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Abstract: Indicator-geostatistics based super-resolution mapping (IGSRM) is a popular
super-resolution mapping (SRM) method. Unlike most existing SRM methods that produce only one
SRM result each, IGSRM generates multiple equally plausible super-resolution realizations (i.e., SRM
results). However, multiple super-resolution realizations are not desirable in many applications,
where only one SRM result is usually required. These super-resolution realizations may have different
strengths and weaknesses. This paper proposes a novel two-step combination method of generating a
single SRM result from multiple super-resolution realizations obtained by IGSRM. In the first step of
the method, a constrained majority rule is proposed to combine multiple super-resolution realizations
generated by IGSRM into a single SRM result under the class proportion constraint. In the second
step, partial pixel swapping is proposed to further improve the SRM result obtained in the previous
step. The proposed combination method was evaluated for two study areas. The proposed method
was quantitatively compared with IGSRM and Multiple SRM (M-SRM), an existing multiple SRM
result combination method, in terms of thematic accuracy and geometric accuracy. Experimental
results show that the proposed method produces SRM results that are better than those of IGSRM and
M-SRM. For example, in the first example, the overall accuracy of the proposed method is 7.43–10.96%
higher than that of the IGSRM method for different scale factors, and 1.09–3.44% higher than that
of the M-SRM, while, in the second example, the improvement in overall accuracy is 2.42–4.92%,
and 0.08–0.90%, respectively. The proposed method provides a general framework for combining
multiple results from different SRM methods.

Keywords: super-resolution mapping; indicator geostatistics; class proportion constraint; pixel
swapping; land cover classification

1. Introduction

Land cover classification is a major technique of mapping land cover types and monitoring their
dynamics using remote sensing data. Many land cover classification methods have been developed in
the past four decades [1–4]. Owing to the common occurrence of mixed pixels in remote sensing images,
even in images with very high spatial resolution [5], spectral unmixing has been widely studied and is
used in various applications [6–8]. However, spectral unmixing cannot provide location information
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of land cover classes at a sub-pixel scale [9–13]. Thus, super-resolution mapping (SRM), or sub-pixel
mapping has recently been developed and is widely accepted for estimation of the spatial distribution
of land cover classes at sub-pixel scale [14]. Specifically, SRM generates higher-resolution classification
results from coarse-resolution class proportion images produced by spectral unmixing [15–17]. In other
words, SRM provides a way to obtain land cover information at finer resolution from images with
relatively coarse resolution. SRM has been successfully used in various applications to map different
targets, such as waterlines [18,19], lakes [20], urban buildings [21], urban trees [22], forests [9,23,24] and
regions of floodplain inundation [25–27]. It has also been used to monitor land cover change [28,29],
to refine ground control points [30] and to calculate landscape pattern indices [31].

Since Atkinson [14] introduced the concept of SRM, many techniques have been proposed
(e.g., [9,10,12,15,24–28,32–42]). Most existing SRM methods exploit the spatial dependence or spatial
correlation between pixels (or coarse-resolution pixels, CR-pixels) or sub-pixels (or fine-resolution
pixels, FR-pixels) [35,36], and some adopt the assumption of spatial correlation maximization at the
target resolution for the prior model of the spatial structure [40–44]. Atkinson [40], for example,
generated super-resolution land cover maps by maximizing spatial correlation among adjacent pixels
using a pixel-swapping algorithm. The pixel-swapping algorithm is widely used in SRM because of
its simplicity, and it works best for highly contiguous landscapes [45]. An improved pixel-swapping
algorithm was then developed by Makido, Shortridge, and Messina [46] to handle multiple land cover
classes. These SRM methods are iterative and thus time consuming and sensitive to the number of
neighboring FR-pixels, especially when the scale factor (i.e., the ratio between coarse resolution and
fine resolution) is large [47]. Because these methods only adopt the maximal spatial dependence
principle for the prior spatial model, their results are often overly smooth [45,48].

In contrast to the aforementioned iterative methods, Boucher and Kyriakidis [33] proposed
a different SRM method based on geostatistical methods of indicator Kriging [49] and indicator
stochastic simulation [50]. For the sake of convenience, the method proposed in [33] is referred
to as indicator-geostatistics based SRM (IGSRM) in this paper. In IGSRM, the prior model of the
spatial structure is first explicitly parameterized in terms of a set of indicator variogram models, each
characterizing the spatial variability of a land cover class at fine resolution, and the spatial structure
is then applied to coarse resolution data for SRM. Moreover, IGSRM is non-iterative and has less
computational burden. The method has been shown to perform well in SRM [16,33,51].

However, unlike most existing SRM methods that produce a single super-resolution land cover
map, IGSRM generates multiple equally plausible super-resolution land cover maps [33]. Although
multiple super resolution realizations from IGSRM can be used to assess classification accuracy and
spatial uncertainty [15,52], many applications usually only require one SRM result. Methods have
been proposed to deal with this problem [53,54]. Zhang [53], for example, produced a coastline map
based on the class frequency of 1000 super-resolution realizations, and the FR-pixel whose number
of the presence of seawater class equals 500 was considered as the coastline class. Li [54] proposed a
multiple SRM (M-SRM) method that combines a set of SRM results obtained using single or multiple
SRM methods. M-SRM uses plurality voting, where the class with the most votes is selected, to label
each FR-pixel. Results show that the combination of multiple SRM outputs can use the different
information of each output while addressing drawbacks of the individual method; M-SRM provided
results more accurate than those obtained using an individual SRM [54]. However, the SRM results
obtained using these methods [53,54] may change the class proportion of each CR-pixel, which is a
general requirement in SRM (e.g., [33]). Methods that are more accurate and effective in combining
multiple SRM realizations are thus required.

