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Abstract: Biomass burning is a worldwide phenomenon, which emits large amounts of carbon into 

the atmosphere and strongly influences the environment. Burned area is an important parameter in 

modeling the impacts of biomass burning on the climate and ecosystem. The Medium Resolution 

Spectral Imager (MERSI) onboard FengYun-3C (FY-3C) has shown great potential for burned area 

mapping research, but there is still a lack of relevant studies and applications. This paper describes 

an automated burned area mapping algorithm that was developed using daily MERSI data. The 

algorithm employs time-series analysis and multi-temporal 1000-m resolution data to obtain seed 

pixels. To identify the burned pixels automatically, region growing and Support Vector Machine) 

methods have been used together with 250-m resolution data. The algorithm was tested by applying 

it in two experimental areas, and the accuracy of the results was evaluated by comparing them to 

reference burned area maps, which were interpreted manually using Landsat 8 OLI data and the 

MODIS MCD64A1 burned area product. The results demonstrated that the proposed algorithm was 

able to improve the burned area mapping accuracy at the two study sites. 

Keywords: image classification; remote sensing; burned area; FengYun-3C Medium Resolution 

Spectral Imager (FY-3C MESRI) 

 

1. Introduction 

Biomass burning is a naturally reoccurring worldwide phenomenon. It has environmental and 

ecological consequences such as effects on the global carbon budget, changes to the global carbon 

cycle, and disruption of ecosystem succession [1]. The environmental, economic, and social impacts 

of biomass burning have raised concerns among many policy- and decision-makers and have 

highlighted the need to manage them. Accurate and actionable information on different aspects of 

fires is needed for policy- and management-related issues. For example, the spatial and temporal 

distribution of fires is an important yet basic form of information that requires accurate mapping 

techniques [2]. 

Remote sensing technology provides a unique perspective for observing and monitoring fire 

events [3,4]. In the past few decades, it has been used quite extensively in burned area mapping 

studies. For local-scale burned area mapping, medium resolution satellite sensors such as the 

Thematic Mapper (TM) [5–8] and High Resolution Visible (HRV) [9] meet the mapping requirements, 

and high-resolution sensors such as IKONOS, Quickbird, and Worldview [10,11] have also been 
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widely used for high-resolution mapping studies. For global and regional burned area mapping, 

satellite sensors such as the Advanced Very High Resolution Radiometer (AVHRR) [12–14], the 

Moderate Resolution Imaging Spectroradiometer (MODIS) [15–17], VEGETATION [18,19], and the 

Medium Resolution Imaging Spectrometer (MERIS) [20] provide low-cost data and have the 

advantages of large spatial coverage and frequent overpasses. Since Synthetic Aperture Radar (SAR) 

imagery has the ability to penetrate clouds and fire smoke [21], the integration of optical and SAR 

data for fire monitoring can reduce the intrinsic limitations in the exclusive use of optical data. An 

approach has been developed based on fuzzy sets theory and a region-growing algorithm to map 

burned areas using Landsat TM and (C-band) ENVISAT Advanced Synthetic Aperture Radar 

(ASAR) images [22]. 

Currently, various satellite-based burned area products, including GDED4 [23], MCD45A1 [24], 

L3JRC [25], GLOBSCAR [26], GBA2000 [27], and MCD64A1 [23], have been developed. These burned 

area mapping algorithms can generally be categorized into two types; the single-scene approach and 

the multi-temporal analysis approach. The single-scene approach identifies burned and unburned 

pixels based on their spectral differences in a single post-fire image. For example, a logistic regression 

model was developed using a single-scene post-fire Landsat TM image [5]; a Classification and 

Regression Trees (CART) approach using AVHRR data and SPOT-VEGETATION imagery [28,29] 

has been proposed; the GLOBSCAR global burned area product [30] is created using ATSR-2 and 

AATSR post-fire imagery in contextual and fixed-threshold algorithms; a Support Vector Machine 

(SVM) combined with the region-growing method was applied to post-fire MODIS data [31]; and a 

spatial autocorrelation analysis approach was applied to single MODIS and ASTER scenes [32]. 

