissions of the components and (2) the multiple scattering radiation
between components, as follows:

εe,s(θ) = εs·b(θ) + εm,s(θ) (5)

εe,l(θ) = ε l ·(1− b(θ)) + εm,l(θ) (6)
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where b(θ) represents the gap frequency; 1− b(θ) represents the visible proportion of leaves; and
ε l and εs represent the leaf and soil material emissivity values, respectively. The subscript m (εm)
represents the multiple scattering contribution to the CEE. In this algorithm, the surface gap frequency
is estimated using Equation (7) according to Nilson et al. [24].

b(θ) = e−G·LAI·Ω(θ)/ cos (θ) (7)

where G represents the mean projection of the unit foliage area in the viewing or solar direction,
which is set to 0.5 for the spherical leaf inclination distribution function (LIDF). LAI is the leaf area
index, and Ω(θ) is a vegetation dispersion parameter at a given zenith angle θ with a value ranging
from 1.0 to close to 0. When Ω(θ) is 1.0, the canopy is random. The vegetation dispersion parameter
is also described by the clumping index [32]. Accurate gap frequencies can be calculated once the
clumping index and the leaf area index (LAI) are accurately determined. The CEE is important to the
inversion results, and it will be introduced in detail in the next sub-section. An analytical method in
the FR97 model is used for the multiple scattering radiation. In the FR97 model, the multiple scattering
contribution for soil is ignored, and the multiple scattering contribution for leaves can be estimated as
follows (Equation (9)):

em,s(θ) = 0 (8)

em,l(θ) = (1−M)b(θ)(1− εs) + (1− α)[1− b(θ)M][1− b(θ)](1− εv)εv (9)

where M represents the hemispheric average gap frequency [21]; and α is the cavity effect coefficient.
According to Ren et al. [33], this value can be estimated using the 4SAIL model. The FR97 model
provides analytical expressions for the effective emissivity of leaves and soil over a homogeneous
scene. The GCI algorithm can be considered a combination between the FR97 model and the inversion
algorithm of the vegetation clumping index, and the latter is described below.

2.3. Vegetation Clumping Index

According to Equations (5)–(7), the clumping index is of importance for CEE. Although the
clumping index is directional, the average clumping index can be used for crop scenes, which is
defined as the ratio between the effective LAI and actual LAI values. It can be owing to the fact that
the 4SAIL model performed well over many crop canopies with effective LAI values [34]. Currently,
several algorithms have been proposed to calculate the average vegetation clumping information [35].

As for sparse forest canopies, strong vegetation clumping effects usually exist. A practical
algorithm to estimate the vegetation clumping index of savanna canopies was proposed by Li et al. [36].
In this paper, the clumping effect contributed by tree crowns was retrieved using the gap frequency
as follows:

f (θ) f orest = e−απr2/ cos (θ′) + (1− e−απr2/ cos (θ′))·e−G·LAIs/ cos (θ′) (10)

where f (θ) represents the gap frequency of the forest in direction θ; α is the crown count density; r is
the horizontal crown radius; (1− e−απr2/ cos θ′) represents the interception proportion by tree crowns;
e−G·LAIs/ cos (θ′) represents the gaps within crowns; LAIs represents the actual LAI of a single tree; and
θ′ is the viewing zenith angle in the transformed dimension, which can be calculated using r and the
vertical crown radius, d, as in Equation (11):

θ′ = tan−1(
d
r
·tan(θ)) (11)

In addition, the row-planted structure always plays a vital role in a temperature inversion over a
small-scale study area. To accurately estimate the clumping index in this case, an algorithm proposed
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by Yan et al. [37] is recommended. The average gap frequency across the row direction can be described
as follows (Equation (12)):

f (θ)row =
1

a + c
[

(
a− H·tanθ − 2

sinθ

G·u

)
eG·u·H/cosθ +

(
c− H·tanθ + 2

sinθ

G·u

)
] (12)

where a and c refer to the row width and row spacing, respectively; H represents the height of the
canopy; and u represents the leaf volume density function.

