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Abstract: Estimation of impervious surface area is important to the study of urban environments
and social development, but surface characteristics, as well as the temporal, spectral, and spatial
resolutions of remote sensing images, influence the estimation accuracy. To investigate the effects of
regional environmental characteristics on the estimation of impervious surface area, we divided China
into seven sub-regions based on climate, soil type, feature complexity, and vegetation phenology:
arid and semi-arid areas, Huang-Huai-Hai winter wheat production areas, typical temperate regions,
the Pearl River Delta, the middle and lower reaches of the Yangtze River, typical tropical and
subtropical regions, and the Qinghai Tibet Plateau. Impervious surface area was estimated from
Landsat 8 images of five typical cities, including Yinchuan, Shijiazhuang, Shenyang, Ningbo, and
Kunming. Using the linear spectral unmixing method, impervious and permeable surface areas
were determined at the pixel-scale based on end-member proportions. We calculated the producer’s
accuracy, user’s accuracy, and overall accuracy to assess the estimation accuracy, and compared the
accuracies among images acquired from different seasons and locations. In tropical and subtropical
regions, vegetation canopies can confound the identification of impervious surfaces and, thus, images
acquired in winter, early spring, and autumn are most suitable; estimations in the Pearl River Delta,
the middle and lower reaches of the Yangtze River are influenced by soil, vegetation phenology,
vegetation canopy, and water, and images acquired in spring, summer, and autumn provide the
best results; in typical temperate areas, images acquired from spring to autumn are most effective
for estimations; in winter wheat-growing areas, images acquired throughout the year are suitable;
and in arid and semi-arid areas, summer and early autumn, during which vegetation is abundant,
are the optimal seasons for estimations. Knowledge of optimal time frames, multi-source data, and
intelligent algorithms should be integrated to reduce spectral confusion and improve the estimation
of impervious surface area from Landsat 8 OLI imagery.
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1. Introduction

The spatial distribution of impervious surfaces influences surface hydrology, heat accumulation,
and conduction. Thus, these land types are a source of environmental concern in developed areas.
The high density of impervious areas in urban centers corresponds to low vegetation density, and
the temperature of urban areas is significantly higher than in surrounding suburbs, causing a
heat island effect [1–3]. Due to the lack of surface water infiltration, urban water resources are
growing increasingly sparse [4]. During the rainy season, storm runoff stresses urban drainage
systems, reduces flood duration, increases peak flow, and causes a large number of problems
associated with urban waterlogging [5]. To cope with common ecological and environmental problems,
scientists have introduced the concept of sustainable urban construction, such as “sponge cities”,
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“ecological cities”, etc. Impervious surfaces also are an important entity of human life and production,
and their extensive spatial distribution reflects the intensive use of urban land [6]. Time series of
impervious surface areas provide information on urban expansion and development [7–9].

Since the 1970s, remote sensing imagery has become a main tool for estimations of impervious
surface area [10,11], and medium-resolution products from Landsat 5 and 7 have been widely
employed [12–17]. Although Landsat 7 imagery is limited due to stripe noise, Landsat 8 has filled the
gaps and provides higher quality data. The average apparent reflectance and surface reflectance of each
band of images obtained by the Operational Land Imager (OLI) are greater than the corresponding
values for the Enhanced Thematic Mapper (ETM+). Vegetation indices calculated from reflectance
are correlated with the vegetation index ETM+ and can be used to distinguish between impervious
surfaces and soil [18–23].

Identification of impervious surfaces depends on the satellite's return period, as well as its spectral
and spatial resolutions [24]. These parameters are important because they influence the ability to
distinguish between impervious surfaces and other land-cover types. Analysis of environmental
conditions can help one choose images acquired at the ideal time for accurately estimating impervious
surface area. Researchers have reported that images acquired in summer (June to September) result in
higher extraction accuracy relative to other seasons in temperate cities of the United States [25–27].
Sung and Li [28] proposed that winter images are more suitable for tropical and subtropical regions.
Ecological and geographical conditions, as well as city development modes in China differ from those
in the United States, so local conditions should be considered.