This paper proposes a novel method that combines multiple super-resolution realizations from
IGSRM to produce a single SRM result with improved performance. The proposed method also
considers the class proportion constraint throughout the SRM procedure.
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2. IGSRM

The IGSRM algorithm [33] performs indicator cokriging (ICK) [49] and sequential indicator
simulation (SIS) [50] in two steps to produce SRM results. In the first step, also called the sub-pixel
sharpening step [55], ICK is used to estimate the probability that an FR-pixel belongs to a particular
class, given the coarse-resolution class proportions obtained from spectral unmixing and the prior
model of the spatial structure at fine resolution. An indicator variogram model is used to quantify the
prior spatial structure of each land cover class at fine resolution [33].

The indicator variogram of the kth class pixels is defined as

γk(h) =
1
2

E[Ik(u)− Ik(u + h)]2, (1)

where Ik(u) is a binary class indicator, defined as Ik(u) = 1 if FR-pixel u is identified as class k, and zero
if not, and denotes the presence or absence of the kth class at FR-pixel u. The indicator variogram of
the kth class γk(h), calculated by half of the mathematical expectation (E) of the quadratic increments
of all pixel pair values at a distance h, characterizes the joint probability of any two FR-pixels separated
by h to be different classes.

Using indicator variogram models, the probability for the kth class occurrence at FR-pixel u is
estimated through ICK as

p̂k(u) = ηk
Tak + πk

[
1 − sum

(
ηk

T
)]

, (2)

where the ηk is ICK weight for the kth class and πk is the mean of all elements in coarse resolution class
proportions data ak. The function sum

(
ηk

T) takes the sums of all the elements in vector ηk
T. As shown

in Equation (2), such a probability is expressed as a weighted linear combination of class proportions
data ak.

ΓVV
k ηk = γvV

k (u). (3)

The ICK weight ηk for the kth class are obtained by solving Equation (3), which consisted of several
indicator variogram matrices that accounted for the correlation between all pairs of CR-pixels (ΓVV

k ),
and γvV

k (u) denotes a vector of variogram values between the FR-pixel u and the CR-pixels.
In the second step, called the class allocation step [55], SIS is adopted to generate classification

results at fine resolution. A random path is first generated. Along this random path, each FR-pixel is
assigned a class according to the ICK-derived conditional probability. A super-resolution realization is
generated after repeating the above steps for all FR-pixels. A new super-resolution realization can be
generated by repeating the above procedure with a different random path. Multiple equally plausible
super-resolution realizations are thus generated. These super-resolution realizations reproduce: (i) the
observed coarse class fractions; (ii) the prior structural information encapsulated in a set of indicator
variogram models at fine resolution; and (iii) the fine-resolution class labels that might be available.
The IGSRM algorithm is described in detail in the literature [33].

3. Method

A novel method was proposed in this study to address the problems with IGSRM, as mentioned
previously. The proposed combination method uses multiple super-resolution realizations from the
IGSRM algorithm [33] as inputs, extracts the frequency of the presence of each land cover class
at each FR-pixel from all super-resolution realizations, and then uses these class frequencies to
combine multiple super-resolution realizations into a refined SRM result. The method involves
two steps: constrained-majority-rule (CMR)-based combination and partial multiple-class pixel
swapping (PPS)-based refinement. Specifically, multiple super-resolution realizations from the IGSRM
algorithm [33] are first combined to generate an SRM result through CMR-based combination. The
PPS method is then presented to further refine the obtained SRM result from the previous step. The
method takes the result of CMR-based combination as the input and uses a pixel-swapping strategy to
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produce a refined SRM result. A flowchart of the proposed multiple-realization combination method
is shown in Figure 1.Remote Sens. 2017, 9, 773  4 of 21 
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Figure 1. Flow chart of the proposed method. The dashed box indicates two steps of the
proposed method.

3.1. Combination of Multiple Super-Resolution Realizations Using the CMR

As mentioned previously, IGSRM produces multiple equally plausible super-resolution
realizations. One of the simplest methods of combining multiple realizations is to employ a majority
rule, assigning each FR-pixel the label that has the maximal class frequency [54]. However, direct
use of the majority rule may change the FR-pixel numbers of the classes in each CR-pixel, resulting
in an SRM result that does not satisfy the class proportion constraint. Although the class proportion
constraint is met in IGSRM using a progressive correction algorithm [33], this characteristic cannot be
transmitted to the subsequent combination process. A correction step is needed to ensure that, after
combination, the class proportions of the FR-pixels within the CR-pixels equal the corresponding class
proportions derived from spectral unmixing. Therefore, to combine multiple SRM results from IGSRM
into one SRM result while maintaining the class proportions, a CMR-based combination method is
presented here. The method can be summarized as follows. Suppose there are n super-resolution
realizations generated by IGSRM. The number of each class at each FR-pixel location is first counted
using all n super-resolution realizations. A set of class frequency maps is then obtained by dividing
the number of each class at each FR-pixel location by the total number of super-resolution realizations;
i.e., one map per land cover class. Such class frequencies show the frequency of the presence of each
land cover class for each FR-pixel.

For each CR-pixel, the obtained class frequencies of all its FR-pixels for all classes are first sorted
in descending order. Each FR-pixel is then assigned to a specific class starting from the class having
the highest class frequency until the total number of FR-pixels for each class is attained, so as to be
consistent with the class proportions in the CR-pixel obtained from spectral unmixing. If the number of
FR-pixels of a class in a CR-pixel reaches the class proportion, the remaining FR-pixels in the CR-pixel
are not assigned to that class even though the frequency of the class is higher than the frequencies of
other classes. If the frequencies of different land cover classes for an FR-pixel are the same, and the
numbers of FR-pixels of these classes do not reach the class proportions, the FR-pixel is assigned to
a class randomly. If the frequencies (of the same class or different classes) at different FR-pixels in a
CR-pixel are the same, one of the FR-pixels is randomly selected.