3. Sensitivity Analysis

This section demonstrates the performance of the new inversion algorithm by comparing it to
two existing algorithms using a simulated dataset. The two existing algorithms are based on the
FR97 model and the NDVI. A forward dataset generated by the RAPID model was used to examine
the precision of the estimated effective emissivity and to explore the performance of the inversion
algorithm. The RAPID model is a novel computer graphics-based radiosity model applicable to porous
individual thin objects [26]. In the GCI algorithm, the sources of error in the retrieved results were
mainly from the clumping index and the LAI. Therefore, their effects are also analyzed in this section.

3.1. Simulated Dataset

In nature, surface component temperatures result from the energy balance in a specific canopy
structure under certain meteorological conditions. To assess the sensitivity of the effective emissivity
and inversion scheme, we constructed three typical scenes in this study—turbid canopies, regularly
planted crops and randomly distributed forest—as shown in Figure 1. Strictly speaking, a real turbid
canopy does not exist in nature. However, dense canopies are usually treated as turbid, and many
models have been proposed based on the assumption of a turbid canopy, such as the 4SAIL and
FR97 models. In this study, turbid scenes were constructed with vegetation leaves composed of
many equilateral triangular facets. The facets had a random spatial distribution, and their zenithal
angle distribution followed the spherical LIDF. The crop scenes were composed of regularly arranged
vegetation objects with a row and column spacing of 0.5 m. These objects were composed of many
porous square facets, and their size increases as the LAI value of the scene increases. Note that although
row-planted crops are common in nature, we constructed only regularly planted crop scenes in this
simulated dataset because it is difficult to consider the row orientation in pixels with low spatial
resolutions. The forest scenes were composed of randomly distributed ellipsoidal objects with a
horizontal to vertical crown radius ratio of one to three and a single tree LAI value of 6.0. The LAI
value of the forest scene was related to the density of these objects. Although RAPID can work well
for both flat leaves and conifer shoots, we used only the broadleaf case in the forest scene and did
not consider the effect of the trunks. Limiting the dataset to porous objects rather than real-structure
canopy scenarios, such as maize and wheat, does not jeopardize the degree of representativeness
because we focus on a universal case rather than a specific one in the evaluation process. All of the
scenes were generated as an infinite canopy by juxtaposing identical scenes.

Three categories of input must be considered to produce the simulated dataset: the canopy
geometrical structure, the component emissivity and the component temperature. In this study, we
first simulate 14 scenarios for different conditions (consisting of two component emissivity profiles
and seven canopy structures). Next, five temperature profiles were applied independently in these
scenarios. The simulated dataset is shown in Table 1, in which ∆T represents the temperature
difference between the leaves and soil and ρ and τ represent the component reflectance and
transmittance, respectively.
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Figure 1. Three scenes for the simulated datasets: (a) turbid canopy; (b) regularly planted crops; and
(c) randomly distributed forest. In scenes (b) and (c), the plants are composed of a series of horizontally
layered and porous facets. The green facets represent the leaves, and the brown facets represent the soil.

Table 1. Scenario set.

Parameter Unit Value or Range

Scene – Turbid, Crop, Forest
LAI – 0.5, 1,0, 1.5, 2.0, 2.5, 3.0, 3.5

LIDF – Spherical
ρl (red) – 0.057
τl (red) – 0.042
ρs (red) – 0.164
ρl (NIR) – 0.460
τl (NIR) – 0.462
ρs (NIR) – 0.244

el – 0.99, 0.97
es – 0.97, 0.93

VZA ◦ [0, 60]
∆T ◦C 0, 5, 10, 15, 20

Red: red band (670 nm); NIR: near infrared band (870 nm).

