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Abstract: Tropospheric delay caused by spatiotemporal variations in pressure, temperature, and
humidity in the lower troposphere remains one of the major challenges in Interferometric Synthetic
Aperture Radar (InSAR) deformation monitoring applications. Acquiring an acceptable level of
accuracy (millimeter-level) for small amplitude surface displacement is difficult without proper
delay estimation. Tropospheric delay can be estimated from the InSAR phase itself using the
spatiotemporal relationship between the phase and topography, but separating the deformation
signal from the tropospheric delay is difficult when the deformation is topographically related.
Approaches using external data such as ground GPS networks, space-borne spectrometers, and
meteorological observations have been exploited with mixed success in the past. These methods
are plagued, however, by low spatiotemporal resolution, unfavorable weather conditions or limited
coverage. A phase-based power law method recently proposed by Bekaert et al. estimates the
tropospheric delay by assuming the phase and topography following a power law relationship.
This method can account for the spatial variation of the atmospheric properties and can be applied
to interferograms containing topographically correlated deformation. However, the parameter
estimates of this method are characterized by two limitations: one is that the power law coefficients
are estimated using the sounding data, which are not always available in a study region; the
other is that the scaled factor between band-filtered topography and phase is inverted by least
squares regression, which is not outlier-resistant. To address these problems, we develop and test
a power law model based on ERA-Interim (PLE). Our version estimates the power law coefficients
by using ERA-Interim (ERA-I) reanalysis. A robust estimation technique was introduced in the PLE
method to estimate the scaled factor, which is insensitive to outliers. We applied the PLE method to
ENVISAT ASAR images collected over Southern California, US, and Tianshan, China. We compared
tropospheric corrections estimated from using our PLE method with the corrections estimated using
the linear method and ERA-I method. Accuracy was evaluated by using delay measurements from the
Medium Resolution Imaging Spectrometer (MERIS) onboard the ENVISAT satellite. The PLE method
consistently delivered greater standard deviation (STD) reduction after tropospheric corrections than
both the linear method and ERA-I method and agreed well with the MERIS measurements.
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1. Introduction

Interferometric synthetic aperture radar (InSAR) is a global all-weather remote sensing technique
that can generate a high-precision surface deformation map with a high spatial resolution for large
areas. Typically, a standard frame of ENVISAT ASAR in strip map mode covers approximately 100 km2

with 30 m resolution. Atmospheric delay error, however, poses one of the major challenges to InSAR
geodesy, especially for monitoring deformation signals with small magnitude and long wavelength.
These deformation signals could be due to regional surface subsidence [1], landslides [2], volcanic
eruptions [3], tidal loading [4], tectonic slow slip [5], and earthquakes [6]. Atmospheric delays are
typically introduced by the ionosphere and the troposphere when radio signals propagate through
the atmosphere. Although the observed atmospheric delay in InSAR is due to these two terms, the
major challenge mainly comes from tropospheric delay because of its high spatiotemporal variability.
Spatiotemporal variations in the free electrons of the ionosphere (≥60 km) cause phase advances of
the radio signals that are only significant at higher latitudes and for larger wavelength radar signals,
such as the L and P bands [7]. Tropospheric effects are due to variations in pressure, temperature, and
relative humidity in the lower part of the troposphere (≤12 km) that often lead to phase delays up to
a few decimeters in magnitude and overwhelm the deformation signal of interest [8,9]. This study
focuses on estimating topographically correlated tropospheric delay. We were not concerned with
ionospheric effects because we used only C-band SAR images in our test.

Many methods have been developed to estimate the tropospheric delay on InSAR [10–12]. In
general, the approaches for mitigating tropospheric delay can be classified into two categories: those
using ancillary delay measurements and empirical models based on the interferometric phase itself.

The methods based on ancillary datasets produce synthetic delay maps directly by external
sources such as GPS wet delay measurements [13–15], multispectral imagery such as Moderate
Resolution Imaging Spectroradiometer (MODIS) and Medium Resolution Imaging Spectrometer
(MERIS) [16,17], GPS integrated with spectrometer data [18], and local or global meteorological
reanalysis products [19–21]. The advantages of these methods are their straightforwardness and the
fact that they do not need a priori information about surface deformation and assumptions regarding
the temporal correlation of the troposphere. However, methods using ancillary delay measurements
are limited by the spatiotemporal resolution and coverage of the data source. Furthermore, weather
conditions and sunlight dependency may reduce the quality of the multispectral imagery available for
the study region. Following recent advances in the global atmospheric model (GAM), atmospheric
models are now regarded as the most promising method of tropospheric correction for InSAR [22–26].
GAM provides atmospheric parameters (pressure, temperature, and humidity) that can be applied
to calculate the refractivity equations and determine path delays. The distinctive features of GAMs
include their availability under all weather conditions regardless of cloud presence and relatively high
spatial resolution. The ERA-Interim (ERA-I) has a resolution of ~75 km [27] and the Weather Research
and Forecasting (WRF) model has a resolution of ~7 km [28]. Nevertheless, GAMs do not meet
the high-resolution requirements for InSAR applications and are not acquired simultaneously with
SAR data. Temporal, lateral, and vertical interpolations of atmospheric parameters are necessary for
interferograms. Data interpolation also introduces uncertainties into the corrections. Time differences
are not a problem for MERIS because they are acquired simultaneously with ASAR images. Thus,
MERIS has the best accuracy and can be used to evaluate the performance of other tropospheric
correction methods in ASAR interferograms.

The empirical methods calculate the tropospheric delay from the interferometric phase. The
tropospheric delay ∆φtrop for an individual interferogram is calculated by assuming a linear model
(∆φtrop = Kh + φc) [29,30] between the elevation h and the interferometric phase. K is the scaled factor
that needs to be estimated and φc represents a constant shift that is applied to the entire interferogram.
Several techniques in linear models have been developed to separate the tropospheric signals from
residual orbits, deformation signals, or other phase noises, such as removal of a preliminary estimate
of the deformation signals [31,32], evaluation of a local phase-topography relationship by spatial
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band-filtering that is insensitive to deformation signals [33], and spatially variable consideration
for a piecewise slope correction over multiple windows [34]. The relationship between phase and
topography using such empirical methods, however, depends on the spatial extent of the SAR scene,
which sometimes leads to wrong estimates of spatial variation in the tropospheric stratification [26]. A
power law model (∆φtrop = K′(h0 − h)α) developed by Bekaert et al. [35] can account for the spatially
variable signal in tropospheric delay and can be applied to a region containing topographically
correlated deformation. The two input coefficients h0 and α are estimated from balloon sounding data,
but these data are not always available for a region of interest. These coefficients are empirical and
statistical results and not values estimated for each specific SAR acquisition. These limitations have
been discussed by Bekaert et al. [35] who suggested using weather model data instead of sounding
data to estimate the spatiotemporal variable coefficients, which could further improve the tropospheric
delay estimation. Moreover, the success of the power law method is limited to cases where the relative
delays can be evaluated using the average value of master and slave acquisitions.