The multi-temporal analysis approach detects burned pixels by analyzing the changes in the 

spectral information contained in multi-temporal data. For example, the GBA2000 global burned area 

product was developed using nine different regional algorithms to analyze multi-temporal 1-km 

VGT daily imagery [19], while a modified GBA-2000 regional algorithm was used to map the global 

burned area with a temporal index by employing 1-km multi-temporal satellite data. Also, the 

MCD45A1 burned area product algorithm applies a predictive bi-directional reflectance model to 

detect burned pixels using multi-temporal MODIS data [24,33]; the MCD64A1 burned area product 

uses a multi-temporal algorithm to analyze variations in daily MODIS surface reflectance data in 

order to detect sharp declines in the vegetation index and uses active fires to identify training pixels 

for the extraction of burned areas [16,34]. A burned area can also be detected by comparing 10-day 

composites of AVHRR vegetation indices and near-infrared reflectance [35]. Among many others, 

recent multi-temporal algorithms for burned area mapping include a method that uses Landsat data 

to compare 40-day composites of the spectral index from four different time periods [36], a semi-

automated method for burned area mapping using Normalized Burned Ratio (NBR) MODIS time-

series imagery [37], and data fusion between 30-m multi-temporal Landsat ETM+ data and 1000-m 

MODIS active fire data, which was used to create a burned area map at 30-m resolution. 

In most burned area mapping studies, vegetation indices (VIs) are widely used and have proven 

to be helpful [31]. The use of VIs for burned area mapping can be categorized into three types. The 

first type of VI, which includes the Normalized Difference Vegetation Index (NDVI), the Global 

Environmental Monitoring Index (GEMI), and the Soil-Adjusted Vegetation Index (SAVI), is 

designed to indicate the interruption to photosynthesis caused by fire [38]. The second type of VI, 

which includes NBR, the Normalized Difference Infrared Index (NDII) [39], and the Short Wave 

Vegetation Index (SWVI), demonstrates the water loss after the incidence of fire [40]. The third type 

detects the temperature of the burned area and the increase of surface absorption; this type includes 

VI3 [41], VI6T [42], and the NIR-SWIR-Thermal index version 1 (NSTv1) [43]. In addition, active fires 

extracted using thermal anomalies are considered to be an indicator of fire events, and several burned 

area mapping methods use active fires for training burned pixels in hybrid algorithms [16].  

The FengYun-3 (FY-3) satellites are second-generation Chinese polar-orbiting meteorological 

satellites. The FY-3 series of satellites was developed and manufactured for two objectives; FY-3A 

and FY-3B for research and development and the other satellites for operational purposes. FY-3A, 

FY-3B, and FY-3C were launched in 2008, 2010, and 2013 respectively. Several studies have 
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demonstrated the great potential of FY-3 for fire detection and monitoring. A new model named the 

Normalized Difference Thermal Index (NDTI), which was developed for fire detection and 

monitoring, is widely applied to data from the sensors on FY-3 [44]. A new model for fire forecasting 

based on the fire monitoring database and FY-1, FY-3, and other satellite data has also been developed 

[45]. A method for monitoring thermally anomalous pixels using Visible and Infra-Red Radiometer 

(VIRR) data has been proposed and has been validated by biomass burning data [46]. The Medium 

Resolution Spectral Imager (MERSI) is a key payload onboard all the FY-3 series satellites. MERSI has 

20 channels, of which 19 are located in VIR/NIR/SWIR spectral ranges with wavelengths ranging 

from 0.41 to 2.13 μm, together with one broad band located in the TIR that has a wavelength of 11.25 

μm. The VIR and TIR channels have a spatial resolution of 250 m, while the other bands have a 

resolution of 1000 m. A large number of studies have used MODIS data for burned area mapping. 

Similarly to MODIS, MERSI also has great potential for detecting burned pixels but lacks recognition 

among researchers, and, consequently, not many studies use MERSI data. Although the MODIS daily 

active fire products MOD14A1 and MYD14A1 were used in the proposed method because of their 

high reliability and availability, FY-3 also has a series active fire product produced using VIRR data. 

In the future, the FY-3 active fire product will be improved, and it will be possible to use it together 

with the proposed method. In addition, both Terra and Aqua have exceeded their mission lifetimes 

(they were launched in 1999 and 2004 respectively); therefore, MERSI and other data could fill the 

gaps in the imaging of burned areas. 

Presently, most of the studies using MERSI data detect burned areas using visual interpretation 

or empirical thresholds and extraction approaches. For these reasons, an efficient automated 

algorithm for MERSI-based burned area mapping is urgently needed. In this study, we assessed the 

ability of the FY-3 MERSI sensor to detect burned pixels (Figure 1). We developed an automated 

burned area mapping algorithm for multi-temporal FY-3 MERSI data and tested its performance on 

the Carlton Complex Fire in America and the British Columbia Forest Fire in Canada. A comparison 

between our results and MODIS burned area products is also presented in this paper.  