Research on urbanization and environmental problems in China would benefit from estimations
of the impervious surface area for a greater number of urban cities [7]. In this study, we divided China
into several regions based on climate, soil type, terrain complexity, and vegetation phenology, and
estimated impervious surface area from Landsat 8 images of typical cities in these regions. The main
goal was to determine appropriate time frames for image selection by comparing the estimation
accuracy for images acquired from different seasons.

2. Impervious Surface Factors

2.1. Vegetation and Impervious Surfaces

The reflectance of photosynthetic vegetation increases rapidly in the near infrared (NIR) region,
but decreases sharply in the shortwave infrared (SWIR) region. This behavior results in unique spectral
curves for vegetation, which helps distinguish between impervious cover and vegetation. In addition,
it is easier to distinguish between impervious surfaces and vegetation in images acquired in summer.
However, the characteristics of vegetation growth vary between the north and the south of China.
Evergreens in tropical and subtropical areas are easily distinguishable any time of year, whereas the
reflectance of deciduous vegetation in temperate zones vary seasonally. In temperate agricultural areas,
winter wheat is sown in October and harvested in early June. As shown in an image of Shijiazhuang
taken on 1 January (Figure 1), during the over-wintering period, winter wheat growth is arrested and
biomass is low, causing lower NIR reflectance than during the heading stage (23 April). However, in
both images, vegetation and impervious surfaces display unique spectral curves. Harvesting of winter
wheat in early June results in increased bare land, and further study is required to assess the suitability
of the July image for land type estimations. Hence, vegetation phenology should be considered when
selecting images for land cover estimations.

Seasonal vegetation causes the proportion of mixed pixels in an image to fluctuate, especially
in temperate cities. Sung and Li [28] mentioned that vegetation canopies can cause underestimation
of impervious surface areas, particularly in summer. For improved accuracy, Yang and Li [29] used
auxiliary road data to account for this problem. In imagery of temperate cities, deciduous vegetation is
conducive to the classification of roads and buildings, but changes in other environmental conditions
(e.g., soil) may cause other problems. In addition to seasonal changes, the height and density of
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vegetation influences the proportion of mixed pixels in an image. As new area of modern cities
have a lot of vegetation coverage, the underestimation of impervious surfaces will become a more
serious issue.
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Figure 1. Spectral curves of impervious surfaces and winter wheat in Shijiazhuang from images
acquired on (a) 1 January 2015 and (b) 23 April 2015. High and low albedo are the main types
of impervious surfaces. Each curve was plotted using the surface reflectance means of more than
100 pixels.

2.2. Soil and Impervious Surfaces

Ridd [30] developed the vegetation-impervious surface-soil model for mixed pixels based on
soil compositions of clay, sand, and silt. In particular, the spectral curves of sandy soils with low
moisture content are similar to those of high-albedo impervious surfaces (Figure 2); the curves of
certain types of loam with high water content are similar to those of low-albedo impervious surfaces.
Therefore, to assess impervious surface area, it is necessary to discuss the surrounding soil. There are
many different types of soils in China, and they are characterized according to horizontal and vertical
zonality. Soil water and soil organic matter content gradually change from south to north and from
coastal areas to inland. Thus, districts of soils with high water content and desert soils with low water
content should be paid more attention on the divisibility of impervious surfaces.
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2.3. Ecological Regionalization