In our study, we introduced ERA-I reanalysis products obtained from the European Centre for
Medium-Range Weather Forecasts (ECMWF) instead of sounding data to estimate the coefficients in a
power law model at each SAR acquisition. In our algorithm, which is called the PLE method, we assume
a power law relationship between tropospheric delay and topography. In this instance, the coefficients
α (interferometric tropospheric delay trend) and h0 (constrained height) are sensitively simulated from
the relative tropospheric delay on individual interferograms. Additionally, we introduced an expanded
robust method to estimate the scaled factor between band-filtered topography and phase over multiple
windows throughout each interferogram. As an outlier-resistant regression, the robust method is
better than the least squares regression used in the original power law method. Finally, scaled factor
values were multiple weighted and extrapolated to each pixel. We tested the proposed PLE method
on ENVISAT ASAR images collected over Southern California, United States and Tianshan, China.
Then, we compared these results with those from the conventional linear method and the independent
ERA-I method. The accuracy was evaluated and validated with MERIS measurements. Our PLE
method was derived from the power law method included in the toolbox for reducing atmospheric
InSAR noise (TRAIN) [36]. In addition, we used TRAIN to calculate the linear method, ERA-I and
MERIS corrections.

2. Materials and Methods

2.1. Preparation for InSAR Data and ERA-I Reanalysis

We investigated the correction capabilities of the PLE method on two test regions, Southern
California and Tianshan. In California, we selected eight descending SAR images from the ENVISAT
archives of the European Space Agency centered at 34◦ N, 117.8◦ W, covering an area of ~70 km by
100 km. These images were taken between 12 July 2008 and 25 September 2010 and were acquired
on track 170 at 18:01 UTC (Figure 1a). The images extend from the San Gabriel Mountains (range
of ~3 km elevation) in the north to the Los Angeles Basin area in the south. Significant and vertical
surface displacements were revealed in the basin area (southern part of the interferogram) [37]. For
the Tianshan region, we selected seven descending ENVISAT ASAR images on track 191, spanning the
period from September 2007 to June 2010 and covering an area of ~80 km by 200 km (Figure 1b). The
topography ranges from approximately 1 km to 6 km, extending from the South Tianshan Orogenic
Belt to the Kashi area. The Kashi Depression is one of the most complex active tectonic areas in
the southern flank of Tianshan, China. In the interseismic deformation rate map showing the Kashi
Depression area between 2003 and 2007 obtained by InSAR time series analysis [38], no significant
earthquakes occurred during our study period.

By selecting two different study areas, we can test and assess our PLE method under different
geographical regions and atmospheric conditions. The test region in Southern California lies to the
east and northeast of the Pacific Ocean and therefore has a humid atmosphere rich with atmospheric



Remote Sens. 2017, 9, 765 4 of 23

water vapor, which leads to a dominant stratified delay in the interferogram. Meanwhile, the test
region in Tianshan in Northwestern China is an inland plateau with a semi-arid environment and
a complicated atmospheric process. The atmospheric condition in this region is more turbulent
than that in Southern California. We will discuss the performance of our PLE method under these
two atmospheric conditions in Section 3. In addition, the deformation signals in the two study
regions have different features: the deformation in California is mainly local, small-scale (<5 km) land
subsidence in Los Angeles whereas, in Tianshan, the deformation is mainly large-scale (>10 s km)
tectonic deformation. The different deformation characteristics also affect the band filtering, leading to
selection of different bands, as discussed in Section 2.3.

For interferometric processing, we used the Repeat Orbit Interferometry Package (ROI_PAC) to
focus the raw data and used DORIS to generate interferograms [39,40]. During processing, we used
the precise ODR orbits from the Delft Institute for Earth-Oriented Space Research to minimize the
orbital errors and the Shuttle Radar Topography Mission (SRTM) digital elevation model (30 m) to
remove topographic phase [41]. The differential interferogram was corrected with a plane trend in
the range and azimuth directions for residual orbital errors. All interferograms were multi-looked
by 40 looks in azimuth and 8 looks in range to reduce phase noise and enhance phase unwrapping
accuracy. Before phase unwrapping, the adaptive power spectrum filter was applied to improve the
signal-to-noise ratio of the interferograms [42]. Finally, we obtained five interferograms in California
and four interferograms in Tianshan for our case study and show the spatiotemporal baseline and
coherence parameters in Table 1. We then used a coherence threshold of 0.2 to select coherent pixels, i.e.,
pixels with coherence values lower than 0.2 were discarded. Our test cases had small land deformation
signals because of the short temporal baseline. Therefore, the dominant signals in the interferograms
are contributed by tropospheric delay.
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arranged in an ascending manner and start in the lower left corner. These windows within a 
tropospheric region constrain the delay estimation by a 50% overlap. 
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20080712/20080816 −81 −35 −4.0 0.28 
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20100405/20100614 −153 −70 1.0 0.24 
20100510/20100614 59 −35 −4.4 0.41 

Global and regional reanalysis products provide estimates of atmospheric parameters several 
times a day at different pressure levels. We used the free archived ERA-I model, the latest global 
atmospheric reanalysis product from ECMWF, which is produced based on a 4D variable 
assimilation of global surface and satellite meteorological data. ERA-I provides data (pressure, 
temperature, and relative humidity) at a spatial resolution of 0.7° grid (~75 km), at a 6-h interval (0:00, 
6:00, 12:00 and 18:00 UTC) daily, and on 37 pressure levels from 1989 to the present [27]. Figure 2 
shows the distribution of ERA-I grid points in the two study areas.  

Figure 1. InSAR data coverage for: (a) California; and (b) Tianshan. The background is the SRTM
DEM. Black polygons indicate the illuminated ground area of the entire SAR image and red polygons
represent our study regions. The black circular markers indicate the center of multiple windows
used for the PLE method. The blue dashed and solid lines indicate the moving windows. Windows
are arranged in an ascending manner and start in the lower left corner. These windows within a
tropospheric region constrain the delay estimation by a 50% overlap.