 

Figure 1. Graphical Abstract.  
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2. Materials and Methods 

2.1. Study Area 

Two large-scale fire events, the Carlton Complex Fire (America) and the British Columbia Forest 

Fire (Canada), were selected for this study (Figure 2). The Carlton Complex Fire broke out in north-

central Washington on 14 July 2014 and lasted for about three weeks. A total of 103,643 ha of forest 

were burned during the fire (http://inciweb.nwcg.gov). The British Columbia forest fire began in 

British Columbia on 8 July 2014 and lasted for about four weeks. The total size of the burned area 

was approximately 133,100 ha (http://bcwildfire.ca). 

 

Figure 2. Two study areas and Landsat 8 OLI datasets acquired for validation. 

2.2. Data 

FY-3C MERSI 1000-m and 250-m datasets were used in this study (Table 1). The MERSI datasets 

were calibrated to obtain the top of atmosphere (TOA) reflectance using the calibration factors 

provided at http://fy3.satellite.cma.gov.cn/PortalSite/Download/FY3C/CalibrationCoefficient/  

Update%20of%20Calibration%20for%20Reflective%20Solar%20Bands%20of%20MERSI_20140618.d

oc. The geo-registration of the imagery was based on the GEO files, which are provided as auxiliary 

data for the MERSI L1 data set and contain the geo-referencing information for each pixel. 

  

http://bcwildfire.ca/
http://fy3.satellite.cma.gov.cn/PortalSite/Download/FY3C/CalibrationCoefficient/%20Update%20of%20Calibration%20for%20Reflective%20Solar%20Bands%20of%20MERSI_20140618.doc
http://fy3.satellite.cma.gov.cn/PortalSite/Download/FY3C/CalibrationCoefficient/%20Update%20of%20Calibration%20for%20Reflective%20Solar%20Bands%20of%20MERSI_20140618.doc
http://fy3.satellite.cma.gov.cn/PortalSite/Download/FY3C/CalibrationCoefficient/%20Update%20of%20Calibration%20for%20Reflective%20Solar%20Bands%20of%20MERSI_20140618.doc
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Table 1. Properties of the Medium Resolution Spectral Imager (MERSI) bands used. 

Band Wavelength (μm) 
SNR 1 or Neρ 2 or NEΔT 3 

@ 4 Specified Input 
IFOV 5 @ s.s.p 6 (m) 

1 0.465–0.475 100 @ 50% albedo 250/1000 

2 0.500–0.700 100 @ 50% albedo 250/1000 

3 0.600–0.700 100 @ 50% albedo 250/1000 

4 0.815–0.915 100 @ 50% albedo 250/1000 

5 8.55–13.55 0.3 K @ 300 K 250/1000 

7 2.080–2.180 0.07% 1000 
1 SNR means Signal Noise Ratio. 2 NEρ means Noise Equivalent Reflectivity. 3 NEΔT means Noise 

Equivalent Temperature Difference. 4 The symbol (@) means ‘at’. 5 IFOV means Instantaneous Field 

Of View. 6 s.s.p means Sub Satellite Point. 

FY-3 does not offer an operational cloud product so all the clouds in the imagery were masked 

using empirical thresholds. The condition for cloud mask and smoke is: 

T(x,y) < 283K, (1) 

where T(x, y) is the brightness temperature of the pixel at the location (x, y), which can be obtained 

by using band 5 data. The threshold of 283 K is set empirically [47]. The brightness temperature of 

clouds is usually less than 283 K, while that of the ground is higher than 283 K. This is a simple way 

to remove cloud and smoke. As the time-series analysis algorithm used in this study is robust, a small 

amount of cloud and smoke will not affect the results. Figure 3 shows the burned area reflectance of 

the five bands from Table 1 change in the time series data of the Carlton Complex Fire after removing 

the cloud. The changes of each band in the time series are more obvious, especially band 4 (NIR) and 

band 7 (SWIR). The reflectance of band 4 drops rapidly around 200, and the reflectance of band 7 has 

a sharp increase at the same time. 

 

Figure 3. The spectral properties of burned areas in the time series data (after removing the cloud). 