Impervious surfaces include a variety of materials, such as tile, metal, or glass roofs, asphalt or
cement roads, and so on. At present, the spectral and spatial resolutions of Landsat 8 images are not
sufficient to distinguish these materials from diverse objects. In addition, the impacts of shadows of
high-rise buildings, human activities, and other factors on impervious surface extraction are uncertain,
and variations exist between cities and seasons. To investigate the influence of main factors on
impervious surface extraction, we divided China into several sub-regions according to climate zone,
soil type, and drainage area at a large scale: arid and semi-arid areas, the Huang-Huai-Hai winter
wheat production regions, typical temperate regions, the Pearl River Delta, the middle and lower
reaches of the Yangtze River, typical tropical and subtropical regions, and the Qinghai–Tibet Plateau
(Figure 3). Seasonal vegetation influences impervious surface areas in arid and semi-arid areas, as
well as in temperate regions, and dry soil is another key factor. In the Huang-Huai-Hai winter wheat
region, vegetation varies according to winter wheat phenology. In the Pearl River Delta and the middle
and lower reaches of the Yangtze River, vegetation is similar to that in tropical and subtropical regions,
and the land is characterized by dense river networks, discontinuous fields, and paddy soil; hence, the
background of impervious surfaces is complex.
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3. Methods

3.1. Cities and Images

The provincial capital cities of Yinchuan, Shijiazhuang, Shenyang, and Kunming, and the
sub-provincial city of Ningbo were chosen to represent areas that have undergone rapid development
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and contain large areas of impervious cover. We did not choose to investigate the Qinghai–Tibet
Plateau due to low urban development in this area. The Pearl River and Yangtze River Deltas are
both located in the subtropical zone, and are characterized by a high density of river networks and
urban areas. The soil type and surface complexity of the two regions are similar. Thus, the city of
Ningbo could represent multiple selected factors. The main imaging factors affecting imagery-based
estimations suffered in each city are shown in Table 1.

Table 1. Various factors and Landsat 8 OLI images of cities investigated in this study.

City Indicated Ecological Sub-Regions Main Factors Date

Kunming Typical tropical and subtropical regions Vegetation canopy 4 January 2015, 9 March 2015,
28 May 2015, 20 November 2015

Ningbo The Pearl River Delta, the middle and
lower reaches of the Yangtze River

Soil, vegetation phenology,
vegetation canopy, and water

4 November 2014, 23 January 2015,
12 March 2015, 3 August 2015

Shenyang Typical temperate regions Vegetation phenology 20 April 2015, 22 May 2015,
9 July 2015, 13 October 2015

Shijiazhuang The Huang-Huai-Hai winter wheat
production regions Vegetation phenology

1 January 2015, 23 April 2015,
12 July 2015, 13 August 2015,
16 October 2015

Yinchuan Arid and semi-arid areas Vegetation phenology and dry
soil

9 March 2015, 13 June 2015,
1 September 2015, 19 October 2015,
6 December 2015

Yinchuan has a temperate continental climate with late springs, short summers, early autumns,
and long winters. There are large temperature differences between day and night, and the climate
is dry. The main soil types include calcareous soil, meadow soil, gray cinnamon soil from the Helan
Mountains to the west main canal, and irrigation silted soil in the eastern alluvial plain.

Shijiazhuang has a temperate monsoon climate; summer and winter are long, whereas spring and
autumn are short. The main soil types include mountain meadow soil, brown soil, and cinnamon soil.

Shenyang belongs to the temperate semi-humid continental climate zone and has cold winters
that last nearly six months, short summers, and high precipitation. Spring and autumn are short, and
temperature changes rapidly during these seasons. The main soil types are brown soil, meadow soil,
and paddy soil. Snow covers the surface during winter, so we did not include winter images.

Ningbo has a subtropical monsoon climate that is mild and humid with distinct seasons.
Winter and summer last up to four months, whereas spring and autumn last only about two months.
The soil mainly consists of red and paddy soil.

Kunming has a subtropical plateau monsoon climate, which is mild year round. Red soil and
lateritic red soil are the main soil types.