Table 1. Parameters of ENVISAT ASAR interferograms.

California

Date (yyyymmdd) Perpendicular
Baseline (m)

Temporal Baseline
(Days)

Doppler Central
Baseline (Hz)

Average
Coherence

20080712/20080816 −81 −35 −4.0 0.28
20080816/20081025 −13 −70 7.6 0.29
20081025/20081129 −300 −35 −8.2 0.28
20090627/20090905 25 −70 3.0 0.30
20100821/20100925 343 −35 3.1 0.28

Tianshan

20070903/20071112 −68 −70 −4.7 0.42
20090209/20090420 −57 −70 5.8 0.41
20100405/20100614 −153 −70 1.0 0.24
20100510/20100614 59 −35 −4.4 0.41

Global and regional reanalysis products provide estimates of atmospheric parameters several
times a day at different pressure levels. We used the free archived ERA-I model, the latest global
atmospheric reanalysis product from ECMWF, which is produced based on a 4D variable assimilation
of global surface and satellite meteorological data. ERA-I provides data (pressure, temperature, and
relative humidity) at a spatial resolution of 0.7◦ grid (~75 km), at a 6-h interval (0:00, 6:00, 12:00
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and 18:00 UTC) daily, and on 37 pressure levels from 1989 to the present [27]. Figure 2 shows the
distribution of ERA-I grid points in the two study areas.Remote Sens. 2017, 9, 765  6 of 23 
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Figure 2. The distribution of ERA-I grid points for: (a) California; and (b) Tianshan. Black circular
markers indicate the location of the ERA-I grid points at ~75 km spatial resolution. The red points
within the circular markers are the points used for the ERA-I method. Red solid lines outline our test
regions. The background is the SRTM topography. The points within the green rectangles were used
for our PLE method.

2.2. Tropospheric Delay in InSAR Data

A tropospheric delay can be split into hydrostatic, wet, and liquid components depending
on variations in atmospheric conditions. The wet component is the major limiting factor due to
water vapor instability in space and time (approximately 20 mm to 300 mm) [43]. Unlike the wet
delay, temperature and pressure are smooth in space, leading to a better-resolved, longer wavelength
hydrostatic delay, accounting for about 90% of the total tropospheric delay (approximately 2.3 m in
the zenith direction), but it stabilizes in time. The liquid component only becomes significant in a
saturated atmosphere and is expected to be considerably small, measuring less than 0.1 mm/km to
0.4 mm/km under usual weather conditions for the C-band SAR system [9]. We focused only on the
hydrostatic and wet delays, disregarding the effect of the water content in clouds [7]. The total zenith
one-path tropospheric delay can be derived by the integration of air refractivity between the ground z
and the top of the troposphere ztop (typically 15 km), above which the delay is assumed to be nearly
negligible. The zenith hydrostatic and wet delays were projected to the line of sight (LOS) direction,
which is expressed as follows [36]:

δLhyd
LOS(z) =

10−6

cos(θ)

∫ ztop

z
[
k1P(z)
T(z)

]dz (1)

δLwet
LOS(z) =

10−6

cos(θ)

∫ ztop

z
[(k2 −

Rd
Rv

k1)
e(z)
T(z)

+ k3
e(z)

T(z)2 ]dz (2)

δLtotal
LOS(z) = δLhyd

LOS(z) + δLwet
LOS(z) (3)

where δLtotal
LOS(z) is the summation of the hydrostatic delay δLhyd

LOS(z) and the wet delay δLwet
LOS(z), θ the

incidence angle of the ray, P the total atmospheric pressure, e the partial pressure of water vapor in hPa,
and T the temperature in Kelvin. Rd = 287.05Jkg−1 K−1 and Rv = 461.495Jkg−1 K−1 indicate the dry
air and water vapor specific gas constants [44]. The coefficients k1 = 0.776KPa−1,k2 = 0.716KPa−1,
and k3 = 3.75 × 103 K2 Pa−1 are empirical constants [45]. Geopotential height, temperature, and
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relative humidity were extracted from ERA-I reanalysis at each SAR acquisition. We then converted
the geopotential height to a regular vertical metric grid by mapping g0 (g0 ≈ 9.8ms−2) with latitude.
The partial pressure e was estimated from the relative humidity by a mixed Clausius–Clapeyron law
as shown in the following equations [21].

e(z) = e∗(z)
Re(z)
100

(4)

e∗(z) =


e∗w(z) = a1e

a3,w
T(z)−T0

T(z)−a4,w T(z) ≥ T0

e∗i (z) = a1e
a3,i

T(z)−T0
T(z)−a4,i T(z) ≤ Ti

e∗i (z) +
(
e∗w(z)−

(
e∗i (z)

)) T(z)−Ti
2

T0−Ti T0 < T(z) < Ti

(5)

where e∗(z) represents the partial pressure of saturation water vapor, Re is the relative humidity, e∗w(z)
provides the Clausius–Clapeyron law “over water“, and e∗i (z) gives the Clausius–Clapeyron law “over
ice“. Over T0 = 273.16 K, e∗w(z) is used, and under Ti = 250.16 K, e∗i (z) is used and a weighted average
of both is used in between. The parameter values are a1 = 611.21 hPa, a3,w = 17.502, a4,w = 32.19 K,
a3,i = 22.587 K, and a4,i = −0.7 K.

Providing meteorological parameters such as temperature, pressure, and water vapor partial
pressure, we can use Equations (1)–(3) to calculate the relative tropospheric delay ∆Ltm ,ts

LOS (z) for
interferograms generated from SAR acquisitions acquired at time tm and ts (Equation (6)). Thus, the
relative tropospheric phase delay ∆φtm ,ts

LOS for the interferograms is easily derived by differentiating
delays at acquisition times tm and ts, as shown in Equations (6) and (7).