The example shown in Figure 2 is given to further explain the CMR-based combination method.
Suppose the scale factor is 3, i.e., each CR-pixel is divided into nine (i.e., 3 × 3) FR-pixels, indexed I to
IX (Figure 2b). Suppose that a CR-pixel covers three land cover classes, where the red class accounts for
five of the nine FR-pixels (5/9), the green class accounts for three of the nine FR-pixels (3/9) and the
blue class accounts for one of the nine FR-pixels (1/9) (Figure 2a). Suppose that 10 super-resolution
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realizations are generated by IGSRM (Figure 2c). The class frequency of each FR-pixel calculated
from 10 super-resolution realizations is shown in Figure 2d. All these class frequencies are sorted in
descending order (Figure 2e). Following this order and the rule described above, FR-pixels I, II, IV and
III are sequentially assigned to the red class while FR-pixels IX and VI are sequentially assigned to the
green class. For FR-pixel V, the frequencies of the FR-pixel are the same for the red class and green
class (i.e., both are 0.5), so the FR-pixel V needs to be assigned to a class randomly. In this example,
we suppose that FR-pixel V is assigned to the red class. Because the proportion of the red class in the
CR-pixel has reached 5/9 (i.e., it has reached the proportion of the red class), the remaining FR-pixels
in the CR-pixel are not assigned to the red class. FR-pixel VIII is then assigned to the green class
because the proportion of the green class has not been reached and the frequency of the green class
(i.e., 0.4) is higher than the frequency of the blue class (i.e., 0.3). Finally, because only the proportion
of the blue class has not been reached, FR-pixel VII is assigned to the blue class, even though the
frequency of the red class at this FR-pixel location is higher than that of the blue class. The final result
is shown in Figure 2f. In this way, 10 super-resolution realizations from IGSRM are combined into an
SRM result, which also preserves the class proportions from the original spectral unmixing.
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Figure 2. Example of CMR-based combination. A CR-pixel covers red, green and blue classes and the
scale factor is 3. (a) Class proportions of the CR-pixel; (b) indexes of FR-pixels within the CR-pixel;
(c) ten super-resolution realizations from IGSRM; (d) class frequencies for FR-pixels within the CR-pixel;
(e) sequence of class frequencies within the CR-pixel; and (f) final SRM result obtained by combining
multiple super-resolution realizations using the CMR.
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3.2. Refinement Using PPS

The CMR-based combination of multiple super-resolution realizations from the IGSRM algorithm
presented in the previous section only considers the constraint of class proportions in a CR-pixel and
the class frequency of FR-pixels, but does not explicitly take into consideration the spatial correlation
between neighboring FR-pixels. PPS (partial multiple-class pixel swapping), which explicitly considers
spatial correlation between neighboring FR-pixels, is thus proposed to further improve the SRM result
obtained from the CMR-based combination.

As mentioned previously, pixel swapping [40] is a commonly used SRM method. The objective
of pixel swapping is to change the spatial arrangement of FR-pixels in a CR-pixel in such a way that
spatial correlation between neighboring FR-pixels is maximized, while the number of FR-pixels for
each class within each CR-pixel (i.e., the class proportion) remains fixed throughout the process.

The present study modifies a multiple-class pixel swapping method, called simultaneous
categorical swapping [46]. In the simultaneous categorical swapping algorithm, the attractiveness
of each class at each FR-pixel location to its neighboring FR-pixels is quantified using the Nearest
Neighbor (NN) function according to the current arrangement of FR-pixels. Suppose that pi is an
FR-pixel within a CR-pixel Pa, and pj is one of the neighboring FR-pixels of pi (where pj may belong
to Pa or its neighboring CR-pixels). The neighborhood system is based on a square window that is
composed of the FR-pixel pi and its neighboring FR-pixels. In the NN model, the attractiveness Api of
an FR-pixel pi is simply the sum of class values at the neighboring locations:

Api =
N

∑
j=1

I
(

pj
)
, (4)

where N is the number of neighbors and I
(

pj
)

is a binary class indicator at the neighboring FR-pixel
location pj. If the class label of the neighbor pj is identical to that of pi, I

(
pj
)

is assigned a value of 1;
otherwise it is assigned a value of 0.

Once the attractiveness value of each FR-pixel within a CR-pixel for each class is computed, the
attractiveness values are sorted in descending order for each class within the CR-pixels, and a pair of
FR-pixels is selected to swap. We take a specific class a as an example. Suppose that A1 is the minimum
attractiveness value for class a at location x occupied by class a, and A2 is the maximum attractiveness
value for class a at location y occupied by another class (e.g., class b). A3 is the attractiveness value
for class b at location y, and A4 is the attractiveness value for class b at location x. The difference in
attractiveness values A2 − A1 indicates how much more class a is attracted to location y than the current
location x, while A4 − A3 indicates how much more class b is attracted to location x than current location
y. Suppose that A5 is the sum of A2 − A1 and A4 − A3, representing how much the attractiveness
values for class a and class b would change if swapping the FR-pixels at locations x and y. If A5 is
positive, swapping the two FR-pixels would increase the spatial correlation of the FR-pixels relative to
the current arrangement. The larger the value of A5, the greater the attractiveness value gain achieved
by swapping this FR-pixel pair. The pair of FR-pixels with the maximum A5 value among all classes
is selected to swap. One pair of FR-pixels within a CR-pixel is swapped per iteration. The FR-pixel
swapping stops when no further swaps are made or a specified number of iterations is reached.

In this study, instead of directly using simultaneous categorical swapping [46], we propose PPS.
In PPS, only some FR-pixels in CRM-based combination results obtained in the first step are swapped.
In the CRM-based combination SRM results, some FR-pixels have high class frequencies, which implies
that more super resolution realizations from IGSRM have the same class label at this FR-pixel location,
whereas other FR-pixels have low class frequencies, which means that fewer super resolution realizations
from IGSRM have the same class label. Class frequency in a FR-pixel location can thus be considered a
measure of reliability. In this study, not all FR-pixels in a CR-pixel in the combination results are to be
swapped; only FR-pixels with low class frequencies obtained from multiple super resolution realizations
will be swapped, whereas those FR-pixels with high class frequencies will not be swapped. A class
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frequency threshold (e.g., 0.9) should be determined. If the class frequency of the current class of an
FR-pixel in the CRM-based combination result is lower than the class frequency threshold, the FR-pixel
will be swapped. Otherwise, the FR-pixel will not be swapped and is called a fixed FR-pixel.