Landsat 8 OLI images from 2015 were acquired for each city. To investigate the effect of vegetation
on impervious surface area estimations, images from four seasons were compared when possible.
Due to cloud cover and the satellite regressive period, images could not be obtained at equal intervals;
however, there were at least 30 days between images. Image acquisition times are listed in Table 1.
Visible, NIR, and SWIR bands were processed with radiometric calibration [31] and Flaash (fast
line-of-sight atmospheric analysis of hypercubes) atmospheric correction [32] was used to minimize
atmospheric effects and retrieve estimates of surface reflectance using ENVI software v.5.1 (Exelis visual
information solutions, Boulder, CO, USA). The city pixels were then clipped with vector boundaries.

3.2. Linear Spectral Unmixing

Numerous spectral indicators have been developed for estimating impervious surface area from
Landsat imagery. Traditional indices such as the normalized difference vegetation index (NDVI) and
the soil-adjusted vegetation index (SAVI) have been widely employed [33,34], and indices such as the
normalized difference build-up index (NDBI) [35], urban index (UI) [36], index-based built-up index
(IBI) [37], biophysical composition index (BCI) [38], and normalized difference impervious surface
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index (NDISI) [39] have been developed more recently. Taking NDBI as an example, values greater
than zero theoretically correspond to impervious surface areas, whereas values less than zero are
permeable surfaces. However, complex imaging conditions often cause spectral abnormalities, so
these threshold values are unreliable. In addition, for mixed pixels, a single index largely simplifies
spectral information, and the accuracy of surface extractions are greatly reduced when surface features
are complex.

Impervious surfaces in urban areas are mostly described by mixed pixels, as image resolution is
insufficient to reflect the content of various objects within a pixel. A classification method based on
sub-pixel scales can be used to describe the spectral contribution of each component in a pixel to the
total value. Two methods are typically used to obtain the impervious surface area: regression modeling
and spectral unmixing methods. In regression modeling, parameters of high-resolution images or
ground samples are correlated with corresponding parameters (e.g., NDVI) of low-resolution images,
and the resulting model is used to retrieve the impervious surface area [40,41]. Regression trees must
be established to ensure the model accuracy and sample library. Linear spectral unmixing modeling is
the most widely used spectral unmixing method [12,27,29]. This method determines the most effective
combination of end-members within the scope of the study. In standard linear mixed pixel models,
end-members are composed of vegetation, impervious surfaces, and soil [12,27,29,30]. Based on
differences between spectra of impervious surfaces and surrounding features, Wu and Murray [42]
defined four classic end-members: high-albedo impervious surfaces, low-albedo impervious surfaces,
vegetation, and soil to estimate impervious surface area in cities. A greater number of end-members
causes underestimation of the area, and fewer end-members can cause misclassification, especially
if the ground is divided [43]. According to the characteristics of Landsat 8 and the selected cities,
we selected high-albedo impervious surfaces, low-albedo impervious surfaces, vegetation, and soil
as the four end-members for this study using a minimum noise fraction (MNF) [44] transformation
and visual interpretation. The MNF transformation is helpful for end-member selections, but manual
interpretation is still needed to delineate pure end-members for complex images of land surfaces.
Two-dimensional scatter maps were constructed based on the first three principal components of
the MNF transformation to determine the color, texture, position, and other features of pure pixels.
Then, the ROI (region of interest) tool in ENVI 5.1 was used to outline the end-members using a
visual interpretation method based on the features of pure pixels. Generally, vegetation end-members
were selected from farmland and woodland on south-facing slopes. High-albedo impervious surface
end-members included airports and industrial areas, whereas low-albedo end-members included roads,
cement roofs, and open space. Soil end-members were selected from fallow farmland or permanent
bare land. The ROI polygon should not be too large. There were no fewer than 100 end-member
pixels per class. A fully constrained linear decomposition method was used to achieve this, in which
the percentage of end-members in pixels ranged between 0 and 1, and the sum of the contribution
of all land types was 1 [12]. Water bodies were relatively independent and, thus, not chosen as
end-members. Removal of water bodies using the modified water body index (MNDWI) can greatly
improve estimation accuracy, and values greater than 0 represent water bodies [45].