∆Ltm ,ts
LOS (z) = δLtotal

LOS(z, tm) − δLtotal
LOS(z, ts) (6)

∆φtm ,ts
LOS (z) = −

4π

λ
∆Ltm ,ts

LOS (z) (7)

In California, we used ERA-I outputs acquired at 18:00 UTC, which has a negligible difference
with the SAR acquisition (18:01 UTC). In Tianshan, we selected ERA-I outputs at 00:00 UTC and
06:00 UTC, which are closest to the SAR acquisition (05:12 UTC). The linear interpolation in time
was applied to obtain the corresponding delay at the SAR acquisition. By using Equations (1)–(5),
we compute the total tropospheric delay on each ERA-I grid point within the blue rectangle in
Figure 2. The resulting vertical profiles of delay are vertically interpolated using a spline interpolant
and horizontally interpolated to each pixel in the SAR scene using a bilinear interpolant. Finally,
we obtain the relative tropospheric delay for the interferogram by differentiating delay maps at
each SAR acquisition (Equations (6) and (7)). Time and space interpolations, which can introduce
uncertainties into delay corrections, are needed because of the low spatiotemporal resolution of the
ERA-I model. However, our proposed PLE method is a phase-based method that estimates atmospheric
contributions from the interferometric phase itself. Thus, an interpolation such as that in the ERA-I
method is not required, avoiding the uncertainties introduced by poor interpolation. The details of
the derivational processes and our corresponding strategies for data processing are discussed in the
following subsections.

2.3. Power Law Model Based on ERA-I Reanalysis (PLE)

The relationship between the absolute tropospheric delay and elevation can be illustrated by a
power law model, as shown in Equation (8) [35]. Similar to Bekaert et al. [35,36], we estimate hc and
α from the tropospheric delay curves. α is the slope of the mean delay curve in the log-log domain
and hc is the constrained height where the standard deviation and average value of the relative delays
are both smaller than 1.0 rad (~0.45 cm). Figure 3 shows the vertical profile of the tropospheric delay
in the California test region estimated using ERA-I reanalysis on six grid points located in the green
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rectangle in Figure 2a. The absolute tropospheric delay at SAR acquisitions 20090627 and 20090905 are
shown in Figure 3a,b. The relative tropospheric delay (∆φtm ,ts

LOS ) on the interferogram formed by these
two images is shown in Figure 3c. By plotting the mean relative tropospheric delay (black solid line)
against the reference elevation [(hc − h)α], we can determine the power law relationship (red dashed
line) indicated by the linear pattern.

∆φtrop = K(hc − h)α + φc (0 ≤ h ≤ hc) (8)

where K is a scaled factor that relates tropospheric delay to topography, α is the coefficient describing
the power law model estimated by ERA-I reanalysis, and φc is the phase delay at hc, indicating the
relative phase-delay offset on an individual interferogram.
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Figure 3. Mean delay and fitted power law with respect to the elevation. The black solid line represents
the corresponding phase delay calculated from the ERA-I data at six grid points (18:00 UTC) on
interferogram 20090627/20090905 in California. The points are shown within the green rectangle in
Figure 2a. The red dashed line shows the best fit line using the power law model. The black dashed
line indicates the maximum height of the InSAR region. (a,b) The tropospheric delays for the master
and slave acquisitions show a near power law function with α being 1.18 and 1.19. The delay offset
at the height of 4.7 km was added back after a log-log linear estimation. (c) The relative tropospheric
delay shows a power law relationship relationship (α = 1.39).

Figure 3c shows that at a specific altitude (~5 km) the relative delays converged but the delays
at master and slave acquisitions did not. The difference in α was found to be considerably small
and the average value (~1.2) was often used when using the power law method. However, in many
cases, the average α could not indicate the relationship between the phase and topography because
the interferometric phase is the phase difference between the master and slave acquisitions. Thus,
tropospheric delay depends on the change in refractivity rather than the absolute refractivity in each
acquisition. The differences in α among different interferograms was found to be as high as 0.2 in our
case, leading to a relative tropospheric delay change in 10 s of rad. To address this problem, we directly
estimated α on each interferogram from the ERA-I reanalysis. Similar to the absolute tropospheric
delay at SAR acquisition, the relative tropospheric delay on the interferogram also decreases with
elevation and does not change significantly and converged when a certain height hc is reached. Thus,
the tropospheric delay above this constrained height is negligible.

After estimating the power law relationship, we set hc at a fixed value by controlling the offset φc.
α was also estimated by plotting the slope of the log-log relationship between phase and topography,
which were the constants for a given interferogram. However, the scaled factor is not a constant for an
entire interferogram and is not easy to estimate due to the spatially variable tropospheric delay.

Interferometric phases are a superposition of multiple signals, including tropospheric delay,
deformation, and residual orbit errors, in which wavelengths contain a multi-scale dependent spectrum
and may have different sensitivities to one another. For example, tropospheric signals contain short
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wavelength-scale (few kilometers) components and are introduced by turbulent components in the
troposphere. Long wavelength-scale (tens of kilometers) components are introduced by hydrostatic and
wet delays due to weather condition variations and are partly correlated with topography. In addition,
longer wavelength-scale (hundreds of kilometers) components introduced by ground deformation
such as tidal loading, tectonic slow slip, or earthquakes may be more sensitive to other sources of
confounding noises. Therefore, the selection of the band filter is not always trivial, as it requires
empirical information about multi-scale dependent spectrums. However, we took advantage of
the fact that the tropospheric signal is present at all wavelength scales to estimate the scaled factor
from a spatial frequency band that was relatively insensitive to the other signals [33]. Similar to
the original power law method [35,36], band filtering was applied to the phase and topography to
select an appropriate band such that other phase contributions were negligible. Thus, we can modify
Equation (8) into the following [35]:

∆φtrop, f ilt = Kl(hc − h)α
f ilt (0 ≤ h ≤ hc) (9)

∆φtrop = Km(hc − h)α (0 ≤ h ≤ hc) (10)

where ∆φtrop, f ilt is the tropospheric delay fitted by the band-filtered phase ∆φ f ilt and reference height
(hc − h)α. h in Equation (9) is the elevation of pixels extracted from SRTM DEM and in Equation (8) is
the elevation of the ERA-I outputs. hc is the constrained height. Kl is the local scaled factor estimated in
a moving window for an interferogram. Km is the spatially variable factor calculated by multi-weighted
Kl . The band filtering would not change the scaled factor estimates only if there are contaminated
signals. ∆φtrop is the final estimated tropospheric delay on interferograms. α was estimated based on
ERA-I reanalysis.

To introduce band-filtering artifacts conveniently, we removed the initial shift from interferometric
phases. This shift was a long wavelength component that was filtered out later. We estimated the shift
from interferometric phases over multiple windows, which varied in space and was influenced by
other phase contributions. Therefore, in many cases, the shift cannot exactly represent the tropospheric
delay offset and cannot be estimated from a spatial band that is insensitive to other phase signals.