PPS includes three steps: selection of swappable FR-pixels, computation of attractiveness values
and pixel swapping. In the first step, class frequency maps obtained from the CMR-based combination
are used to select swappable FR-pixels. The second step of PPS is computation of attractiveness values.
Instead of using the NN function (i.e., Equation (4)), we adopt a weighted NN function, which assigns
different weights to swappable FR-pixels and FR-pixels not to be swapped (i.e., fixed FR-pixels). The
attractiveness value Api of an FR-pixel pi is expressed as

Api =
N

∑
j=1

λj I
(

pj
)
, (5)

where N and I
(

pj
)

are the same as in Equation (4) and λj is the weight for pj. The attractiveness value
Api denotes the class attraction of its neighboring FR-pixels, and if the neighboring FR-pixel is a fixed
FR-pixel, it should be given a larger weight as the fixed FR-pixels are more reliable. Therefore, the
swappable FR-pixel is assigned a smaller weight while the fixed FR-pixel is assigned a larger weight in
this study. Specific weight values can be given on a case by case basis.

Once the attractiveness value of each swappable FR-pixel for each class is computed, the
simultaneous categorical swapping strategy [46] is modified to change the spatial arrangement of
swappable FR-pixels in a CR-pixel iteratively. In the simultaneous categorical swapping algorithm [46],
the pair of FR-pixels with the maximum A5 value among all classes is selected to swap. In the proposed
method, however, swapping is performed only if the maximum A5 is larger than zero, as positive A5

implies that swapping the two FR-pixels at locations x and y will increase the spatial correlation of the
FR-pixels within a CR-pixel. However, the fixed FR-pixel will not be swapped.

3.3. Method Evaluation

Method evaluation is an indispensable step in SRM. In this study, method evaluation is
conducted by comparing the SRM results with the reference map at the target resolution as in existing
studies [33,35,56]. The reference map is produced by pixel-based or object-based classification of
a higher-resolution image (target-resolution image) [35]. The SRM results are produced by using
synthetic class proportion images at coarse-resolution (i.e., coarse-resolution land cover fraction
images), which are generated by degrading the reference image using specific scale factors. A similar
strategy has been used in many existing SRM studies [16,33,40,57].

The reason for using a synthetic image from a known reference map at the target resolution
is to minimize the effect of other factors, such as errors associated with registration and spectral
unmixing, on the quality of SRM results and to obtain reliable reference land cover maps at the target
resolution for accuracy assessment [33,35]. The synthetic class proportion images are deemed as the
outputs of a perfect spectral unmixing process. Although zero error in predicting class proportions
is an unrealistic starting point for the super-resolution mapping algorithm, the test is directed at the
super-resolution mapping algorithm itself and is thus appropriate at stage of method development;
the perfect-proportion image represents greater control in the test [56].

Two accuracy assessment measures were adopted in this study to fully validate the proposed
combination method: the thematic accuracy and geometric accuracy. For thematic accuracy assessment,
overall accuracy was used, which was computed from confusion matrix [58,59]. Given that the kappa
coefficient can be misleading [60], it was not used in this study. Instead, two additional error terms,
quantity disagreement and allocation disagreement [60], were also adopted for thematic accuracy
assessment. The quantity disagreement is defined as the difference between a classification map and
the reference map in the proportions of land cover classes, and the allocation disagreement is defined
as the difference between a classification map and the reference map in the spatial allocation of the
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classes. These two disagreements are components of the overall disagreement. The smaller the quantity
disagreement and the allocation disagreement, the better the result. The two disagreement measures
are described in detail in the literature [60].

Geometric accuracy indices are adopted to further verify the effectiveness of the proposed
combination method, where the indices were originally proposed to evaluate the classification result
of images having very high resolution [61]. Geometric accuracy is evaluated on object-based, i.e.,
connected areas are evaluation units. In this study, geometric accuracy indices used are the edge
location error and shape index error [61]. The edge location error of a classification map describes
the error in object edges recognized in the map with respect to those of the actual object. This error
ranges from 0 to 1. A perfect match of the borders of two regions corresponds to an error value of zero,
whereas a large mismatch among region edges corresponds to an error value close to 1. The shape
index error is used to evaluate the shape difference between an object on the map derived and the
corresponding region on the reference map. It is defined as the absolute difference of the two regions
in terms of a specific shape factor. In this study, the shape factor (s f ) of a region Oi is defined by

s f (Oi) = 4πS/P2, (6)

where S is the area of Oi and P is the perimeter of Oi. The shape index error is normalized into the
range [0, 1]. The smaller the shape index error, the more similar the shapes of the two regions [61].

To validate the proposed method, we quantitatively compare SRM results from the two steps of
the proposed method with SRM results generated from IGSRM [33]. Furthermore, M-SRM [54], which
is a method of combining multiple SRM results using plurality voting, is also used for comparison.
M-SRM labels a FR-pixel based on the classes depicted in the multiple results for that FR-pixel and
its neighboring FR-pixels [54]. The performance of the M-SRM was dependent on the neighborhood
window size W and the range parameter r of the exponential model [54].

In addition, using the CMR-based combination as the input, PPS and simultaneous categorical
swapping [46] in the second step are compared. Furthermore, we also analyze how the accuracy of
SRM results changes with the scale factor.

4. Experimental Results

Two study areas were selected to evaluate the performance of the proposed method. One is an
urban area, which mainly comprises artificial features, while the other is an agricultural area, mainly
covered by natural features.

