
 

Remote Sens. 2017, 9, 731; doi:10.3390/rs9070731 www.mdpi.com/journal/remotesensing 

Article 

Continued Reforestation and Urban Expansion in the 
New Century of a Tropical Island in the Caribbean 
Chao Wang, Mei Yu * and Qiong Gao 

Department of Environmental Science, University of Puerto Rico-Rio Piedras, San Juan, PR 00936, USA; 
waynechao128@gmail.com (C.W.); shiqun.gao@gmail.com (Q.G.) 
* Correspondence: meiyu@ites.upr.edu; Tel.: +1-787-764-0000 

Received: 22 April 2017; Accepted: 12 July 2017; Published: 15 July 2017 

Abstract: Accurate and timely monitoring of tropical land cover/use (LCLU) changes is urgent due 
to the rapid deforestation/reforestation and its impact on global land-atmosphere interaction. 
However, persistent cloud cover in the tropics imposes the greatest challenge and retards LCLU 
mapping in mountainous areas such as the tropic island of Puerto Rico, where forest transition 
changed from deforestation to reforestation due to the economy shift from agriculture to industry 
and service after the 1940s. To improve the LCLU mapping in the tropics and to evaluate the trend 
of forest transition of Puerto Rico in the new century, we integrated the optical Landsat images with 
the L-band SAR to map LC in 2010 by taking advantage of the cloud-penetrating ability of the SAR 
signals. The results showed that the incorporation of SAR data with the Landsat data significantly, 
although not substantially, enhanced the accuracy of LCLU mapping of Puerto Rico, and the Kappa 
statistic reached 90.5% from 88.4% without SAR data. The enhancement of mapping by SAR is 
important for urban and forest, as well as locations with limited optical data caused by cloud cover. 
We found both forests and urban lands continued expanding in the new century despite the 
declining population. However, the forest cover change slowed down in 2000–2010 compared to 
that in 1991–2000. The deforestation rate reduced by 42.1% in 2000–2010, and the reforestation was 
mostly located in the east and southeast of the island where Hurricane Georges landed and caused 
severe vegetation damage in 1998. We also found that reforestation increased, but deforestation 
decreased along the topography slope. Reforestation was much higher within the protected area 
compared to that in the surroundings in the wet and moist forest zones.  

Keywords: land cover land use change; tropical forests; forest transition; Landsat TM/ETM; 
Synthetic Aperture Radar 

 

1. Introduction 

Forests cover almost a third of the land surface (approximately 41 million km2) [1], host the most 
biodiversity, and play an important role in regulating climate and supporting human beings [2,3]. 
Although both deforestation and reforestation occurred in various regions, global forest cover has 
been declining over the past several centuries, mostly because of the continuously growing demands 
for food and wood products [4,5]. Tropical forests have been experiencing the most rapid rates of 
deforestation in Africa, South America, and Southeast Asia since the 1980s [6–8]. The deforestation, 
degradation, and fragmentation of the tropical forests have led to altered carbon and water cycles, 
losses of biodiversity, and soil erosions.  

Monitoring forest changes at regional to global scales is the priority for ecosystem management 
to offset green-house-gas emissions and to conserve ecosystem and biodiversity. Various methods 
have been proposed and applied to provide consistent and up-to-date mappings of forests during the 
past decades [9–11], and the optical remote sensing images, such as the Landsat E/TM and the MODIS 
images, have been widely used from local to global scales [7,12–16]. However, applications of optical 
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satellite images relying on reflection of solar radiation are challenged by the persistent cloudiness in 
the mountainous tropics [17] where average cloud coverage could reach as high as 55.5 ± 12.5% even 
during the dry season according to the data from the tropical island of Puerto Rico [18].  

Unlike passive optical sensors, Synthetic Aperture Radar (SAR) sensors emit and receive 
microwave which could penetrate clouds and provide all-weather images in day and night [19]. The 
signals of SAR sensors with L-band could even penetrate vegetation canopies and provide 
information of not only canopy but also branches and trunks [9]. Moreover, as radar backscattered 
signal is sensitive to the land surface roughness and dielectric properties [20], the texture 
characteristics of the backscattered signal could be useful to improve LCLU mapping [21]. The 
synergistic use of images from both optical and SAR sensors, in general, yielded better classification 
results than those using either of them [15,17,19,22].  