Finally, we used Equation (9) to estimate the local factor Kl between the band-filtered phase
and topography, where the band was selected such that the contribution from other signals was
negligible. Accounting for spatially variable tropospheric delays, we applied a moving window to
the interferogram. The window was moving from the bottom to the top in the azimuth direction and
from the left to the right in the range direction (Figure 1a). Over each window, the local band-filtered
phase-topography relationship was analyzed and Kl was estimated. The local robust estimation of Kl
plays a critical role in increasing the accuracy of tropospheric delays. An expanded robust technique
was used to estimate Kl in each window, which can reduce the sensitivity to outliers (e.g., due to
residual deformation signal or other measurement error sources) [46]. The error equation can be
constructed based on Equation (9) as follows:



v1

v2
...

vi
...

vN


=



(hc − h)α
f ilt,1

(hc − h)α
f ilt,2

...
(hc − h)α

f ilt,i
...

(hc − h)α
f ilt,N

1
1
...
1
...
1


[

Kl
φl

]
−



∆φtrop, f ilt,1
∆φtrop, f ilt,2

...
∆φtrop, f ilt,i

...
∆φtrop, f ilt,N


V A X̂ L

(11)

where vi, ∆φtrop, f ilt,i and φl represent the random error, band-filtered phase, and a constant shift for
the ith pixel on a local window, respectively. N represents the number of pixels on the local window.
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The parameter estimator can be derived based on the adjustment principle of least squares,
as follows:

X̂ = (ATPA)
−1

ATPL (12)

where P represents the equivalent weight matrix of the vector L. The ith diagonal element of P is
calculated by pi = piwii. wii is the corresponding weight factor calculated by the function of IGGIII [47].
The parameters X̂ can be robustly and reliably estimated by an expanded robust estimation [46] given
that the initial value of the equivalent weight matrix was set. When the parameters are estimated,
the covariance matrix of the estimates can be obtained through variance propagation in Equation (12)
as follows:

DX̂ = σ̂2
0 (A

TPA)
−1

(13)

where σ̂2
0 is the corresponding variance factor of the unit weight.

When the Kl of each window was estimated, a multiple weighted and extrapolated method was
applied to all pixels in the interferograms. The multi-weighted function was constructed with the STD
of the Kl estimate and the distance from the window centers to each pixel (Equations (14)–(16)).
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Wj,k = Gj,k · Sj,k(j = 1, 2 · · ·N, k = 1, 2 · · · n) (15)

Km (N × 1) =
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where S represents the reformed weights of the STD from the robust estimation (Equations (13)). G
represents the Gaussian distribution based on the distance. si is the ith STD of Kl in the ith window.
The multiple weights W are a N × n matrix. Km is the final derived scaled factor for all pixels in
Equation (10). N is the number of pixels, and n is the number of windows for the entire interferogram.
Figure 4 shows the flow chart of the PLE method on the interferogram.

The PLE method can account for lateral variations in space by estimating Km in multiple windows
and can be applied in regions without removing a preliminary deformation [33]. The robust estimation
technique is always available in each study area for a given day at a closet SAR acquisition. However,
the selection of the band filter is not always trivial because it requires empirical information on
multi-scale dependent spectrums. A potential option is to perform a statistical analysis of multiple
spatial bands to select the appropriate bands. We compared the mitigation results of multiple bands
with the corresponding unwrapped interferograms, expecting the largest reduction in STD if this band
exhibits the best performance. The STD for each interferogram before and after correction using the
PLE method by different spatial band filters is shown in Figure 5. The STD significantly varies between
different bands in California (mean STD of 8.6 mm) than in Tianshan (mean STD of 7.1 mm). The
arrows in Figure 5, which were selected for each interferogram, represent the bands with the largest
reduction in STD. The spatial band-filtering approach relies on the manifestation of tropospheric
delay at all spatial scales; often, the deformation signal may be at specific spatial wavelengths.
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However, determining the spatial bands, which are the representatives of the tropospheric delay,
can be challenging. Apart from the deformation signal, turbulent and coherent tropospheric features,
DEM errors, and orbital errors, which contaminate the spatial bands, can also be observed. Therefore,
different deformation features, atmospheric conditions, possible DEM errors and orbit errors for
different interferograms, as well as different topographic variations for different study regions lead to
the different spatial bands, as selected in Figure 5.
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Figure 4. Flow chart of tropospheric delay estimation using the PLE method for an interferogram:
(1) log-log fitting Equation (8) to obtain α and hc based on ERA-I reanalysis; (2) extracting elevation
h for all pixels from SRTM DEM; (3) and (4) band filtering in the corresponding spatial wavelength;
(5) expanded robust estimation for local Kl (Equation (9)) and DX̂ (Equation (13)) in each window;
(6) local Kl values are extrapolated to each pixel using the multi-weighted method (Equations (14)–(16));
and (7) calculating the final tropospheric delay using Equation (10).
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Figure 5. Comparison of mitigation results of different spatial bands for each interferogram in:
(a) California; and (b) Tianshan. The different color bars represent different interferograms. Upper
panel represents STD of the unwrapped interferograms (hollow bars) compared to the residual STD
after correcting the tropospheric delay derived from the PLE method (filled bars). Lower panel
represents reduction of STD after delay correction of different spatial band filters. Arrows were selected
for each interferogram to indicate the bands with the largest reduction in STD.

3. Results and Discussion

We applied our proposed PLE method to the Southern California and Tianshan study areas
and compared tropospheric corrections estimated from the linear and ERA-I methods. Accuracy
was evaluated by using the unwrapped SAR interferograms and validated by comparing the delay
measurements from the passive multispectral imager MERIS onboard the ENVISAT satellite.

3.1. Estimation of PLE Parameters

The study by Bekaert et al. [35] assumed that α and hc are constants for the study region and for
each interferogram and estimated them by using sounding data. In our study, we assumed that the
coefficients change with time (i.e., they are different for each interferogram), and instead of sounding
data, we used ERA-I reanalysis to estimate these two coefficients, as shown in Figure 6. The relative
delay curves can be fit by a power law function, and the coefficients vary with different interferograms.
The success of the PLE method is limited to the cases in which the relative delays can be reasonably
approximated by a power law function.
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Figure 6. Examples of constrained height hc and power law coefficient α for our study area in California.
Both coefficients were estimated by using ERA-I. We set hc to the altitude for which the STD and average
value of the relative delay offsets are both less than 1.0 rad (~0.45 cm).