4.1. Example 1: Urban Area

In the first example, a land cover map of a portion of the Beijing urban area, China, was used
as reference map. The reference land cover map was produced by the object-based classification of a
pan-sharpened multispectral IKONOS image at 1-m resolution (Figure 3a). The reference map used
consists of 945 × 945 pixels (Figure 3b). There are six land cover classes in the area, namely built-up
land, road, vegetation, water, shadow, and other impervious surfaces.

As mentioned above, the reference land cover map was upscaled (or degraded) to simulate
coarse-resolution class proportion images, using four scale factors of 3, 5, 7 and 9. The class proportion
images obtained were used as inputs to IGSRM for SRM. The indicator variograms at fine resolution
for six classes were calculated from the reference map and used as prior models of the spatial structure.
In this example, 100 super-resolution realizations were produced by IGSRM for each scale factor and
then used as the inputs of the proposed method and M-SRM [54]. In M-SRM, the window size W was
set as 1, 3, 5, 7, and 9, and range value r was set as 1, 2, 3, and 10 as in [54]. The best result (i.e., with the
highest accuracy) was selected for comparison. In the proposed method, the class frequency threshold
used to select swappable FR-pixels was set from 0.9 to 1.0 to find an appropriate threshold value. It
was found that a class frequency threshold of 1.0 produced the best performance; In order to set weight
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λj more simply, the weight for the swappable FR-pixel was set to 1 while weight for the fixed FR-pixel
could be set to a larger integer value. The weight of the fixed FR-pixel was set from 2 to 5 to find an
appropriate value. It was found that a weight of 2 produced almost the best performance, so it was set
to 2. The neighboring window sizes in simultaneous categorical swapping [46] and the proposed PPS
were set to 3 according to the results of experiments.
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Accuracy assessment of different methods is presented in Table 1. The table shows that overall
accuracies of IGSRM were 90.64%, 85.19%, 80.69% and 76.86% for scale factors of 3, 5, 7 and 9,
respectively. When the proposed method was applied, overall accuracies at all scale factors were
considerably improved. Specifically, when the CMR-based combination, the first step of the proposed
method, was adopted, overall accuracies of SRM results increased by 5.47%, 7.37%, 8.32% and 8.66%
for scale factors of 3, 5, 7 and 9, respectively, relative to those of IGSRM. When PPS, the second step
of the proposed method, was used, overall accuracies of SRM results improved by 7.43%, 9.69%,
10.69% and 10.96% for scale factors of 3, 5, 7 and 9, respectively, relative to overall accuracies of the
IGSRM method. Furthermore, the proposed method also produced higher overall accuracies than
the M-SRM method [54], with increases of 1.09%, 3.44%, 1.89% and 1.86% for scale factors of 3, 5, 7,
and 9, respectively.

It is also seen in Table 1, in SRM results produced from IGSRM and the proposed method, the
overall disagreements only include the allocation disagreements, whereas the quantity disagreements
of the results are zero because these two methods preserve the proportions of land cover classes within
each CR-pixel in the SRM process. However, the quantity disagreements of the results of M-SRM
increase with scale factors. For the same scale factor, the allocation disagreement of the result of the
proposed method was almost the lowest (Table 1). Specifically, the allocation disagreements of the
results from the proposed method are lower than those from IGSRM for all four scale factors, and also
lower than those from M-SRM for three scale factors of 3, 5, and 7.

Geometric errors were also reduced when the proposed method was used (Table 1). Compared
with those of IGSRM, the edge location errors of the proposed method reduced by 14.46%, 19.75%,
21.94% and 22.56%, and the shape index errors reduced by 10.26%, 9.21%, 7.82% and 6.68% for the
scale factors of 3, 5, 7 and 9, respectively. The proposed method also produced lower geometric errors,
compared with those from M-SRM. In a word, less error in object edges was thus recognized in the
results of the proposed method with respect to the edges of the actual object, and there was less
difference in shape of object between the results of the proposed method and the reference map.
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Table 1 also shows that, as the scale factor increased, the overall accuracies of all methods had
similar decreasing trends, and corresponding allocation disagreements and geometric errors increased.
However, the decrease in accuracy of the SRM result was less obvious when the proposed method
was applied. For example, the overall accuracy of IGSRM decreased by 13.78% and that of M-SRM
decreased by 11.02%, from a scale factor of 3 to a scale factor of 9, whereas the overall accuracy of the
proposed method decreased by 10.25%.

Table 1. Thematic accuracies and geometric accuracies of different SRM methods for the Beijing area
(All in percent).

Methods Scale
Factors

Thematic Accuracy (%) Geometric Accuracy (%)

OA AD QD EE SE

IGSRM 1

3 90.64 9.36 0.00 21.50 14.88
5 85.19 14.81 0.00 35.50 17.74
7 80.69 19.31 0.00 45.88 18.93
9 76.86 23.14 0.00 53.75 20.27

M-SRM 2

3 96.98 2.71 0.31 14.05 8.67
5 91.44 6.68 1.58 29.95 15.93
7 89.49 8.93 1.57 32.23 18.13
9 85.96 11.45 2.60 38.47 19.52

Proposed
Method

Step 1 (IGSRM +
CMR-based combination)

3 96.11 3.89 0.00 11.75 8.31
5 92.56 7.44 0.00 20.63 11.24
7 89.01 10.99 0.00 29.25 13.27
9 85.52 14.48 0.00 36.17 14.76

Step 2 (Step1 + PPS-based
refinement)

3 98.07 1.93 0.00 7.04 4.62
5 94.88 5.12 0.00 15.75 8.53
7 91.38 8.62 0.00 23.94 11.11
9 87.82 12.18 0.00 31.19 13.59

OA: Overall Accuracy; AD: Allocation Disagreement; QD: Quantity Disagreement; EE: Edge location Error; and SE:
Shape index Error. 1 The accuracies of IGSRM were the mean values of 100 assessments. 2 The accuracies of M-SRM
were the accuracies of the best results. The W of best results of M-SRM were 3, 5, 5 and 5; r were 2, 3, 3 and 2 for
scale factors of 3, 5, 7 and 9, respectively.