The canopy structure is a vital factor that determines the surface radiative transfer. The surface
gap frequency varies with vegetation growth, and we therefore selected LAI values varying from
0.5 to 3.5 with a step size of 0.5 for different growth periods. In this simulated dataset, we did not
select growth periods with LAI values greater than 3.5 because small directional variations could
appear. In nature, the average soil temperature is predominantly affected by shaded soil under a
dense vegetation canopy. In this case, the temperature difference between the leaves and the soil is
not expected to be large. In addition, only a spherical LIDF is discussed in this paper. Based on the
scene directional projection in the RAPID model, the effective LAI, LAIe, can be calculated with the
gap frequency described above as follows (Equation (13)):

LAIe = −2
∫ π

2

0
ln[p(θ)]sinθcosθdθ (13)

The component material emissivity can significantly influence the multiple scattering contribution.
The emissivity values of leaf and soil material mainly range from 0.96 to 0.99 and from 0.90 to 0.98,
respectively. In this simulated dataset, two emissivity profiles were used: a high-emissivity profile
(0.99 and 0.97 for leaves and soil, respectively) and a low-emissivity profile (0.97 and 0.93 for leaves
and soil, respectively).

The temperature profile can be simulated using the temperature difference between the leaves
and soil. In this paper, we simulated five temperature profiles with differences of 0 ◦C, 5.0 ◦C, 10.0 ◦C,
15.0 ◦C and 20.0 ◦C, and a leaf temperature of 25 ◦C.

To examine the precision of the CEE, we compared simulations with VZAs varying from 0 to 60◦

with a step size of 5◦. In the inversion process, only two VZAs (nadir and a forward inclination of
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55◦) were used. Because the NDVI was used in the NDVI algorithm, we also simulated the surface
directional reflectance in the red (670 nm) and near-infrared (NIR) (870 nm) bands.

3.2. Inversion by the FR97 and NDVI Algorithms

Equations (5)–(9) can be used for the FR97 algorithm. However, the vegetation clumping effect
was not considered. Therefore, the vegetation clumping index was set to 1.0 in the inversion process.
For the NDVI algorithm, the CEE was also determined using Equations (5) and (6), but the gap
frequency was estimated via the following empirical method using the NDVI [18]:

p(θ) =
(

ndvi(θ)− ndvimax(θ)

ndvimin(θ)− ndvimax(θ)

)k
(14)

where ndvimax and ndvimin are the NDVI values corresponding to an infinite leaf area and to bare soil,
respectively; and k is the fitting coefficient. In this simulated dataset, the coefficient k was determined
by fitting the actual gap frequency of the scene with values of 0.65, 0.53 and 0.64 for turbid, crop and
forest scenes, respectively. For the FR97 and GCI algorithms, the LAI value is required for the gap
frequency by using an exponential expression. For practical applications, the NDVI value is directly
determined by an empirical method, and the multiple scattering effect is also simplified by using
slightly higher material emissivity values of 0.99 and 0.97 for leaves and soil, respectively [18].

3.3. Results

Figure 2 depicts comparisons of the simulated and reference CEE values for three scenes with
LAI values of 1.0 and 3.0. Similar angular variations in the CEE with the VZAs were estimated, and
an increase in VZA leads to an increase in the effective emissivity of leaves and a decrease in the
effective emissivity of soils. In this paper, the directional variation was defined as the difference
between the off-nadir and nadir values. For the turbid canopies, we assumed that the leaf dispersion
was completely random with an average clumping index of 1.0. Therefore, the same performance can
be found by using the FR97 and GCI algorithms. Regarding the NDVI algorithm, a good agreement
can be found for the scene with an LAI value of 1.0, but a slight underestimation of the leaf effective
emissivity and a slight overestimation of the soil effective emissivity appeared over the scene with an
LAI value of 3.0. Similar performances are found for both crop and turbid scenes. However, regarding
the FR97 algorithm, a slight overestimation of leaf effective emissivity and a slight underestimation
of the soil effective emissivity appeared. Nevertheless, the shape of the simulated angular variations
was still similar to the reference. Regarding the NDVI algorithm, the shape of simulated angular
variations was slightly different from the reference, particularly at VZAs ranging from 20 to 40◦.
For forest scenes, stronger angular variations of CEE were found compared with those over turbid and
crop scenes. The FR97 algorithm resulted in clear overestimations of the leaf effective emissivity and
underestimations of the soil effective emissivity relative to the reference. Additionally, the maximum
difference appeared at nadir. Slight overestimations and slight underestimations were found for the
angular variations simulated by the GCI and NDVI algorithms, respectively.