The sounding data have extremely low spatiotemporal resolution (only provide data twice per
day). ERA-I reanalysis provides data at a relatively high spatiotemporal resolution (at six-hour
intervals daily). Therefore, we can estimate the two coefficients from the statistical results of the
tropospheric delay difference based on spatial variation, the values of which are estimated for each
specific SAR acquisition. We used ERA-I reanalysis to calculate the relative delay curves at six grid
points (the red points inside the green rectangle in Figure 2a), and determine hc by constraining the
STD and average value. Then, we used the mean relative curves to estimate α by fitting a power law
function. As shown in Figure 7, we set hc from the statistical results of the combinations of relative
delay curves (difference of delay at two different days). Relative tropospheric delays (hydrostatic
delay + wet delay, shown in Figure 7a) and wet delays (Figure 7b) are computed from ERA-I reanalysis
in California for 120 days (18:00 UTC) between June and October 2009. The data could empirically
represent the delays for interferogram 20090627/20090905 (example in Figure 3). The relative delays
did not change significantly at a certain height (red arrows) and converged (red dashed lines) at a
specific height hc of 12.8 km (Figure 7a); wet delays converged at the height of 6.8 km (Figure 7b). The
constrained height for total tropospheric delays was higher than that for wet delays. This case shows
that hydrostatic delays affected the estimation of the constrained height and cannot be simply ignored
in the interferograms. However, the relative delays have an obvious tendency to converge at a certain
height (indicated by red arrows in Figure 7a); this height value is extremely close to the convergent
height for the wet delays, as shown in Figure 7b. Therefore, we set the constrained height to ~5 km,
which is lower than the temporal statistics of the tropospheric delays, but near the wet delays. In our
experiment, the constrained heights, which are specifically estimated from ERA-I reanalysis by spatial
statistics, are generally lower than the global results from temporal statistics.
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To verify the effectiveness of our robust estimation method, we tested the approach on InSAR 
data from interferogram 20081025/20081129 in California. The dataset is shown in Table 1. The 
interferometric phase and the reference height are both band filtered in the 2–32 km spatial 

Figure 7. Relative tropospheric delays computed from ERA-I reanalysis in California for 120 days
(18:00 UTC) between June and October 2009. Relative delay curves are 800 combinations of
the tropospheric delay difference at different days, covering the acquisition for interferogram
20090627/20090905 (example in Figure 3). The relative delays did not change significantly at certain
height (red arrows) and converged (red lines) at a specific height hc of 12.8 km. The STD of the relative
curves is less than 1 rad. (b) Wet delays converged at the height of 6.8 km. The delays are calculated by
integrating the refractivity from surface upward (15 km) and projecting to LOS direction.

The local robust estimation of the scaled factor Kl in each window plays a critical role in increasing
the accuracy of tropospheric delays. As described in Section 2.3, we used a robust technique to estimate
Kl to avoid the impact from outliers. We can account for the spatial variation of tropospheric delay
by applying the PLE method. The spatial variation maps of Km are shown in Figure 8. The PLE
method splits the study region into 16 blocks with an overlap area of 50% in our study. The partially
overlapping windows can reduce edge effects and ensure adjacent consistency.
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To verify the effectiveness of our robust estimation method, we tested the approach on InSAR
data from interferogram 20081025/20081129 in California. The dataset is shown in Table 1. The



Remote Sens. 2017, 9, 765 15 of 23

interferometric phase and the reference height are both band filtered in the 2–32 km spatial wavelength.
We calculated the STD of the scaled factor estimates by assuming a linear model using the least
squares and robust estimation methods. Although the dominant signals in the original band-filtered
phases are contributed by topographically-correlated tropospheric delays, we can still detect some
outlier rejection phases (72, indicated by red points in Figure 9a). The improvement in the STD values
is ~10%. As shown in Figure 9b, we applied these two methods to the original band-filtered data
with extra simulated outliers (200), which are randomly introduced to the locations. We detected
248 outlier rejection phases (recognition rate is ~91%, indicated by red points in Figure 9b), which
do not contribute in estimating the scaled factor. The improvement of STD is ~15%. Figure 9c shows
the relationship between improvement of STD and pollution rate of the data. Before a specific outlier
percentage (~22%, indicated by the arrow in Figure 9c), the improvement of STD consistently increased
with increasing outlier percentage. Then, when the outlier percentage is high, the improvement of
STD decreases. When the outlier percentage is close to ~50%, the least squares regression and robust
estimation would be ineffective. These results suggest that the robust estimation method yields the
scaled factor robustly and reliably.
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Figure 9. Examples to test the effectiveness of robust estimation. (a) Outlier rejection results of robust
estimation for the original band-filtered data obtained from interferogram 20081025/20081129 in
California. (b) Results of robust estimation for the original band-filtered data with extra simulated
outliers, which are randomly introduced to the locations. (c) Improvement of STD by robust estimation
compared to least squares regression. The average STD improvement (red curve) is calculated from
the datasets of 10 simulations. The arrow in (c) indicates the outlier percentage (~22%) with the
largest improvement of STD. Gray points in (a) and (b) represent the band-filtered phases, which
are considered as “clean observations” without containing outliers. Blue points are suspected to
contain outliers (corresponding weights are reduced). Red points are considered to contain outliers
(corresponding weights are set to zero), which do not contribute in estimating the scaled factor.

3.2. Estimation of Tropospheric Delays

We evaluated the performance of our PLE method through a comparison with the conventional
linear and ERA-I methods. In addition, the accuracy was validated with the MERIS in California [16].
We implemented the linear, ERA-I, and MERIS corrections, which are included in TRAIN. No MERIS
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data are available for comparison in Tianshan. MERIS-derived delay prediction is only used when the
cloud coverage is less than 20% of SAR scene. The map of tropospheric wet delay was calculated from
the MERIS precipitable water vapor (PWV) as follows:

φwet
tropo = −4π

λ

Π
cos(θ)

∗ PWV (17)

where Π is conversion factor given by Bevis et al. [48] as

Π = 10−6ρwRv[
k3

Tm
+ k2 − wk1] (18)

where ρw is the density of liquid water, w is the ratio of molecular masses of water vapor and dry air
(w ≈ 0.668), and Tm is the weighted average of the temperature between the ground and reference
height, as follows:

Tm(z) =

∫ ztop
z e/Tdz∫ ztop

z e/T2dz
(19)

We evaluated the Tm at each pixel of interferogram using the atmospheric outputs from ERA-I to
produce a map of Π. We then calculated the tropospheric wet delay by multiplying the MERIS PWV
by Π, as shown in Equation (17). Values of Π that typically range from 5 to 7 with an average value of
6.2 are usually adopted [16]. To validate our approach, we also added the hydrostatic delay derived
from ERA-I to the MERIS wet delay to determine the total tropospheric delay.