The SRM results of the proposed method for a scale factor of 5 are shown in Figure 4a. Visual
comparison suggests that the result of the proposed method (Figure 4a) is similar to the reference
map (Figure 3b). Figure 4b–e shows a portion of the reference map and corresponding SRM results
from IGSRM and two steps of the proposed method for more detailed comparison. Compared with
reference map (Figure 4b), although the shapes of ground objects were partially recovered in the
IGSRM-derived result, it is obvious that the SRM result from IGSRM contained substantial noise and
fewer details, missed many small structures, and had discontinuous boundaries of classes (Figure 4c).
After combining multiple IGSRM-derived results using CMR-based combination (the first step of the
proposed method), noise in the SRM result was significantly reduced and class boundaries were more
continuous. However, some linear features (e.g., trails and shadow) were still not smooth (Figure 4d).
Furthermore, the SRM result obtained after use of PPS (the second step of the proposed method) was
better (Figure 4e). Shapes of objects were more similar to those in the reference map, the boundaries of
classes were smoother, and more importantly, the distributions of small structures were more similar
to those in the reference map shown in Figure 4b. For example, the spatial pattern of trails at the center
of the area was much better reconstructed than in the other results. However, although more linear
features were properly recovered after the PPS was applied, some small linear features (e.g., small
trails and shadow) were still discontinuous (Figure 4e).

Figure 5 shows the SRM results for a local area at several scale factors obtained using the proposed
PPS (Figure 5a–d) and the simultaneous categorical swapping method [46] (Figure 5e–h), both of which
use CMR-based combination results as inputs. Compared with the result of simultaneous categorical
swapping, the result of the proposed method generally show better performance in terms of detail
and connectivity of structures at the same scale factor. As shown by red rectangles in Figure 5, slender
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structures (e.g., trails) in SRM results obtained using PPS for refinement (Figure 5b–d) were more coherent
and more similar to those in the reference map (Figure 4b), compared with the slender structures in the
results of simultaneous categorical swapping (Figure 5f–h). We also quantitatively compared these SRM
results in terms of thematic and geometric accuracies (detailed results not shown here). For all scale
factors, overall accuracies of PPS were slightly higher than those of simultaneous categorical swapping,
and allocation disagreements and geometric errors of PPS were lower than those of simultaneous
categorical swapping. For example, at the scale factor of 7, the overall accuracy of PPS was 91.38%,
which was 0.24% higher than that of simultaneous categorical swapping (91.14%), and the edge location
error of PPS (23.94%) was 0.72% lower than that of simultaneous categorical swapping (24.66%).
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Figure 4. SRM result (scale factor of 5) generated from the proposed method (a); and a portion of
reference map (400 × 300 pixels) (b), the location of the partial image is shown as red rectangle in (a);
and corresponding SRM results generated from IGSRM (c); and two steps of the proposed method:
(d) result obtained after CMR-based combination; and (e) result obtained after PPS. Color assignments
are the same as those in Figure 3b.
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Figure 5i–l shows the SRM results for the same portion at different scale factors obtained using
M-SRM. From this figure, most objects and structures are recovered at scale of 3. However, slender
structures (e.g. trails) were almost disappeared at larger scale factors (e.g., 5, 7 and 9). Compared
with the M-SRM, our proposed method show better results (Figure 5a–d) in terms of detail, shape and
connectivity of objects or structures, in particular at larger scale factors.

Furthermore, as shown in Figure 5, the SRM results from all methods have more details and
continuous structures at a smaller scale factor (e.g., a scale factor of 3). It is hard to find an appreciable
difference between the SRM results at smaller scale factors and the reference map (Figure 4b). However,
as the scale factor increases, small structures gradually become discontinuous. For example, some
small structures (e.g., trails and shadow) disappear at scale factor of 7 (Figure 5c,g,k). When the
scale factor was 9, the SRM results are further smoothened, and many small structures are not well
preserved (Figure 5d,h,l).
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Figure 5. Portion of the SRM results at different scale factors for the Beijing area. The location of
the image covering 400 × 300 pixels is shown as red rectangle in Figure 4a. (a−d) SRM results of
the proposed method obtained at scale factors of 3, 5, 7, and 9, respectively. (e–h) SRM results of
simultaneous categorical swapping using the result from CMR-based combination as the input, at the
scale factors of 3, 5, 7, and 9, respectively. (i−l) SRM results of M-SRM using the result from IGSRM as
the input, at the scale factors of 3, 5, 7, and 9, respectively. Color assignments are the same as those in
Figure 3b. Red rectangles indicate the locations where there are significant differences between results
of different methods.



Remote Sens. 2017, 9, 773 13 of 20

4.2. Example 2: Agricultural Area

To further evaluate the proposed method, an agricultural area in North Xinjiang, China, was
selected as the second study area. The land use map of the area was obtained from visual interpretation
of Landsat TM images of 30-m resolution by experts, and one of the Landsat TM images used is shown
in Figure 6a. The size of the map used is 1575 × 1575 pixels (Figure 6b). There are five classes, namely
built-up land, cropland, grassland, water and undeveloped land.
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Figure 6. (a) Landsat TM image of the second study area in Xinjiang, China (bands 7, 4, and 2 as R, G,
B); and (b) reference land use map of the area.

Following the same procedure as that used for the first example, scale factors of 3, 5, 7 and 9 were
used for this example. The class proportion images generated from the reference map were used as
inputs to IGSRM for SRM. One hundred super-resolution realizations were produced by IGSRM for
each scale factor and used as the input to the proposed method and M-SRM [54]. Same as in the first
example, after several trials, the parameters that produced the best performance were selected. In the
proposed method, the class frequency threshold was set to 1.0, the weight parameter for the fixed
FR-pixel was set to 2, and the neighboring window sizes in simultaneous categorical swapping and
the proposed PPS were set to 3.