In addition, the MODIS MOD14A1/MYD14A1 level 3 daily active fire products [15] were used 

for hot spot identification, and the MODIS MOD12Q1 product was used to obtain land cover 

information for the study sites [48]. 

http://www.baidu.com/link?url=DPVA_rRZCXYeyNktdnuwzbuzaZ_jdR07yFdaamLGc7Qwo2ZLn7f9FEMynbGtlfYar0HkP0j0KFR16-aR4zIU6wihXMHTzhzFpyuu-FrpmkEBja-Ia48Hi0d6lb4kvZLi
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The algorithm is generally divided into two phases (Figure 1): (1) selection of training pixels 

based on 1000-m resolution MERSI data, which offers more spectral information through the use of 

more Vis, and (2) classification; first the region growing method is applied to 1000-m MERSI data to 

calculate the core burned area, and then the same classification method is applied to the 250-m MERSI 

data set by using the core burned area as a seed to obtain results at a finer spatial resolution. The first 

phase is mainly based on the methodology proposed by Giglio [16]. 

2.3. Selection of Training Pixels 

2.3.1. VI Time-Series Analysis 

NDVI, NBR, and VIT were selected as fire-sensitive VIs that could be used for the discrimination 

of the burned area [43]. FY-3C MERSI-based daily NDVI, NBR, and VIT were calculated as follows 

(Figure 4: Step 1): 

NDVIi = (ρ
4,i

-ρ
3,i

) (ρ
4,i

+ρ
3,i

)⁄ , (2) 

NBRi = (ρ
4,i

-ρ
7,i

) (ρ
4,i

+ρ
7,i

)⁄ , (3) 

VITi = (ρ
4,i

- ρ
5,i

1000⁄ ) (ρ
4,i

+ ρ
5,i

1000⁄ )⁄ , (4) 

where the daily reflectance is denoted as ρb,i, b is the MERSI band number, and i is the observation 

number in the time series (i = 1, 2, 3, …, N). The range of time series is about three months; that is, 

from 11 June 2014 to 11 September 2014 for the Carlton Complex Fire and from 1 June 2014 to 31 

August 2014 for the British Columbia forest fire. 

 

Figure 4. Flowchart for the selection of training pixels. There are a total of 16 steps. (1) Analysis of 

vegetation indices (VIs) time series (steps 1–6) (Section 2.3.1); (2) Temporal texture analysis (steps 6 

and 7) (Section 2.3.2); and (3) Selection of training pixels (steps 9–16) (Section 2.3.3). 
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In burned areas, VIs show notable changes between the pre- and post- fire imagery; therefore 

time-series analysis was carried out to locate abrupt changes in the VI time series. It is important to 

note that the values of VIs also fluctuate as a result of other factors such as varying viewing and 

illumination angles and varying atmospheric conditions. These biases were removed from the time 

series by using the two adjacent sliding temporal windows approach. Statistics were computed for 

the kth pre-fire and post-fire window for all VIs: 

VIpre(x,y,k) = mean(VIi(x,y),p) i∈(k,⋯,k + W - 1), (5) 

σpre(x,y,k) = stdev(VIi(x, y),p) i∈(k,⋯,k + W - 1), (6) 

VIpost(x,y,k) = mean(VIi(x,y),p) i∈(k + W,⋯,k + 2W - 1), (7) 

σpost(x,y,k) = stdev(VIi(x,y),p) i∈(k + W,⋯,k + 2W - 1), (8) 

where mean and stdev denote the p-percent trimmed mean and standard deviation of the pre- and 

post–fire windows, respectively. As p was set to 10% for this study, observations above or below 

10% were excluded. The setting of p  reduces the impact of potential outliers within a sliding 

window. However, using a triangular weighting window in Equations (5)–(8) to replace p could 

improve the precision of a VIs change, and we may achieve better results. (x, y) is the location of the 

1000-m grid cell within the FY-3C/MERSI tile [16]. k (k=1, 2, …, N - 2W + 1) indicates the position of 

the sliding window within the time series, where W is the length of the sliding window. To decrease 

or eliminate disturbing factors and make the separability of the VIs more obvious, W was set to 10, 

as in [16]. 

The separability measurement, S, was used to identify abrupt changes in the time series [16]. S 

is defined as: 

𝑆VI(x,y,k)  =  
VIpre(x,y,k) − VIpost(x,y,k)

[𝜎pre(x,y,k) + 𝜎post(x,y,k)] 2⁄
, (9) 

if rapid decreases in the VIs occur and SVI is large and positive, this is indicative of fire events. If the 

VI values are stable, then SVI fluctuates around 0 (SVI ≈ 0). However, if rapid increases in VIs occur, 

then SVI will be large and negative. σpre and σpost are used to prevent large differences between 

the pre- and post-fire windows that are not due to fire-related events. 