Figure 3 shows the difference distribution between the retrieved and reference component
temperatures. Their root mean squared errors (RMSEs) can be found in Figure 4. Over turbid
and crop scenes, the FR97 and GCI algorithms performed similarly, with RMSEs less than 1.0 ◦C.
Over crop scenes, because the average clumping index was used in the GCI algorithm, the RMSEs
of the retrieved results were slightly lower than those of the FR97 algorithm. Regarding the NDVI
algorithm, the retrieved results over crop scenes were less satisfactory, with an obvious overestimation
of the soil temperatures. Over forest scenes, the best results were retrieved using the GCI algorithm,
and the performance of the NDVI algorithm was acceptable, with RMSEs of approximately 2.0 ◦C.
However, the soil temperatures obtained with the FR97 algorithm were considerably overestimated,
which corresponded to an obvious peak on the right side of the soil histogram in Figure 3f.
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3.4. Effect of the Clumping Index Error

Regarding the FR97 algorithm, the sources of error in the gap frequency are associated with the
assumption of a homogeneous canopy. According to the performance of the FR97 and GCI algorithms,
because of the vegetation clumping effect over crop scenes, the RMSEs of the retrieved results using the
GCI algorithm were lower than those using the FR97 algorithm. The vegetation clumping effect was
stronger in forest scenes than in crop scenes, as shown in Figure 5a. In this case, the angular variation
of the CEE was obviously underestimated by the FR97 algorithm. This underestimation could result
in an overestimation of the temperature difference between the leaves and the soil, depending on
the angular variation in the observations. According to the retrieved results over forest scenes, this
discrepancy may result in soil RMSE values greater than 15.0 ◦C. Regarding the NDVI algorithm, no
clumping information was required, and acceptable results appeared over turbid and forest scenes,
whereas large discrepancies appeared over crop scenes. This difference may be because the gap
frequency in a serially planted crop scene, in which the LAI increases as the plant size increases, cannot
be accurately estimated by an empirical method. And the fitting coefficients determined by reference
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These comparisons demonstrate that the use of the clumping index improves the retrieved results.
Because the average clumping index can usually be easily acquired, the question then arises as to
whether the directional clumping index can be replaced over forest scenes. To discuss this question,
the average clumping index was applied to forest scenes as shown in Figure 5b,c. Compared to the
FR97 algorithm, the average clumping index led to considerable improvements in simulating the CEE,
but the simulated CEE using the directional clumping index still agreed better with the reference. To
analyze the effect of the error in the clumping index, biases of ±0.03 and ±0.06 were imposed on the
inversion process. Figure 6a,b show the RMSEs over crop and forest scenes, respectively, when a bias
was imposed. The results show that the clumping index bias had no significant effect on the inversion
results. It is not surprising that such biases in the clumping index had a limited effect on LAI·Ω(θ) in
Equation (7).
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3.5. Effect of the LAI Error

Strictly speaking, we do not consider the effect of the LAI error on the retrieved temperatures
in the GCI algorithm; however, this error does not exist in the NDVI algorithm. Figure 7a,b show
the RMSEs of the results retrieved by the GCI algorithm over crop and forest scenes with imposed
LAI biases of ±0.3 and ±0.5. In this case, only LAI values varying from 1.0 to 3.5 were considered.
When the LAI bias increased, RMSEs of both leaf and soil temperatures increased, especially for leaves.
In addition, the soil RMSEs in the forest scenes are affected less by the imposed LAI biases than those
in the crop scenes. It is mainly due to the fact that a stronger vegetation clumping effect occurred in
the forest scenes as shown in Figure 5a, that the results show larger angular variations of the CEE.
When LAI biases of ±0.3 and ±0.5 were imposed, the RMSEs of the retrieved leaf temperatures were
approximately 1.0 ◦C and 2.0 ◦C, respectively. Therefore, the LAI played a vital role in the component
temperature inversion.



Remote Sens. 2017, 9, 780 11 of 16Remote Sens. 2017, 9, 780  11 of 16 

 

 
Figure 7. Retrieved results from the new algorithm over crop (a) and forest (b) scenes, when LAI 
biases (±0.3, ±0.5) were imposed on LAI values varying from 1.0 to 3.5. 