3.3. Mapping of Impervious Surface Imagery

The proportion of pixels representing impervious surfaces ranged from 0% to 100%.
Song et al. [40] reported a pixel percentage of less than 20% for non-developed land, 20–49% for
low-density urban land, 50–79% for medium-density urban land, and 80–100% for high-density urban
land. Xiao et al. [46] reported percentages of >10% for natural surfaces, 11–40% for low-density
urban land, 41–60% for medium-density urban land, and >60% for high-density construction land.
Flanagan and Civco [47] used a proportion of 20% to represent roads and large impervious surface
areas. However, multi-temporal images and environmental features can affect estimation accuracy
and, thus, these ranges cannot be used reliably. The determination of mixed pixels must be objective.
Li et al. [48] combined the unmixing method, decision tree method, and unsupervised classification
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method to classify mixed pixels. In this study, we classified pixels based on the dominance of three
end-members (impervious surface, vegetation, and bare land). The proportion of the impervious
surface fraction greater than 50% is undoubtedly an impervious surface pixel, but the decision of
33.3–50% part is crucial in the judgment of the unmixing method. In Figure 4a, the area represented by
the pixel was classified as vegetation because the percentage of this land cover was greatest; likewise,
in Figure 4b, the pixel area was classified as an impervious surface because the percentage of this land
type was greatest. Impervious surfaces, vegetation, soil, and water bodies were classified using the
decision tree with fractions and MNDWI. To focus on the hard classification of impervious surface,
vegetation, and soil were considered as permeable surfaces, and the classes were recoded into three
categories: permeable surfaces, impervious surfaces, and water.
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3.4. Accuracy Assessment

The accuracy of impervious surface estimations was assessed using random verification.
The reference sample points were manually collected from Digital Globe’s very high resolution
(VHR) satellite imagery. Geolocation accuracies greater than 5.0 m for the VHR data [49] are sufficient
for assessing thematic maps derived from 30-m resolution Landsat 8 imagery. First, 200 random pairs
of x-y coordinates were generated in ArcGIS software v.10.2 (ESRI, Redlands, CA, USA) within the
extent of each city and displayed as sample points on the thematic maps derived from the Landsat
8 images. If a point was located on a water body, it was removed and another random point was
added. We repeated this procedure until there were 200 sample points and no single sample point was
located on water. We then obtained category information (impervious or permeable) and coordinates
for each sample point. We manually interpreted sample-point pixels of Google Earth VHR images with
the majority rule at each sample point as an impervious or permeable surface. Finally, we composed
a confusion matrix to assess the accuracy of impervious surface estimations, including producer’s
accuracy (PA), user’s accuracy (UA), and overall accuracy (OA) [48].

4. Results

4.1. Impervious Surface Fraction

Maps of impervious surface areas in five cities are shown in Figures 5 and 6. In the maps of
Kunming, the majority of pixel values were below 0.4. The image taken on January 4 had more pixel
values between 0 and 0.1 compared with the three other images, for which pixel distributions were
similar. In the maps of Ningbo, differences were seen mostly at intervals of 0–0.1, 0.1–0.2, and 0.9–1.
Seasonal variations in solar elevation and azimuth lead to changes in radiant energy in shadowed
regions. The radiation was lowest on 23 January for the year. The spectral curve of shadows was
similar to that of low-reflectivity impervious surfaces. Pixels with values of 0–0.1 and 0.1–0.2 were
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more abundant on 4 November due to mountain shadows, and there were more pixels with values of
0.9–1 on 23 January. For Shenyang City, maps for the four time intervals were similar, but there were
more pixels in the range of 0–0.1 on 9 July due to vegetation. Maps of Shijiazhuang fluctuated greatly
between seasons. In the image from 1 January, a large number of pixels were classified as impervious
surfaces because mountain shadows were mistaken for low-albedo impervious surfaces. In the images
between 12 July and 16 October, there were a greater number of pixels with values of 0.2–0.5 due to
increased bare land; pixels with values ranging from 0.9 to 1 were more abundant on 1 January and
13 August. In the maps of Yinchuan, the impervious surface area was irregular. Sparsely-vegetated
mountains in the northwest and bare soil were represented inconsistently. On 13 June, 1 September, and
19 October, desert and bare soil were largely represented by pixels with values below 0.7. The influence
of bare soil was less evident in the 9 March and 6 December images, but the extraction of high-albedo
impervious surfaces was poor.
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4.2. Impervious Surface Estimation