The maximum separability S∗
VI of the time series for each pixel was calculated for each VI time 

series, and the value of k at which S*
VI occurs is designated as k*

VI(x, y). The date corresponding 

to the maximum change was designated as t∗
VI(x, y), which is the midpoint of the interval between 

the k*
VI

th
 pre- and post-fire windows and was defined as: 

t*
vi(x,y) = [t(x,y,k*

vi + W - 1) + t(x,y,k*
vi + W)] 2⁄ . (10) 

The length of the interval was also calculated and was defined as: 

∆t*
vi(x,y) = t(x,y,k*

vi + W - 1) - t(x,y,k*
vi + W). (11) 

In most cases, the maximum changes in the VIs  (NDVI, NBR, and VIT) occurred at 

approximately the same time. In order to reduce the computation time, the NBR was, therefore, used 

to calculate S∗, k∗, and t∗, meaning that S* = S*
NBR, k* = k*

NBR, t*(x, y) = t*
NBR(x, y), and ∆t*(x, y) = 

∆t*
NBR(x, y) (Figure 4, Step 2). The trimmed standard deviations of the pre- and post-fire windows 

associated with k∗ for each pixel were calculated and denoted as σ*
pre and σ*

post, respectively; these 

were subsequently used to measure the geo-location error of the MERSI data. 

The composite VI images could be then calculated by using k* with the VI time series: 

VI*
post(x,y) = VIpost(x,y,k*), (12) 

∆VI*(x,y) = VI*
pre(x,y) − VI*

post(x,y). (13) 

The composite NDVI, NBR, and VIT images were calculated using the above equations by 

substituting the values of NDVI*
pre , NDVI*

post , ∆NDVI∗ , NBR*
pre , NBR*

post , ∆NBR∗ , VIT*
pre , 
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VIT*
post , and ∆VIT∗  (Figure 4, Steps 3 and 4). These composite images were used as input 

characteristics for the region growing in described in Section 2.4. (Figure 4, Steps 5 and 6). 

2.3.2. Temporal Texture Analysis 

The maximum changes in the time series of burned pixels are caused by fire, and, thus, the day 

of maximum change (t*) can be taken as the day of the fire event; adjacent burned pixels should also 

have a similar t*. Burned areas should, therefore, have a more consistent value of t* and also be more 

spatially clustered than unburned pixels. The local standard deviation of t*  within rook’s-case 

windows was calculated to describe the spatial coherence of the burned areas. This standard 

deviation map was filtered using an edge-restoring filter that selected the 33rd percentile pixels 

within queen’s-case windows to prevent any loss of the edge pixels of the burn scar. (Selecting the 

50th percentile instead would be the equivalent of a median filter.) The results were denoted as 

σt
*(Figure 4, Step 7). The rook’s windows considered the neighborhood of four pixels adjacent to each 

pixel, while the queen’s windows considered a neighborhood of eight pixels [49,50]. Note that the 

unit of measurement for both t* and σt
* is ‘day’. 

There are always invalid observations in the VI time series due to cloud obscuration or other 

reasons; for a fixed number of observations (W), the length of time between the pre- and post-fire 

windows was, therefore, of variable length. To estimate the uncertainty in the results, ∆t*(x, y) was 

used to describe the gap between the earliest date in the post-fire window and the latest date in the 

pre-fire window. 

One of the factors that causes variations in VI time series, other than fire events, is the geo-

location error in MERSI data. The magnitude of the shift between two images is about one to two 

pixels. As a result of this geo-location error, the VI values for one pixel will likely incorporate values 

from neighboring pixels. While the daily variations in the optical factors were smoothed by using the 

moving average described in the previous step, the variations caused by the geo-location error could 

not be removed as easily. Also, for homogeneous areas such as the core burned area region, the pixels 

have similar VI values and the shift between images will not strongly affect the time series, which 

will, therefore, be less sensitive to the geo-location error. Due to the geo-location error, burned pixels 

and unburned pixels will likely be mixed in the heterogeneous areas such as pixels near to or within 

the transition zones between burned and unburned areas. This does cause large fluctuations in the 

time series. Therefore, significant decreases in Vis may be caused by shifts in imagery rather than fire. 

As heterogeneous areas are more sensitive to geo-location errors, the heterogeneous area pixels 

were not processed until the second phase. In the second phase, these unclassified pixels would be 

classified again using an SVM classifier and the region growing method using 250-m imagery. The 

pixels at location (x, y) were treated as pixels from homogeneous areas and were retained if the 

following conditions were satisfied; any pixels that did not satisfy these criteria were marked as 

unclassified (Figure 4, Step 8):  

σ*
pre(x,y) ≤ 0.2, (14) 

σ*
post(x,y) ≥ 0.2, (15) 

These criteria, which are conservation thresholds used to identify heterogeneous areas with low 

VIs and small differences between pre- and post-fire windows, were selected empirically. 