As a biodiversity hotspot in the tropical Caribbean with high endemism, Puerto Rico has 
experienced significant forest transition from deforestation to reforestation in the last century [23–
25]. Historically, the island’s economy relied heavily on agriculture (e.g., sugarcane, coffee, and 
tobacco) during the Spain Era (1493–1898), which led to extensive forest clearing [26]. By the 1940s, 
the remaining forests only covered 5–6% [27]. The economic shift to industry and service initiated in 
the 1940s resulted in massive abandonment of croplands and rendered the space for forest regrowth 
[27–29]. The economic shift also led to urbanization followed by urban sprawl [30–32]. In contrast to 
the well-documented LCLUC during the last century with population growth, little is known for the 
LCLUC in the new century. The start of the new century is characterized by a population decline, 
which appears to be the first time in its history according to the US Census. The drop in human 
population might halt or reverse the trend of urbanization, and the potentially reduced human 
activities might in turn favor the forest regrowth.  

The objectives of this study are: 1) to map the land cover of 2010 for the tropical island of Puerto 
Rico by integrating the optical and the SAR remotely sensed imagery; 2) to evaluate whether the 
reforestation and the urbanization continued in the new century in the background of the declining 
population; and 3) to investigate the spatial distributions of forest changes in relation with 
topography, disturbance, and policies in the first decade of the new century. This study will 
strengthen our understanding of the forest transition and inform the land use planning and the policy 
making for tropical forest restoration/conservation.  

2. Materials and Methods  

2.1. Study Area 

Puerto Rico (18.22° N and 66.59° W, Figure 1) is an island of 8,950 km2 in the Greater Antilles 
bounded by the Caribbean Sea and the Atlantic Ocean. The island has a tropical climate (i.e., wet-
dry) with annual mean temperature varying from 21.1 °C to 26.7 °C and the rainy season from April 
to November. Northeasterly trade winds prevail year-round. The central cordillera with the highest 
peak of 1,338 m a.s.l. blocks the passage of moisture, so that the northeastern windward receives as 
much as over 4,000 mm of annual rainfall while the rain shadow effect leaves less than 1,000 mm in 
the southwestern leeward [31,33]. As a result, a highly spatial-heterogeneous landscape was formed 
with steep changes in climate and vegetation over short geographic distances [34]. Tropical moist 
forests dominate the island, while wet forests are limited in the central cordillera and dry forests in 
the south [18,35].  
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Figure 1. Location and geomorphology of Puerto Rico (ELZ stands for ecological life zone). 

2.2. Data Preprocessing 

To create cloud-free Landsat-based composite images covering the study area in the years of 
2000 and 2010, we obtained two Landsat TM/ETM+ products: top-of-atmosphere (TOA) reflectance 
with a cloud mask detected by the Fmask algorithm [36], and surface reflectance (SR) with a cloud 
mask detected by the Cmask, both produced by Landsat Ecosystem Disturbance Adaptive Processing 
System (LEDAPS). We selected the images from November to April to cover the dry seasons ranging 
from December to March and to account for the interannual variations. We then generated cloud-free 
Landsat-based composite images of both SR and TOA for each year of 2000 and 2010 as the median 
reflectance of 23 images for 2000 and 54 images for 2010 after elimination of cloud pixels [37]. The 
gaps caused by clouds and shades were filled using the median values of multiple years around the 
study periods (e.g., one year before and after and then three years before and after if needed).  

The Advanced Land Observing Satellite (ALOS) Phased Array L-band Synthetic Aperture Radar 
(PALSAR) data were acquired through the Alaska Satellite Facility (ASF). High-quality terrain data 
is of critical importance to the radiometric correction (i.e., to eliminate the backscatter distortions 
caused by topography) and the terrain correction (i.e., to correct the geometric distortions) of the SAR 
data. Although the high-level radiometrically terrain-corrected (RTC) products were provided by the 
ASF, many scenes in our study area still show shifts of 1–3 pixels, which may be caused by low-
resolution digital elevation model data (DEM, Figure 2A) used in the terrain correction. Thereby, we 
conducted radiometrically terrain correction processes using the level 1.1 Single Look Complex Fine 
Beam Dual (FBD, i.e., HH+HV) mode products at the resolution of 12.5 m and the corrected high-
resolution DEM data (described below), with the aid of ASF MapReady toolkit. We obtained 32 
PALSAR scenes of radiometrically terrain corrected gamma naught SAR data for 2010.  