The impervious surface area in Kunming was similar on 4 January and 9 March, the lowest
on 28 May, and the highest on 20 November (Figure 7, Table 2). The coefficient of variation of
impervious surface area for the four periods was 5.98%, which was the most stable value for all five
cities. The greatest impervious surface area in Ningbo was found on 23 January, and the lowest
on 3 August. The main reason for this difference was the influence of western mountains, and the
coefficient of variation among the four points in time was 19.9%. The impervious surface area in
Shenyang was the highest on 22 May and the lowest on 20 November. The coefficient of variation
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was 7.9%. Southern paddy fields had a large impact on the estimation accuracy. On 22 May, rice
was in its early growth stages, and the spectral reflectance of soil was similar to that of low-albedo
impervious surfaces, causing a large increase in estimated impervious surface area. On 9 July, rice
was in the vigorous growth period, and the spectral reflectance of impervious surfaces and rice could
be distinguished. On 20 November, after harvest, two types of soil with different moisture contents
were exposed. The additional end-member reduced the proportion of impervious surfaces in the
mixed pixel decomposition process. In Shijiazhuang, the largest impervious surface area was found on
1 January, and the smallest on 16 October. The coefficient of variation across all time points was 18.94%.
Shadows of the western mountainous area greatly increased the impervious surface area on 1 January.
If this image were removed, the coefficient of variation would be reduced to 3.92%. Impervious surface
area in Yinchuan was the highest on 1 September, and lowest on 9 March. The coefficient of variation
across all time points was 34.31%.
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Table 2. Number of pixels classified as impervious surfaces and the coefficient of variation across
time points.

City Date and Pixel Number Variation
Coefficient

Kunming 4 January 2015 9 March 2015 28 May 2015 20 November 2015
5.98%559,616 552,432 529,928 609,758

Ningbo 4 November 2014 23 January 2015 12 March 2015 3 August 2015
19.9%816,068 1,074,375 908,824 685,626

Shenyang 20 April 2015 22 May 2015 9 July 2015 13 October 2015
7.9%724,567 845,535 778,695 713,090

Shijiazhuang 1 January 2015 23 April 2015 12 July 2015 13 August 2015 16 October 2015
18.94%768,737 534,187 529,869 548,595 499,412

Yinchuan
9 March 2015 13 June 2015 1 September 2015 19 October 2015 6 December 2015

34.31%227,992 335,412 575,642 494,436 361,726

4.3. Accuracy of Impervious Surface Estimations

Two hundred random points from each city were used to verify the accuracy of impervious surface
estimations (Figure 8, Table 3). For images of Kunming on 4 January, 9 March, and 20 November, the
values of PA, UA, and OA were all above 80%. On 28 May, the values of these accuracy parameters
decreased, and the overall accuracy was only 75.5%. The values of PA, UA, and OA were all above 80%
for images of Ningbo on 4 November and 3 August; the lowest overall accuracy was on 23 January
due to confusion between bare land and impervious surfaces. The UA of all four images of Shenyang
was low, but OA was higher than 80%. The highest accuracy (87%) was found on 13 October, and the
lowest (80.5%) on 22 May. The overall accuracy for images of Shijiazhuang from all five time points
was above 85%. The precision for Yinchuan on 9 March, 13 June, and 6 December was low; the overall
accuracy only reached 80% on 1 September and 19 October.