Accuracies of the results obtained from IGSRM, M-SRM [54] and the proposed method are given
in Table 2. Similar to the results for the first example, at the same scale factor, the proposed method
produced the highest overall accuracy and the lowest allocation disagreement, edge location error and
shape index error. The quantity disagreements of the results of M-SRM increased with scale factors,
whereas the quantity disagreements in the results of IGSRM and the proposed method were zero. For
example, at the scale factor of 5, the overall accuracy, allocation disagreement, edge location error
and shape index error of the result of IGSRM were 94.73%, 5.27%, 20.90% and 23.19%, respectively,
whereas when CMR-based combination (the first step of the proposed method) was adopted, the
overall accuracy of result increased by 3.10% and the allocation disagreement, edge location error and
shape index error of the result decreased by 3.10%, 9.83% and 12.71%, respectively. When PPS (the
second step of the proposed method) was used, the overall accuracy of results improved by 3.71%
and the allocation disagreement, edge location error and shape index error of the results decreased by
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3.70%, 12.01% and 16.67%, respectively, relative to the results of IGSRM. Furthermore, the results of
the proposed method also had higher thematic accuracies and lower geometric errors than those of
M-SRM. For example, the edge location errors of the proposed method were 2.74%, 10.93%, 13.85%
and 14.23% lower than those of M-SRM for scale factors of 3, 5, 7, and 9, respectively. Similar to the
first example, as the scale factor increased, the accuracy of the results had a downward trend for all
methods but the accuracy of the proposed method decreased least.

Table 2. Thematic accuracies and geometric accuracies of different SRM methods for the Xinjiang area
(All in percent).

Methods Scale
Factors

Thematic Accuracy (%) Geometric Accuracy (%)

OA AD QD EE SE

IGSRM 1

3 96.94 3.06 0.00 9.60 19.14
5 94.73 5.27 0.00 20.90 23.19
7 92.59 7.42 0.00 34.27 25.51
9 90.65 9.35 0.00 42.79 26.29

M-SRM 2

3 99.28 0.63 0.09 7.00 4.78
5 97.81 1.85 0.34 19.82 9.71
7 96.25 3.13 0.61 29.62 14.21
9 94.70 4.41 0.89 37.35 18.27

Proposed
Method

Step 1 (IGSRM +
CMR-based combination)

3 99.26 0.74 0.00 4.48 4.93
5 97.83 2.17 0.00 11.07 10.48
7 96.23 3.77 0.00 18.78 14.87
9 94.59 5.41 0.00 26.66 18.19

Step 2 (Step1 + PPS-based
refinement)

3 99.36 0.64 0.00 4.26 4.16
5 98.44 1.57 0.00 8.89 6.52
7 97.15 2.85 0.00 15.77 9.13
9 95.57 4.43 0.00 23.12 11.84

OA: Overall Accuracy; AD: Allocation Disagreement; QD: Quantity Disagreement; EE: Edge location Error; and SE:
Shape index Error. 1 The accuracies of IGSRM were the mean values of 100 assessments. 2 The accuracies of M-SRM
were the accuracies of the best results. The W of best results of M-SRM were 3, 5, 5 and 5; r were 1, 3, 2 and 2 for
scale factors of 3, 5, 7 and 9, respectively.

Figure 7a shows the SRM result produced using the proposed method at a scale factor of 5.
By visual comparison, the result of the proposed method (Figure 7a) is similar to the reference map
(Figure 6b). Shapes of ground objects were properly recovered, and the boundaries of classes were
accurate and clear. Figure 7b–e shows a portion of the reference map and corresponding SRM results
of IGSRM and the proposed method. Compared with the reference map (Figure 7b), the result of
IGSRM was much more noisy. Most small structures were not recovered, and even boundaries of
larger structures were discontinuous (Figure 7c). After combining multiple SRM results from IGSRM
using CMR-based combination (the first step of the proposed method), noise was reduced and the
class boundaries of large structures were smoother and more continuous. However, many details
of the land cover still missed (Figure 7d). The SRM result obtained after PPS had more continuous
and detailed structures. There was almost no noise in that result and the boundaries of classes were
accurate and clear. For example, the spatial pattern of a river (e.g., the water at the center of the area)
was much better reproduced than in the other results (Figure 7e).

Figure 8 shows the SRM results for a local area at several scale factors obtained using the proposed
PPS (Figure 8a–d) and the simultaneous categorical swapping method [46] (Figure 8e–h). It was hard to
find an appreciable difference between the SRM results of PPS and simultaneous categorical swapping
method at smaller scale factors (e.g., the scale factor of 3 or 5). However, small and thin structures were
better preserved in the result of the PPS method than the result of simultaneous categorical swapping
at larger scale factors, as shown by black rectangles in Figure 8. Quantitative accuracy assessment
showed that the results of PPS were more accurate than those of simultaneous categorical swapping
(detailed results not shown here). At the same scale factor, overall accuracies of PPS were slightly
higher than those of simultaneous categorical swapping, and allocation disagreements and geometric
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errors of PPS were lower than those of simultaneous categorical swapping. For example, at the scale
factor of 7, the overall accuracy of PPS was 97.15%, which is 0.11% higher than that of simultaneous
categorical swapping (97.04%), and the edge location error of PPS (15.77%) was 0.38% lower than that
of simultaneous categorical swapping (16.15%).
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Figure 7. SRM result generated from the proposed method (scale factor of 5) (a); and a portion of
reference map (300 × 300 pixels) (b). The location of the partial image is shown as black rectangle in
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method: (d) result obtained after CMR-based combination; and (e) result obtained after PPS. Color
assignments are the same as those in Figure 6b.

Figure 8 also shows the SRM results for the same portion at different scale factor obtained using
M-SRM [54] (Figure 8i–l). From the figure, most small structures were not recovered, and the spatial
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pattern of a river (e.g., the water at the center of the area) was almost disappeared at large scale factors
(e.g., 7 and 9) (Figure 8k,l). In contrast, the proposed method produced significantly better results
(Figure 8c,d) than the M-SRM at larger scale factors.