Terrain variables (elevation, slope, and aspect) are key auxiliary predictors in LCLU 
classification because of their important roles in vegetation distribution. The elevation data used in 
this study was integrated from two high spatial resolution DEM data: the National Elevation Dataset 
provided by the USGS (~10 m) [38] and the Puerto Rico coastal DEM data processed for NOAA’s 
tsunami project [39]. The former DEM data from USGS missed the details in the coastal plains 
whereas the latter covered the details but only available in the coastal regions (Figure A1). The 
integrated DEM data were projected and resampled to 30 m using the nearest neighbor resampling 
method to match the remote sensing datasets, and then used to derive the topography slope (the 
percentage change in its elevation per distance) and the aspect (the compass direction that the land 
slope faces).  
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Figure 2. Land cover/use map of Puerto Rico in 2010. MTWD, montane woodland; HERB: herbaceous 
agriculture/pasture; FORS, forest; FWET: forested wetland; FTWD, coastal woodland; BARE, bare 
ground; CLSH, closed shrubland; URBN, urban developed land; and WATR, water body.  

2.3. Reference Data Collection 

The ground reference data is used to train and to verify the classification models. To collect the 
ground reference data for the year of 2000, we first chose the land cover polygons greater than 2.25 
hectares (5 × 5 pixels) based on the historical land cover map in 2000 (see Section 2.4) [29,40] and 
created a 30-m negative buffer to exclude the edges. We then randomly selected 2,000 points from 
the centers of these polygons and manually checked the land cover of each point based on the high-
resolution imagery from Google Earth. To collect the ground reference data for the year of 2010, we 
used the aerial photos taken in 2010 with the spatial resolution of 0.4 m [41] and checked whether the 
points chosen for 2000 changed their land cover types in 2010. The points without change were kept 
for 2010. For those points with land cover changed, we shifted their location to nearby patch center 
with the same land cover type. The procedure enabled us to obtain 1,967 ground reference points for 
the year of 2000 and 1,922 for the year of 2010 (Table A1), and we randomly split these into the 
training dataset (70% of each land cover type) and the testing dataset (the remaining 30%) for the 
classifiers. 

2.4. Land Cover Mapping, Post Classification, and Land Change Analyses 

We applied the random forest (RF) classifier to classify the land cover in 2000 and 2010 using 
five combinations of the input variables [14,42–44]. The combinations include: C1, Landsat surface 
reflectance (SR) and topographic variables; C2, Landsat SR, Vegetation Indices (VI), and topographic 
variables; C3, Landsat Top-of-atmosphere (TOA) reflectance, VI, and topographic variables; C4, 
Landsat SR, VI, SAR, and topographic variables; and C5, Landsat TOA reflectance, VI, SAR, and 
topographic variables. Since SAR data is only available for the year of 2010, we derived 3 classification 
models for the year of 2000 while 5 models for 2010. We treated SAR data as input variables, 
combined in parallel with optical data and terrain variables, to train the random forest classifier. We 
then quantified classification accuracy based on the testing datasets using overall classification 
accuracy, producer’s accuracy, user’s accuracy, and Kappa statistics. The optimization of the 
parameters chosen in the RF classifier was according to the overall accuracy and the efficiency (Figure 
A2). In order to assess the importance of input variables in the classification, we applied the Boruta 
algorithm for feature selection [45] via an iteration process (R package ‘Boruta’). In the post 
classification, we manually filled the gaps due to residuals of cloud cover in mountain peaks by 
digitizing from the high-resolution aerial photos. We also checked and corrected the 
misclassifications among rock, sand, and impervious surface.  

To investigate the decadal change in LCLU, we calculated the land change transition matrix and 
created the land change transition map based on the newly produced land cover maps of 2000 and 
2010. To validate the decadal change, a separate independent dataset of land cover change including 
607 ground truthing points was stratified-randomly collected by visually interpreting the land cover 
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changes from 2000 to 2010 in the high-resolution images. The changes on the high-resolution images 
were compared to the corresponding calculated land cover changes to produce an accuracy 
assessment for land changes.  

The spatial patterns of deforestation, i.e., the conversion from forest (including forests and 
forested wetlands) to non-forest, and reforestation/afforestation during 2000–2010 were analyzed. 
For comparison, a forest change map for the period of 1991–2000 was also created according to the 
historical land cover map of 1991 and 2000 derived from the Landsat TM and ETM+ using decision-
tree classifier [29,40]. To quantify the rates of forest change along the gradients of forest coverage, we 
divided the main island of Puerto Rico into non-overlapping grid cells according to three window 
sizes, i.e., 25 × 25, 50 × 50, and 100 × 100 pixels, and cross-tabulated the forest/non-forest maps of the 
years of 2000 and 2010 at each scale. The annual rate of forest change in each grid cell was calculated 
as [46], = 1 −⁄ ln ⁄ , where  is the annual rate of forest change,  and 

 denote the forest cover in 2010 ( ) and 2000 ( ), respectively. The annual rate of forest change 
estimated based on two dates may be biased due to the ‘noise’ from various sources. Estimating at 
the scales of 0.75 × 0.75, 1.5 × 1.5, and 3 × 3 km2 would partially eliminate ‘noise’ at pixel level. We 
calculated the forest change rates for 16,000, 4,000, and 1,004 grid cells with land pixels greater than 
25% of the three window sizes, respectively. Relationship between forest coverage and annual forest 
change at each scale was explored.  