2.3.3. Selection of Training Pixels 

This section discusses two groups of criteria. The objective of the first group of criteria is to detect 

burned training pixels. The cumulative active fire map, abbreviated as tf(x, y), was developed using 

the MOD14A1/MYD14A1 active fire product, which was re-projected to match the MERSI data 

(Figure 4, Step 9). The magnitude of the re-projection error caused by geo-location was about one to 

two pixels and was reduced by applying the steps described below. The cumulative active fire map 

basically matched the dates of the fire detected by the MODIS products during the time period being 

investigated at a location (x, y), (tf(x, y)). If multiple fires were detected within the same pixel on 
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different dates, the date nearest to t*(x, y)  was chosen to be tf(x, y) (Figure 4, Step 10). The 

cumulative fire data was used to select the burned area as training pixels (burned training pixels). 

Since the selection of training pixels was based on 1000-m imagery, some areas at the edges of a 

cluster of active fire pixels may be unburned. To make sure that all the training pixels were actually 

burned, those pixels which were less likely to be detected as burned area had to be removed by 

morphological erosion using a 3 × 3 structuring element. The pixels at location (x, y) that satisfied 

the following conditions were selected as burned training pixels (Figure 4, Steps 11–14).  

S*
VI(x,y) ≥ 2, (16) 

σt
*(x,y) ≤ 1 days, (17) 

NBR*
post(x,y) < 0, (18) 

∆NBR*(x,y) > 0.2, (19) 

|tf(x,y)-t*(x,y)| ≤ ∆t*(x,y), (20) 

Equations (16) and (17) ensure high VI series separability and high temporalspatial 

homogeneity. The approximate date of the burned training pixels, i.e., the date on which the 

maximum separability of the VI series occurs (t∗(x, y)), should be close to the date on which the active 

fire was detected (tf(x, y)), which is restricted by Equation (20). 

The objective of the second group of criteria is to detect unburned training pixels. If the 

conservative thresholds are developed empirically as follows, the two criteria given below can be 

used to identify pixels that have low temporalspatial homogeneity and very low VI separability 

(SVI).  

S*
VI(x,y) < 2, (21) 

σt
*(x,y) > 8 days, (22) 

The time series for pixels at location (x, y) that satisfy Equation (21) and (22) without abrupt 

changes will be stable and have low temporalspatial homogeneity. These two characteristics were 

selected empirically [17]. This means that these pixels were unlikely to be burned during the time 

period being investigated. To further reduce the potential impact of fire, a distance threshold was 

added: 

Rd(x,y)>D, (23) 

where Rd(x,y) denotes the distance from the pixel at location (x,y) to the nearest burned training 

pixel. D was established empirically and set equal to 3 km [16]. If Equations (21)–(23) were satisfied 

at the same time, the pixel at location (x,y) was selected as an unburned training pixel (Figure 4, 

Steps 15 and 16). [23] limits the distance from unburned training pixels to burned training pixels in 

order to make sure that none of the unburned training pixels are affected by the fire.  

2.4. Classification 

2.4.1. Classification by SVM Classifier 

The classification of the burned pixels (Figure 5) was based on the region-growing method. Seed 

pixels were used in subsequent iterations to classify surrounding pixels as burned or unburned using 

a queen’s-case window. During the first iteration, burned training pixels were selected as seeds. An 

SVM classifier was trained by the seeds identified at the beginning of classification or in the previous 

iteration and then used to classify the neighborhood pixels as burned or unburned in each iteration. 
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If a new burned pixel was detected, it was used as a new seed in the following iteration. The iteration 

cycle stopped when the number of newly detected burned pixels was 0. 

Figure 5. Flowchart for the classification of the burned pixels. 

The classification was first conducted on the 1000-m VI composite imagery, namely NDVI*
post, 

∆NDVI∗, NBR*
post, ∆NBR∗, VIT*

post, and ∆VIT∗. To improve the performance of the method, all the 

pixels selected as seeds using the 1000-m resolution results were then re-sampled to 250 m resolution 

and taken as new seeds for burned pixel classification using the 250-m imagery. This is because the 

spectral information with a resolution of 250 m could be used to improve the accuracy of the method 

in regions with low fire severity, which are characterized by great spatial heterogeneity or are located 

at the edge of the fire scar. Individual 250-m MERSI images were selected for analysis within the 

1000-m time series. The selection of the imagery from the time series was based on the availability of 

cloud-free, usable imagery. 