4. Inversion Validation 

4.1. Experimental Campaign 

The WIDAS data were used to test the proposed inversion scheme. The observations over 
orchard canopies were from the Heihe Watershed Allied Telemetry Experimental Research 
(HiWATER) campaign [38], which took place in an arid region in Gansu Province, China. During the 
HiWATER campaign, multi-angle observations over orchard canopies (100.369° E, 38.845° N) were 
derived by an airplane platform on 3 August 2012. In the assessed area, trees were row planted with 
a spacing of approximately 2.5 m. We also performed multi-angle observations of maize and wheat 
canopies at the Huailai remote sensing station, which is located in Huailai, Hebei Province, China 
(115.785° E, 40.349° N). This experiment was conducted using a tower crane platform on 17 June 2014. 
During this period, the heights of the maize and wheat were approximately 0.65 m and 0.52 m, 
respectively. The maize was regularly planted with a row and column spacing of 0.5 m, and the wheat 
was row planted with a distance of 0.1 m between rows. The information about the measured data 
set is provided in Table 2. 

Table 2. Information on the study area. 

Date Beijing Time Type LAI LIDF Structure 

3 August 
2012 

 
14:00–14:30 Orchard 2.4 Spherical 

Row planted;  
a = 2.5 m;  
c = 6.0 m;  
H = 5.0 m; 

17 June 
2014 12:00–14:00 

Maize 1.2 

Plagiophile 

Regularly planted;  
Spacing = 0.5 m; 

Wheat 1.5 

Row plated; 
a = 0.1 m;  
c = 0.2 m;  

H = 0.65 m 

4.2. Measured Dataset 

The WIDAS sensor was designed and built by the Institute of Remote Sensing and Digital Earth 
of the Chinese Academy of Sciences and Beijing Normal University in 2008 [38,39]. The thermal 
infrared image was acquired by the FLIR A655sc camera with 640 × 480 pixels. The camera was 
equipped with a wide-angle lens (68 × 54°) with a forward inclination angle of 12° to increase the 
range of the VZAs investigated. The accuracy of the radiometer was 0.03 °C, with a central 
wavelength of 10.43 μm (7.5–14.0 μm).  

Figure 7. Retrieved results from the new algorithm over crop (a) and forest (b) scenes, when LAI biases
(±0.3, ±0.5) were imposed on LAI values varying from 1.0 to 3.5.

4. Inversion Validation

4.1. Experimental Campaign

The WIDAS data were used to test the proposed inversion scheme. The observations over
orchard canopies were from the Heihe Watershed Allied Telemetry Experimental Research (HiWATER)
campaign [38], which took place in an arid region in Gansu Province, China. During the HiWATER
campaign, multi-angle observations over orchard canopies (100.369◦ E, 38.845◦ N) were derived by
an airplane platform on 3 August 2012. In the assessed area, trees were row planted with a spacing
of approximately 2.5 m. We also performed multi-angle observations of maize and wheat canopies
at the Huailai remote sensing station, which is located in Huailai, Hebei Province, China (115.785◦ E,
40.349◦ N). This experiment was conducted using a tower crane platform on 17 June 2014. During this
period, the heights of the maize and wheat were approximately 0.65 m and 0.52 m, respectively.
The maize was regularly planted with a row and column spacing of 0.5 m, and the wheat was row
planted with a distance of 0.1 m between rows. The information about the measured data set is
provided in Table 2.

Table 2. Information on the study area.