Human activities and vegetation spontaneous regrowth are highly related with geomorphology. 
To understand how the spatial distributions of land change vary with the topography slope, we 
calculated the land transition matrix for each of the slope categories with the break values of 1°, 3°, 
5°, 10°, 15°, 20°, 25°, 30°, and 35°, respectively. Protected areas have been established in various 
ecological life zones in Puerto Rico to preserve zonal forests and conserve biodiversity. To test the 
hypothesis that the LCLUC activities were lower inside the protected areas than those outside, we 
quantified and compared LCLUC within the protected areas and those within the 500-m and the 
1,000-m buffer zones surrounding the protected areas.  

3. Results 

3.1. Land Cover Classifications in 2000 and 2010 

The classification models achieved high overall accuracies with 92.1 ± 0.9% and 91.8 ± 0.9% for 
the years of 2000 and 2010, respectively (Table 1). The average producer’s and user’s accuracies of 
most land cover types are larger than 80%, except for the closed shrubland and the coastal woodland. 
For the year of 2000, the highest overall accuracy (93.0%) and Kappa statistic (90.8%) were achieved 
with the input dataset C3 consisted of the TOA reflectance, VI, and terrain variables. For the year of 
2010, the Kappa statistic achieved 89.9% and 90.5% for C4 and C5, respectively, when the SAR data 
was included in the inputs. The closed shrubland of 2010 has average producer’s accuracy of 68.7 ± 
3.0% and was easily misclassified as pasture or coastal woodland. The coastal woodland has the 
lowest producer’s accuracy of 64.2 ± 5.4% and was likely misclassified with the closed shrubland or 
the forest. The C3 for 2000 and C5 for 2010 with TOA reflectance had the best overall accuracy and 
the highest Kappa statistic, therefore they were applied to create the land cover maps of the two years, 
respectively. The variable importance analysis by the Boruta algorithm showed that all input 
variables are important in the classification and the terrain, optical spectral features, and VIs play 
more important roles in the classification than the SAR-related variables (Figure A3). The full 
confusion matrix (Table A2) showed that the addition of SAR largely enhanced the recognition of the 
urban area, from 33 to 39 out of 43 ground-truthing points, and although the accuracies of forest and 
herbaceous cover are already very high, both greater than 96%, the addition of SAR still contributed 
to increasing the recognition from 178 to 179 out of the 185 forest ground points and from 186 to 187 
out of the 190 points for herbaceous cover.  
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Table 1. Accuracies of the land cover classification for the years of 2000 and 2010. The input variable 
combinations are: C1, surface reflectance (SR) and topographic variables; C2, SR, vegetation indices 
(VI), and topographic variables; C3, Top-of-atmosphere (TOA) reflectance, VI, and topographic 
variables; C4, SR, VI, topographic variables, and SAR; C5, TOA reflectance, VI, topographic variables, 
and SAR. MTWD, montane woodland; BARE, bare ground; CLSH, closed shrubland; FORS, forests; 
HERB: herbaceous agriculture/pasture; URBN, urban developed land; FWET: forested wetland; 
WATR, water body; FTWD, coastal woodland. OA, overall accuracy.  

 Producer’s Accuracy (%) User’s Accuracy (%) 
2000 C1 C2 C3 C1 C2 C3   

MTWD 85.0 85.0 85.0   89.5 94.4 85.0   
BARE 90.0 96.7 93.3 100.0 93.5 96.6   
CLSH 60.0 80.0 66.7   69.2 92.3 83.3   
FORS 91.4 91.4 91.9   95.0 94.4 94.5   
HERB 95.7 95.1 97.5 93.4 93.3 91.9   
URBN 98.3 96.6 94.8 93.4 96.6 98.2   
FWET 96.4 96.4 98.2   89.8 89.8 93.1   
WATR 100.0 100.0 100.0   100.0 100.0 100.0   
FTWD 62.9 65.7 77.1 59.5 62.2 81.8   
OA (%) 91.3 92.0 93.0        

Kappa (%) 88.4 89.4 90.8        
2010 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 