Figure 10 shows examples of the tropospheric delays produced from the four methods for each
test region. The interferograms are mainly caused by tropospheric delays, which are topographically
correlated. The tropospheric delay is the sum of two components, namely, stratified delay and turbulent
delay. The stratified delay is the result of different vertical refractivity profiles from the two SAR
images; it mainly affects mountainous terrain and shows a strong correlation with topography. The
turbulent delay results from turbulent processes in the atmosphere and affects flat terrain as well as
mountainous terrain. The spatiotemporal filtering in InSAR time series methods cannot estimate the
tropospheric delay because the seasonality of delay is underestimated [21]. Therefore, we used the PLE
method to estimate the stratified delay for each individual interferogram. The PLE method, however,
similar to all phase-based methods, is not suitable in cases where significant turbulence mixing occurs.
Therefore, we only focus on estimating the topographically correlated tropospheric delay that often
dominates the tropospheric signal on an interferogram. The linear method (∆φtrop = Kh + φc) assumes
a simple phase-topography relationship for the entire interferogram; therefore, it does not allow for
spatially variable tropospheric delay.
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Figure 10. Examples of tropospheric delay estimated by different methods in: (a) California; and (b)
Tianshan. Columns represent the unwrapped interferograms, and the estimated tropospheric delays
using MERIS, the linear, ERA-I, and PLE methods (from left to right). All observations are converted to
displacements in LOS.

Figure 10 shows that all these methods indicate delays with similar spatial distribution and
magnitude. Discrepancies can also be observed between the four estimated tropospheric delays in
California and Tianshan. MERIS-estimated tropospheric delays show a strong resemblance to the
unwrapped interferograms because they were acquired simultaneously with ASAR images with
high precision. The ERA-I method shows delays with an accurate location, but not always with a
similar order of magnitude (e.g., interferogram 20100405/20100614 in Tianshan). This condition is
partly due to an inaccurate interpolation of the ERA-I reanalysis outputs. The phase-based methods
(the linear and PLE) assume a phase-topography relationship; thus, they are incapable of capturing
turbulent signals. Although the ERA-I method can capture the spatial trends of tropospheric delay
accurately in a region, this method cannot capture the higher gradients in the turbulent delay (e.g.,
interferogram 20080712/20080816 in California). MERIS delays, shown in Figure 10a, also contain the
hydrostatic component estimated from ERA-I, allowing for comparison with the phase-based methods.
The hydrostatic delay component is related to the ratio of atmospheric pressure P and the surface
temperature T at the scale of an interferogram (typically 100 km). The spatial variations of pressure
are usually small, typically at an order of magnitude of 1 hPa, whereas larger variations in water
vapor partial pressure are common. Consequently, the differential wet delay usually overwhelms
the differential hydrostatic delay on the interferogram. Therefore, most correction methods focused
on estimating the wet delay. Doin et al. [49] validated the seasonal change in hydrostatic delay with
temperature in seasonal fluctuations and pointed out that hydrostatic delay must be considered when
the change in the local temperature is more than 10◦ within one year. Figure 11 shows the relation
between height and hydrostatic delay estimated using ERA-I method and the magnitude of hydrostatic
delays can reach 1 rad. This condition demonstrates that the hydrostatic delay cannot be simply
ignored on the interferograms.
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Figure 11. Relationship between height and hydrostatic delay estimated from ERA-I method in California.
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3.3. Statistical Comparison of Tropospheric Correction Methods

We performed a statistical analysis to compare tropospheric delays estimated from the four
correction methods (MERIS, the linear, ERA-I, and PLE methods) to the unwrapped interferograms.
In Figure 12, we performed the comparison by plotting the interferometric phase before and after
correction against the elevation for interferograms presented in Figure 10. Figure 12a shows that all
these methods were effective in mitigating topographically correlated tropospheric delays in California.
The slope between the corrected phases and elevation reduced in all correction methods. However,
limited improvements were found in Tianshan, as shown in Figure 12b because the tropospheric
delays do not show a strong relationship with topography, and might have mainly resulted from the
turbulent delay. After using ERA-I for corrections, the results even deteriorated due to the low spatial
resolution of the reanalysis, indicating that ERA-I could introduce atmospheric estimation error into
the final displacement results because of the uncertainties produced by the interpolation operation.
However, the PLE method always yielded effective delay mitigation, as shown by STD reduction
after tropospheric correction using the three different tropospheric techniques. We expect a high STD
reduction when a method performs efficiently. As shown in Figure 13, the left panel shows the STD of
the unwrapped interferograms, whereas the right panel shows the residual STD after correction using
the different tropospheric estimation methods.
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In California, all methods are effective in mitigating tropospheric delays, leading to STD reduction.
MERIS, on average, provides better STD reduction (~41%) than the linear method (~33%) and ERA-I
(~23%). The MERIS results in STD reduction are approximately equal to the MERIS ~1.8 rad accuracy
level computed using the measured ~1.1 mm PWV accuracy (brown symbols in Figure 13a) [16].
Moreover, MERIS delays containing hydrostatic component from ERA-I showed better reduction
(average value was ~2%) than those without hydrostatic component. The average STD reduction of
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the residuals after correction using MERIS without and with hydrostatic delay is ~39% and ~41%,
respectively. Therefore, we cannot simply ignore the hydrostatic delay effect. Unlike ERA-I, no
uncertainty is introduced through temporal interpolation for MERIS because MERIS measurements
were acquired simultaneously with ASAR images. Figure 13a shows that ERA-I yielded an average
STD reduction of ~23% (blue symbols), which was the worst among the four methods. This result
was probably due to the low spatial resolution. The phase-based methods, mainly designed to
resolve the topographically correlated delay, can retrieve the tropospheric delay; the PLE and the
linear methods provide an STD reduction of ~42% and ~33%, respectively. Thus, the PLE method
performed better than the linear method because the PLE method can account for the spatial variation
of tropospheric delay, whereas the conventional linear model cannot. The tropospheric delays in the
region of California are mainly the stratified delays that are strongly correlated with topography (also
shown in Figure 12a). Thus, the phase-based methods performed well in this area. The PLE method
given that it is applied locally is more subjected to contamination from various tropospheric delay
components present at different spatial scales than the global linear method. For example, for the
interferogram 20081025/20081129, the STD reduction is ~37% after the linear correction, whereas
the reduction is ~29% after the PLE method. Considering that both phase-based methods have the
potential to introduce inaccurate signals in the presence of serious turbulence and coherent short-scale
tropospheric signals, neither of them should be applied in those cases.