The seeds for the 250-m image were generated from the whole 1000-m time series. The dates of 

these seeds were earlier than the date of the 250-m image to ensure that all the burned pixels 

identified in the previous analysis had been included. This was achieved by applying the following 

condition:  

t*
post(x,y) < td, (24) 
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where t*
post(x,y) is the day after the date of S∗ at location (x,y) and td is the date of the selected 

MERSI image. As the NDVI values for images acquired at different seasons have distinct ranges, the 

re-sampled burned pixels were reevaluated as burned or unburned pixels using a NDVI threshold 

defined as follows: 

a ≤ NDVI(x,y) ≤ b, (25) 

The thresholds were determined empirically. Any seed that did not satisfy the above NDVI 

threshold was discarded. The NDVI value of the seed at (x, y) was denoted as NDVI(x, y). a and b 

are the 10th percentile and 60th percentile, respectively, of the NDVI values of all the seeds. 

2.4.2. Use of Vegetation Indexes in the SVM Classifier 

A total of five vegetation indices were calculated to be used as the input data for the SVM 

classifier. Even though not all of these indices are fire sensitive, we used all five indices to provide as 

much information as possible. The NDVI (Equation (2)), VIT (Equation (4)), NDWI [51], BAI [52], and 

EVI [53] for the chosen imagery were calculated, where: 

NDWIi= (ρ
2,i

 - ρ
4,i

) (ρ
2,i

 + ρ
4,i

)⁄ , (26) 

BAIi= 1 ((0.1 + ρ
3,i

)
2

+ (0.06 + ρ
4,i

)
2
)⁄ , (27) 

EVIi= 2.5 (ρ
4,i 

- ρ
3,i

) (ρ
4,i

 - 6ρ
3,i

 - 7.5ρ
1,i

 + 1)⁄ . (28) 

In order to eliminate false burned pixels during classification, only the pixels with the lowest 

70% of band 4 values were labeled as burned. 

3. Results 

Figures 6 and 7 show the results of applying the proposed algorithm at the two study sites, 

respectively. The reference polygons were derived by interpreting the 30-m Landsat-8 OLI imagery 

(Figure 2), which is shown as a false color composite mosaic (R-G-B: 5-4-3), acquired on the same day 

as the 250-m MERSI data. The MCD64A1 burned area product was used to compare the results with 

those obtained using the proposed algorithm. Magnified subfigures showing differences in the 

results are also shown in Figures 6 and 7. It can be seen that our results show finer spatial detail than 

MODIS MCD64A1. The result of the proposed algorithm is more likely to be smaller than the 

reference polygons, while the result of MODIS MCD64A1 is more likely beyond the reference 

polygons. 

An accuracy assessment for the two study sites is shown in Table 2. The results obtained using 

the proposed algorithm have a higher kappa coefficient, indicating that the proposed algorithm is 

more accurate in the study region. However, the proposed algorithm has a higher omission error 

because some small burned areas were missed using this algorithm. 
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Figure 6. Comparison of burned area results obtained using different methods (study area: America). 

 

Figure 7. Comparison of burned area results obtained using different methods (study area: Canada). 
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Table 2. Comparison of the accuracy of the proposed algorithm and MODIS MCD64A1 for the two 

study sites. 

Study Area 
Proposed Algorithm MODIS MCD64A1 

OE (%) CE (%) Kappa OE (%) CE (%) Kappa 

America 11.32 14.77 0.8680 6.67 20.58 0.8567 

Canada 17.21 23.94 0.7914 16.44 31.00 0.6893 

4. Discussion 

The results obtained suggest that the algorithm using the 250-m resolution input data makes a 

better distinction between burned pixels and unburned pixels compared to the MODIS burned area 

product, which uses 1000-m resolution data as input data. To some extent, using 250-m resolution 

data in the proposed algorithm can explain the better kappa coefficient and the lower commission 

error obtained for both study areas. The region-growing method used in the algorithm reduces the 

omission error, but the omission error is higher compared to the MCD64A1 product at both study 

sites. The omission errors are a consequence of the missed seeds; i.e., if a seed is not selected for an 

isolated burned area, it will not be translated into burned area by the region-growing method, and 

this results in an omission error. As MERSI data suffer from a geo-location problem, pixels that are 

less likely to be detected as burned area need to be removed by morphological erosion using a 3 ×3 

structuring element. As the erosion mask eliminates all clusters smaller than 3 × 3  km, 

morphological erosion can remove small clusters of burned areas. This is a key cause of omission 

errors. If the geo-location of MERSI data could be improved, morphological erosion could be omitted 

in future studies. The burned area mapping results should then retain more small burned areas, and 

the omission error would be reduced. In addition, the proposed method is applicable to large 

wildfires, but that could be expected to a certain level due to the low pixel resolution. In this case, the 

employment of additional burn scars should be considered in future studies in order to make this 

approach worth using. 