Date Beijing Time Type LAI LIDF Structure

3 August 2012 14:00–14:30 Orchard 2.4 Spherical

Row planted;
a = 2.5 m;
c = 6.0 m;

H = 5.0 m;

17 June 2014 12:00–14:00

Maize 1.2

Plagiophile

Regularly planted;
Spacing = 0.5 m;

Wheat 1.5

Row plated;
a = 0.1 m;
c = 0.2 m;

H = 0.65 m

4.2. Measured Dataset

The WIDAS sensor was designed and built by the Institute of Remote Sensing and Digital Earth of
the Chinese Academy of Sciences and Beijing Normal University in 2008 [38,39]. The thermal infrared
image was acquired by the FLIR A655sc camera with 640 × 480 pixels. The camera was equipped
with a wide-angle lens (68 × 54◦) with a forward inclination angle of 12◦ to increase the range of the
VZAs investigated. The accuracy of the radiometer was 0.03 ◦C, with a central wavelength of 10.43 µm
(7.5–14.0 µm).
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Multi-angle observations were collected via consecutive observations as the WIDAS sensor
passed over the area of interest. Targets were observed on multiple occasions to form a series of
images. The observation angle varied with the relative position between the flight and the target.
After observation, the thermal camera was calibrated using a Blackbody Mikron340 at the State
Key Laboratory of Remote Sensing Science. The atmospheric correction of the airborne dataset was
conducted with the moderate resolution atmospheric transmission (MODTRAN) code, version 4.0,
and synchronous radio soundings [40]. After the geometric correction, the spatial resolutions of the
thermal band were resampled to 5.0 m. We selected a study area with a size of 100.0 m × 100.0 m,
where another thermal camera simultaneously measured the brightness temperatures of the leaves
and soil. Observations of the study area were acquired by aggregating all of the pixels. For the dataset
measured with the tower crane, only the downward-directed atmospheric effect was considered using
the measured effective atmospheric temperature, because the WIDAS sensor was suspended only
10.0 m above the surface. Figure 8a,b shows the observed TIR images over maize and wheat canopies.
In the experiment, the azimuth angle corresponded to the sensor approaching and receding for two
observations. In this paper, we used the two observations with azimuth angles of 120–300◦ for the
orchard canopy and four observations along two azimuth angles (0–180◦ and 90–270◦) for both maize
and wheat canopies. Unfortunately, because the images in the visible band were not successfully
calibrated, only two algorithms (FR97 and GCI) were used.
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sensing site.

The leaf and soil material emissivity values were measured using an ABB BOMEM MR304 Fourier
transform infrared spectrometer and retrieved using the iterative spectrally smooth temperature
and emissivity separation (ISSTES) algorithm [41]. The leaf and soil brightness temperatures in the
validation were acquired from TIR images that were simultaneously captured using an FLIR S60
thermal camera during the flights. The component brightness temperatures were classified and
converted to radiative temperatures using the atmospheric long-wave radiation and the component
material emissivity values [42]. We acquired the component temperatures for the dataset measured
with the tower crane platform using a similar method but from the same image for directional
observations, because the at-nadir spatial resolution was less than 0.02 m.

Accurate gap frequency and clumping index information can be acquired from the simulated
dataset. In contrast, for an actual inversion task, obtaining the actual directional clumping index is
difficult. According to the aforementioned comparisons, we used the average clumping index of 0.80 in
the maize canopies. Considering the row structure of the orchard and wheat canopies, the estimation
algorithm from Yan et al. [37] was used for the gap frequency.

4.3. Results

The leaf and soil temperatures were retrieved using VZAs of approximately 5 and 45◦ (Table 3).
The results retrieved using the GCI algorithm agreed well with the measured values, especially for
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the wheat and orchard canopies. For maize canopies, similar soil temperatures were retrieved using
the GCI and FR97 algorithms. In contrast, the leaf temperatures retrieved by the GCI algorithm were
slightly lower than those retrieved by the FR97 algorithm. This difference is likely due to the average
clumping index used in the GCI algorithm.

Table 3. Leaf and soil temperatures from measurements and retrievals.