Furthermore, as shown in Figure 8, the SRM results for all methods preserved more detailed and
more continuous structures at smaller scale factors (e.g., the scale factor of 3). However, the slender
structures had more irregular boundaries and were more discontinuous at larger scale factors. For
example, the shape of a river (e.g., the water at the center of the area) was accurately recovered at the
scale factor of 3 and 5 (Figure 8a,b,e,f,i,j). However, at scale factors of 7 and 9, thin structures (river)
were discontinuous and small objects were missed (Figure 8c,d,g,h,k,l).
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Figure 8. Portion of the SRM results at different scale factors for the Xinjiang area. The location of
the image covering 300 × 300 pixels is shown as black rectangle in Figure 7a. (a–d) SRM results of
the proposed method obtained at scale factors of 3, 5, 7, and 9, respectively. (e–h) SRM results of the
simultaneous categorical swapping using the result from CMR-based combination as the input, at the
scale factors of 3, 5, 7, and 9, respectively. (i–l) SRM results of M-SRM using the result from IGSRM as
the input, at the scale factors of 3, 5, 7, and 9, respectively. Color assignments are the same as those
in Figure 6b. Black rectangles indicate the locations where there are significant differences between
results of different methods.

5. Discussion

A new method of combining multiple realizations from the IGSRM algorithm [33] to improve
SRM results was proposed. Qualitative and quantitative analyses in two study areas demonstrated
that, compared with IGSRM and an existing combination method M-SRM [54], the proposed method
not only improves thematic accuracy but also reduces geometric errors in SRM results.

The proposed method first combines multiple super-resolution realizations generated by
IGSRM [33] into a single SRM result using CMR-based combination and then makes further
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improvement with the PPS method. In the first step of the proposed method, CMR-based combination
is proposed to assign a specific class label to each FR-pixel by considering the class frequency at each
FR-pixel calculated from multiple super-resolution realizations from IGSRM and the class proportion
for each CR-pixel, which is a basic requirement of SRM methods. This is different from M-SRM [54],
which only considers the class frequencies from multiple super-resolution results, but not the class
proportions of CR-pixels from original coarse resolution class proportion images.

In the second step of the proposed method, PPS further improves the SRM result by considering
spatial correlation between neighboring FR-pixels. Using the result of CMR-based combination as
input, the PPS only partially changes the spatial arrangement of FR-pixels in a CR-pixel iteratively to
maximize spatial correlation between neighboring FR-pixels.

There are three points of difference between the proposed PPS method and simultaneous
categorical swapping method [46]. First, instead of swapping all FR-pixels as in simultaneous
categorical swapping, only FR-pixels in CMR-based combination results whose class frequencies
are lower than a specified class frequency threshold are swapped. Second, in calculating attractiveness
values, instead of assigning the same weight to each FR-pixel, FR-pixels with a class frequency higher
than a specified threshold are assigned higher weights than those FR-pixels with a class frequency
lower than the specified threshold. Third, in the FR-pixel swapping process of the proposed method,
instead of directly selecting the maximum attractiveness value sum (A5) for swapping, swapping
is performed only when maximum A5 is larger than zero, which avoids a large number of invalid
FR-pixel swaps. Experimental results showed that the proposed PPS method has two advantages
over simultaneous categorical swapping. First, the proposed PPS method produced structures that
were more continuous, as shown in Figures 5 and 8. Second, there were far fewer FR-pixel swaps
in the proposed PPS than in simultaneous categorical swapping because of the reduced number
of swappable FR-pixels and reduced number of invalid FR-pixels swaps. Specifically, in the first
example, for example, at the scale factor of 9, the total number of FR-pixel swaps in the PPS was 46,749
whereas the total number of FR-pixel swaps in simultaneous categorical swapping was 396,900. The
total number of FR-pixel swaps in simultaneous categorical swapping was almost 8.5 times that in
PPS. In the second example, at the scale factor of 9, the total numbers of FR-pixel swaps in PPS and
simultaneous categorical swapping were 45,377 and 949,375, respectively. In summary, the proposed
PPS method outperformed simultaneous categorical swapping for the second step.

In addition, as the scale factor increases, overall accuracies of the SRM results decrease, while
the allocation disagreements and geometric errors increase. At a higher scale factor, classes are more
likely to be located in wrong locations (i.e., higher allocation disagreement), fewer spatial details were
preserved and structures were less continuous and even disappeared. This may be because larger scale
factors increase the number of FR-pixels within a CR-pixel, and make the SRM problem (locating class
labels) more complex [33,35].

It should be mentioned that, although the proposed method is defined for combining multiple
SRM results from IGSRM method, it is also a general framework for combining multiple SRM results
from different SRM methods. Although the proposed method produced very promising results, further
work is still needed to improve the performance. For example, more effective methods of measuring
spatial characteristics, such as shape and connectivity, should be adopted in the SRM.

6. Conclusions

This paper proposed a new method of combining multiple SRM realizations from IGSRM [33]
to address the problems with IGSRM and to improve SRM results. Using multiple SRM results
from IGSRM as input, two major steps were included to produce an improved SRM results. Several
existing methods were used for both individual steps and the whole SRM process to fully evaluate
the proposed method. The experimental results demonstrated that the proposed method achieved
much improved SRM results, compared with SRM results from IGSRM and M-SRM methods, in
terms of thematic accuracy and geometric accuracy. For example, in the first example, the overall
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accuracy of the proposed method is 7.43–10.96% and 1.09–3.44% higher than those of the IGSRM and
M-SRM methods for different scale factors, while, in the second example, the improvements in overall
accuracy are 2.42–4.92% and around 1% higher than those of the IGSRM and M-SRM. Compared with
M-SRM [54], although the improvement in overall accuracy is marginal, the improvements in other
accuracy measures and visual comparison are significant. Furthermore, the proposed method provides
a general framework for combining multiple results from different SRM methods.

The proposed method code is developed in C++. The code and test data are available by contacting
the authors.
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