Cloud obstruction can also lead to omission errors and is an inherent limitation of single-scene 

algorithms. The proposed method uses a single-scene algorithm for burned area mapping because 

geo-location errors exist in MERSI data, which makes accurate mapping of burned area using multi-

temporal algorithms very difficult. However, single-scene algorithms have been shown to be affected 

by cloud obscuration. To overcome this problem, the geo-location accuracy of 250-m MERSI data 

needs first to be determined so that a multi-temporal algorithm can then be used instead. The 

suitability of the proposed algorithm for different regions at a global scale with various vegetation 

types still needs to be tested and established. 

To deal with the geo-referencing problem, the homogeneous areas were collected and processed 

first, with the heterogeneous areas being processed subsequently. This procedure is useful only if the 

wildfire burns all the vegetation in a homogeneous way, as was the case in the two study areas that 

we chose. As pixels with a size of 1 × 1 km were used for the burned area mapping in this paper, 

this underlying assumption may be difficult to meet in many ecosystems such as South American 

dry forests, Chaparral, or the Mediterranean basin. The diverse conditions encountered in different 

ecosystems should be considered when attempting to apply the proposed method in future studies. 

The sound performance of the proposed algorithm can be attributed to the following reasons. 

(1) A better spatial resolution (250 m) could help to increase the performance of MERSI data. (2) 

Multiple vegetation indices provide more sufficient information for guiding the selection of training 

pixels, which are used in the supervised classification of burned areas. (3) An SVM classifier 

combined with region growing is suitable for the capability of FY3C MERSI data. 

5. Conclusions 

In this article, an automated burned area mapping algorithm was proposed based on FY-3C 

MERSI data. Time-series analysis and active fire products were used to guide the seed selection, and 

an SVM combined with the region-growing method was used to distinguish between the burned and 
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unburned pixels. An evaluation of the performance of the algorithm was carried out at two study 

sites. The accuracy assessment and validation were made by comparing our results with the MODIS 

MCD64A1 burned area product and reference results derived from Landsat OLI data. The results 

were found to be accurate. 

A comparison between the results of applying the proposed algorithm and the existing 

algorithm to burned area mapping leads to the following conclusions. 

1. The selection of initial burned seeds is similar to the method proposed by Giglio [16], especially 

in terms of the definition of the separability of the VIs. One difference between the two methods 

is that we proposed the use of more than one VI as a burned area feature, based on the 

characteristics of MERSI data. The other main difference is that between the region-growing 

methods used in the two papers. The method we proposed used an SVM and the region-growing 

method simultaneously. These could make the method more suitable for burned area mapping 

using MERSI data. 

2. Regarding the selection of a burned area index for FY-3C MERSI, we analyzed time series of 

different indices and performed a quantitative analysis of these indices in the burned and 

unburned areas. We then selected several features that were appropriate for use with FY-3C 

MERSI data in subsequent analysis. 

3. Regarding the extraction of a burned area using the SVM and the region-growing method, SVM 

and region growing are common image classification and image segmentation algorithms. The 

combination of these two methods makes regional growth criterion more flexible and can 

produce more accurate burned area mapping results.  

4. The algorithm used a combination of multi-temporal data and single-scenes. First we used 1 km 

multi-temporal data to extract the characteristic parameters and to obtain preliminary burned 

area classification results. We then used individual scenes from the time series of 250-m 

resolution MERSI data and carried out the classification again, thereby reducing the influence of 

the MERSI geo-location errors and producing more accurate burned area mapping results.  

5. MERSI data have shown great potential for filling the gaps in the imaging of burned areas of the 

Earth’s surface. Some MODIS products were used in the proposed method like the daily active 

fire product MOD14A1/MYD14A1 and the land cover product MOD12Q1 because of their high 

reliability and ready availability. In addition to MOD12Q1, many other land cover products or 

vegetation indices can be used to extract vegetation regions. FY-3 also produces series of active 

fire products derived from VIRR data. In the future, it should be possible to use an improved 

FY-3 active fire product with the proposed method. As both the Terra and Aqua satellites have 

exceeded their mission lifetimes, it may then be possible to use MERSI and other data to fill the 

gaps in the imaging of burned areas. 
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