Table 3. Accuracy of impervious surface estimations for each city at different time points.

City Index Date of Image

Kunming

4 January 2015 9 March 2015 28 May 2015 20 November 2015
PA (%) 92.86 87.8 78.31 82.52
UA (%) 81.25 82.29 67.71 88.54
OA (%) 88 86 75.5 85.5

Ningbo

4 November 2014 23 January 2015 12 March 2015 3 August 2015
PA (%) 80.95 72.65 78.30 85.71
UA (%) 90.43 90.43 88.3 82.98
OA (%) 85.5 79.5 83 85.5

Shenyang

20 April 2015 22 May 2015 9 July 2015 13 October 2015
PA (%) 92.75 87.67 94.59 95.95
UA (%) 68.09 68.09 74.47 75.53
OA (%) 82.5 80.5 86 87

Shijiazhuang

1 January 2015 23 April 2015 12 July 2015 13 August 2015 16 October 2015
PA (%) 80.36 90.7 89.25 92.31 88.76
UA (%) 95.74 82.98 88.3 89.36 84
OA (%) 87 88 89.5 91.5 87.5

Yinchuan

9 March 2015 13 June 2015 1 September 2015 19 October 2015 6 December 2015
PA (%) 78 70.97 70 75.27 64.29
UA (%) 48.75 50 87.5 87.5 45
OA (%) 74 73 80 83.5 68

Note: PA, producer accuracy. UA, user accuracy. OA, overall accuracy.
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5. Discussion

Our analysis revealed large differences in the accuracy of impervious surface estimations among
regions. Of all images, the lowest accuracy was obtained for the image of Kunming taken on 28 May
due to a lot of mixed pixels with both vegetation and impervious surface characteristics (Figure 9a).
Likewise, the approaching summer images of other tropical and subtropical regions were not ideal
for estimations of impervious surface area. The image of Ningbo taken during winter also produced
estimations with low accuracy because low solar elevation and mountains caused heavy shading that
was difficult to distinguish from impervious surfaces. In addition, mixed pixels formed by small rivers
and other land types led to the failure of MNDWI for water bodies. Instead, similar to low-reflectivity
impervious surfaces, they caused misclassification of pixels. The number of soil end-members could be
increased to eliminate the effects of two soil types (Figure 9b), but this would lead to underestimations
of impervious surface areas in city centers. The summer image of Ningbo produced an estimation
accuracy of 85.5%, but canopy cover was higher than that during other seasons. The Pearl River Delta
region and the middle and lower reaches of the Yangtze River have similar climate, soil, and river
network characteristics. For both regions, spring, summer, and autumn were the best seasons for
estimating impervious surface area, whereas for Shenyang, images from all three seasons produced
adequate estimations. Although the April and October images of Shenyang contained large amounts
of bare land, soil could be distinguished from impervious surface areas. In winter, the image of
Shijiazhuang was affected by mountain shadows, but this effect could be eliminated with auxiliary
data, such as digital elevation models (DEM). Therefore, annual images of winter wheat production
areas can be used to estimate impervious surface areas with reasonable accuracy. For Yinchuan,
images taken from September to October produced the best estimations, though the increased impact
of bare land in September reduced the accuracy somewhat (Figure 9c). Although we did not have
images from July or August, the enhanced difference between impervious surfaces and vegetation is
conducive to increasing the estimation accuracy for images with high vegetation biomass. In addition,
vegetation canopies during summer influence the estimation accuracy of impervious surface areas in
temperate regions. In tropical and subtropical regions, images taken in spring and autumn are suitable
for extracting impervious surface area. Low accuracy (e.g., in the middle and lower reaches of the
Yangtze River) found for winter images is in contrast to previous research [28].
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Figure 9. Examples of impervious surfaces that are misclassified. Landsat 8 images are displayed
under the band combination of R = NIR, G = red, and B = green. In grayscale images, the brighter
the color, the higher the percentage of the impervious surface fraction, vegetation fraction, and soil
fraction. In class maps, the impervious surface class is red, the permeable class is gray, and water is
blue. (a) In Kunming (28 May 2015), most of the mixed pixels (blue oval) between vegetation and
impervious surface were not classified as impervious surfaces; (b) in Ningbo (23 March 2015), bare land
(green oval) was misclassified; and (c) in Yinchuan (1 September 2015), bare sand soil (yellow circles)
was misclassified.