Leaf (◦C) Soil (◦C)

Scene Toward Angle (◦) Measured FR97 GCI Measured FR97 GCI

maize

180 29.3 31.7 30.3 41.2 42.5 42.4
0 29.4 31.3 29.0 48.2 48.5 48.1

90 31.2 35.5 34.1 45.9 47.4 47.2
270 32.8 34.5 32.9 46.0 46.7 46.6

wheat

180 28.4 22.4 24.4 33.9 39.3 35.2
0 30.9 29.3 30.2 36.2 38.2 36.3

90 32.0 32.7 31.3 42.2 41.3 41.8
270 29.1 31.0 30.1 37.7 37.2 37.5

orchard
300 29.3 26.3 28.7 46.0 46.1 45.4
120 30.3 27.2 29.0 48.7 45.1 45.5

RMSE 3.0 1.7 2.3 1.2

For the wheat canopies, the leaf temperatures retrieved using the GCI algorithm were higher than
those using the FR97 algorithm with the sensor-toward angles of 0 and 180◦, which corresponded
to the cross-row direction. In general, larger angular variations in the measurements occur in the
cross-row direction. Therefore, lower leaf temperatures and higher soil temperatures may be retrieved
if the estimated CEE in a homogeneous canopy was used in this case. The same conditions apply to
the orchard canopy.

4.4. Discussion

Surface temperature validation is difficult because of the strong temporal and spatial variations
in large-scale pixels. It should be mentioned that relatively few measurements were used for the
validation, although the GCI algorithm appears to perform better and has lower RMSEs. In this study,
scenes of turbid vegetation, regularly planted crops and randomly distributed forest were constructed
to evaluate the proposed inversion algorithm, but limited measured data were used. Although
the simulated and measured results both indicated that using the clumping index can improve the
inversion results, the directional anisotropy in a large-scale pixel may be significantly different from
that in a small-scale area. For instance, the row structure may play an important role in the directional
anisotropy of near-surface measurements. However, at a low spatial resolution, its effect may decrease
because of a mixture of plots with different row directions [43]. Therefore, future work should focus
on temperature inversion using satellite-based thermal images directly. In addition, in the inversion
process, only two VZAs, i.e., nadir and forward 55◦, were used, in order to remain consistent with
the setting of the along-track scanning radiometer (ATSR) sensor. If additional observations are used,
more detailed temperature information about a pixel could be retrieved.

In this paper, we propose a simple inversion procedure for leaf and soil surface temperatures
that uses a clumping index. The average clumping index was applied for crop and dense forest
canopies. For sparse forest canopies, the average clumping index cannot accurately reproduce the
angular variation in the CEE, therefore the directional clumping index was used. The geometric optics
theory was adopted to estimate the directional clumping index. Using a similar geometric optics
theory, Pinheiro et al. [44] analyzed the angular effect of the advanced very high resolution radiometer
(AVHRR) LST data over Africa. Therefore, applying such geometric optics theories to component
temperature inversion is possible. In fact, the gap frequency of sparse forest and row-planted crops
calculated using Equations (10) and (12) can directly replace b(θ) in Equations (5)–(9). However, we
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are trying to propose a unified inversion procedure for surface component temperatures by attributing
vegetation distribution patterns to the clumping index. In this case, the inversion procedure would
become certain, if the clumping index can be retrieved by many existing algorithms in advance.

5. Conclusions

In this paper, we proposed a simple but robust temperature inversion algorithm that uses a
clumping index for leaf and soil surface temperatures. We also recommended several existing
algorithms for estimating the average and directional clumping indexes for different landscapes,
including row-planted and regular-planted crops and forest. Evaluations were conducted based
on both simulated and measured datasets. The results indicated that the GCI algorithm was very
promising, with RMSEs less than 1.0 ◦C relative to the simulated dataset. However, the inversion
algorithm appears to be highly sensitive to the LAI. When an LAI bias of ±0.5 was imposed, the
RMSEs of the retrieved results were as large as approximately 2.0 ◦C. The measured datasets over
orchard, maize and wheat canopies were also used for validation, and similar results were obtained.
Therefore, using the clumping index can improve inversion results.

Currently, the sea and land surface temperature radiometer (SLSTR) aboard the Sentinel-3A
satellite, which was launched on 16 February 2016, can be used to obtain quasi-real-time observations
with two viewing angles of approximately nadir and oblique (55◦) [45]. This sensor represents
a continuation of the ATSR sensor series and makes it possible to invert large-scale component
temperatures from operational satellite data. We recommend the GCI algorithm as a good foundation
for future satellite-based applications for two reasons: (1) its robust performance over both crop and
forest scenes and (2) its straightforward form.
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