In Tianshan, MERIS-derived tropospheric delays were not available for comparison. We did not
observe an improvement when using ERA-I except for interferogram 20090209/20090420 (blue symbols
in Figure 13b). On average, STD increased (increase ~57%) rather than decreased after correction
using ERA-I. The two possible reasons for this deterioration are as follows. First, the requirement for
temporal, lateral, and vertical interpolations of the atmospheric parameters introduces uncertainties
into the delay estimations. Second, the turbulent process in the atmosphere in Tianshan often appears
due to the high altitude and complicated terrain. Parts of the tropospheric delays on the interferograms
are mainly the small-scale turbulent delay, which cannot be captured by ERA-I. For phase-based
methods, we found slight improvements, with an average reduction in STD of ~10% and ~13% for the
linear and PLE methods, respectively.
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tropospheric delays are correlated with topography, and agrees well with MERIS measurements. 
Moreover, the success of our PLE method is limited to the cases in which the relative delays can be 
reasonably approximated by a power law function. The main limitation of the robust estimation 
technique in the PLE method is that the algorithm should be implemented iteratively; thus, its 
computational efficiency is lower than that of least squares regression. From our analysis, each 
method has its limitations, which vary with the region of application and with time. In future work, 
we will identify suitable metrics and combine different tropospheric estimation methods, which 
could further improve the accuracy of InSAR processing. 

4. Conclusions 

We developed and tested a method to estimate the tropospheric delay in radar interferogram 
using a power law model based on ERA-I reanalysis. The PLE method is a modification of the power 
law method proposed by Bekaert et al., which mainly has two novelties: one is that the power law 
coefficients are estimated using ERA-I reanalysis instead of the sounding data, which is usually 
available in a study region; the other is that the scaled factor is estimated using the robust estimation 
technique instead of least squares regression, which is outlier-resistant. To separate deformation and 
tropospheric signals, a frequency band insensitive to deformation is tested and selected in the study. 
The PLE method splits a region into multiple blocks (approximately 100 km2 in our study) and 
estimates the scaled factor robustly to capture the spatial variations of tropospheric delay in lager 
regions. We tested the PLE method on ENVISAT ASAR images in Southern California and Tianshan, 
which have different geographical regions and atmospheric conditions. In our study regions, the 
iterative calculation approach applied in the PLE method is relatively straightforward and efficient 
when estimating tropospheric delay.  

We performed a comparison of the tropospheric corrections estimated from the conventional 
linear, independent ERA-I, and PLE methods. The accuracy was evaluated by corrected SAR 
interferograms and was validated by using MERIS measurements. After correction, our PLE method 
had greater reduction in the topographically correlated tropospheric signals than the conventional 
linear and ERA-I methods. Moreover, our method improved the agreement with delay measured 
from MERIS. The success of the PLE method is limited to cases in which the relative delays can be 
reasonably approximated by a power law relationship between topography and phase. The main 
limitation of the robust estimation technique in the PLE method is that the algorithm should be 
implemented iteratively; thus, its computational efficiency is lower than that of least squares 
regression. Each method has its limitations in different regions and at different times. Therefore, in 

Figure 13. Comparisons between different tropospheric correction methods in: (a) California; and
(b) Tianshan. Left panel: STD of the unwrapped interferograms. Right panel: STD after correction
of the tropospheric delay with different methods (colored symbols). Other illustrations show the
STD reduction. Point, circle, cross, and square symbols correspond to different interferograms, and
triangular symbols represent the average value. Wet delay components are indicated by (w) and
hydrostatic delay components by (h).

In conclusion, the PLE method outperforms the linear and ERA-I methods in the regions where
tropospheric delays are correlated with topography, and agrees well with MERIS measurements.
Moreover, the success of our PLE method is limited to the cases in which the relative delays can be
reasonably approximated by a power law function. The main limitation of the robust estimation
technique in the PLE method is that the algorithm should be implemented iteratively; thus, its
computational efficiency is lower than that of least squares regression. From our analysis, each method
has its limitations, which vary with the region of application and with time. In future work, we will
identify suitable metrics and combine different tropospheric estimation methods, which could further
improve the accuracy of InSAR processing.

4. Conclusions

We developed and tested a method to estimate the tropospheric delay in radar interferogram
using a power law model based on ERA-I reanalysis. The PLE method is a modification of the power
law method proposed by Bekaert et al., which mainly has two novelties: one is that the power law
coefficients are estimated using ERA-I reanalysis instead of the sounding data, which is usually
available in a study region; the other is that the scaled factor is estimated using the robust estimation
technique instead of least squares regression, which is outlier-resistant. To separate deformation
and tropospheric signals, a frequency band insensitive to deformation is tested and selected in the
study. The PLE method splits a region into multiple blocks (approximately 100 km2 in our study) and
estimates the scaled factor robustly to capture the spatial variations of tropospheric delay in lager
regions. We tested the PLE method on ENVISAT ASAR images in Southern California and Tianshan,
which have different geographical regions and atmospheric conditions. In our study regions, the
iterative calculation approach applied in the PLE method is relatively straightforward and efficient
when estimating tropospheric delay.

We performed a comparison of the tropospheric corrections estimated from the conventional linear,
independent ERA-I, and PLE methods. The accuracy was evaluated by corrected SAR interferograms
and was validated by using MERIS measurements. After correction, our PLE method had greater
reduction in the topographically correlated tropospheric signals than the conventional linear and
ERA-I methods. Moreover, our method improved the agreement with delay measured from MERIS.
The success of the PLE method is limited to cases in which the relative delays can be reasonably
approximated by a power law relationship between topography and phase. The main limitation of the
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robust estimation technique in the PLE method is that the algorithm should be implemented iteratively;
thus, its computational efficiency is lower than that of least squares regression. Each method has its
limitations in different regions and at different times. Therefore, in some cases, different tropospheric
estimation methods should be combined due to the complicated geological structure of the earth and
the variability in the atmospheric circulation.
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