The reclassification of mixed pixels increased the accuracy of impervious surface area estimations.
However, end-member selection also affected the accuracy, especially for the middle and lower reaches
of the Yangtze River and the Pearl River Delta. We used a linear spectral decomposition method to
distinguish impervious surface areas from background features, similarities in spectral reflectance
(i.e., the same objects with different spectrum or different objects with the same spectrum) reduced the
accuracy of estimations from some images. In particular, in the Pearl River Delta, the middle and lower
reaches of the Yangtze River, and the arid and semi-arid areas, these three sub-regions were divided in
consideration of the soil factor. Soil in these areas has a higher probability of misclassification with
impervious surfaces based on spectral methods, because of the spectral similarity between sandy soil
and high-reflectivity impervious surfaces, and paddy soil and low-reflectivity impervious surfaces.
In addition, the relationship among vegetation, soil, and impervious surfaces is dynamic and complex.
During the foliage cover season, the effect of bare soil is greatly reduced [10,27]. However, the new
problem is that the roads may not be classified as impervious surfaces. The degree of road loss is not
only determined by the time of images but also tree species and density. In addition to spectral features,
factors such as texture, shape, color, and spatial relations can cause confusion. In the future, methods
for multiple features (e.g., artificial neural network analysis) should be used to eliminate interferences.

Although we identified the best seasons for estimating impervious surface area from
Landsat 8 images, more effective methods should be developed to reduce the estimation error and
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improve remote sensing applications. Integration of multi-source data is a promising research direction.
For example, land use maps and DEM can help eliminate misclassification caused by mountains and
desert land, and vector data of geographic information systems (GIS) can help reduce underestimations
of canopy-covered roads [29]. In addition to data products, other types of remote sensing data can
be used to improve the estimation accuracy of impervious surface areas. Radar data can capture the
geometric characteristics of buildings, whereas optical remote sensing imagery captures the shadows of
high-rise buildings. Zhang et al. [50] showed that synthetic aperture radar (SAR) can help distinguish
impervious surfaces from bare land, as well as shadowed areas and water in low-resolution images.

6. Conclusions

Landsat 8 OLI imagery can be used to distinguish among different land cover types, such as
vegetation, water, impervious surfaces, and soil. China has complex and varied land surfaces, which
complicate the estimation of impervious surface area. We divided China into sub-regions based on
prior knowledge of ecological and geographical characteristics. Time series of Landsat 8 images were
used to estimate impervious surface areas of typical cities, and estimation accuracies were compared.
The main conclusions are as follows:

(1) The linear spectral unmixing method we employed was dependent on the spectral resolution
of images rather than the spatial resolution. The new method proposed to classify mixed pixels based
on end-member proportions allowed the separation of different land-types.

(2) To achieve the best estimation accuracy, images should be acquired in winter, early spring, and
autumn for typical tropical and subtropical regions; in spring, summer and autumn for the middle
and lower reaches of the Yangtze River and the Pearl River Delta; from spring to autumn for typical
temperate regions; year-round for winter wheat planting areas; and in summer and early autumn for
arid and semi-arid areas. This conclusion should apply to most cities, except for those with particularly
unique environmental characteristics.

(3) The experiment was focused mainly on the effects of climate, soil, and biological factors, so we
did not integrate more data to improve accuracy. Future studies should integrate auxiliary data and
algorithms to mitigate spectral effects and obtain more accurate estimations of the spatial distribution
of impervious surfaces.
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