MTWD 90.7 90.7 93.0 88.4 93.0 90.7 90.7 93.0 92.7 95.2 
BARE 77.8 100.0 100.0 100.0 100.0 77.8 75.0 90.0 75.0 90.0 
CLSH 73.3 66.7 66.7 66.7 70.0 75.9 80.0 71.4 66.7 70.0 
FORS 96.2 95.7 96.2 96.2 96.8 93.2 93.7 95.7 94.7 94.7 
HERB 93.3 93.3 96.4 95.3 96.9 92.8 92.8 90.7 94.4 94.0 
URBN 88.4 93.0 76.7 93.0 90.7 82.6 87.0 89.2 100.0 100.0 
FWET 93.9 93.9 93.9 93.9 93.9 100.0 100.0 97.9 95.8 97.9 
WATR 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 
FTWD 57.6 63.6 63.6 72.7 63.6 70.4 70.0 72.4 77.4 72.4 
OA (%) 90.8 91.3 91.5 92.5 93.0   

Kappa (%) 87.5 88.2 88.4 89.9 90.5      

3.2. Land Cover Changes between the Years of 2000 and 2010 

The montane and coastal woodlands and closed shrubland were combined into woodlands, and 
the forest and forested wetland into forests in the evaluation of land conversions (Table 2). The results 
showed that bare ground was mainly converted to herbaceous agriculture/pasture (35.6 km2) and 
urban land (34 km2). Herbaceous agriculture/pasture was mainly changed into woodland (517.2 km2), 
forests (374.8 km2), and urban land (142.9 km2). Woodland was mainly changed into forest (352.8 km2) 
and herbaceous agriculture/pasture (257.8 km2). Herbaceous agriculture/pasture has a net loss (624.4 
km2, 21.7%) in this period, giving rise mostly to the expansions of forests (311.5 km2, 7.8%) and 
woodland (197.3 km2, 18.7%). The urban land also obtained an increase of 198.8 km2 (26%) in total 
area. However, bare ground and water decreased by 72.9 (65.2%) and 10.3 km2 (11.4%), respectively. 
The analysis of forest transitions revealed that approximately 89.2% of the forests in 2000 remained 
in 2010 with the other 10.8% changed mostly to woodland (297 km2) and herbaceous 
agriculture/pasture (123.5 km2). Reforestation/afforestation also occurred with 374.8 km2 from 
herbaceous agriculture/pasture and 352.8 km2 from woodland in 2000. The combined outcome of 
deforestation (432.6 km2) and reforestation (744.1 km2) resulted in a 7.8% net increase in forests during 
this period.  
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Table 2. Land conversion between 2000 and 2010 (km2). BARE, bare ground; HERB, herbaceous 
agriculture/pasture; FORE, forests including forested wetland; URBN, urban area; WATR, water; and 
WOOD, woodland.  

 2010
2000 BARE HERB FORE URBN WATR WOOD 

BARE 26.3 35.6 2.9 34.0 5.6 7.4 
HERB 7.5 1835.5 374.8 142.9 4.2 517.2 
FORE 1.6 123.5 3561.1 7.0 3.4 297.0 
URBN 0.2 2.0 0.02 760.4 0 1.2 
WATR 1.7 3.4 13.5 0.5 66.0 5.6 
WOOD 1.5 257.8 352.8 17.8 1.2 425.7 

3.3. Spatial Distribution of Forest Changes from 2000 to 2010 

The distribution of deforestation and reforestation in 2000–2010 were highly heterogeneous 
(Figure 3B). The reforestation sites were mostly clustered in the east and the deforestation sites were 
scattered in the central mountains and the south. The forest change activities (deforestation plus 
reforestation) in 2000–2010 were much lower than those in 1991–2000, i.e., 1,176.6 km2 in areas in the 
former period versus 1,529.6 km2 in the latter period. The deforestation area reduced from 746.9 km2 

in 1991–2000 to 432.5 km2 in 2000–2010 (42.1%).  

 
Figure 3. Spatial distributions of forest cover and forest change in Puerto Rico for the periods of 1991–
2000 ((A), data source from Kennaway and Helmer, 2007) and 2000–2010 (B).  

During 2000–2010, the annual rates of deforestation and reforestation both decreased with the 
increased forest coverage across the three window sizes, i.e., at the scales of 0.75, 1.5, and 3 km (Figure 
4). The highest rate of deforestation, 5.8–9.1% year−1, and that of reforestation, 7.4–11.8% year−1, both 
occurred at the forest coverages of 0–10%. The net change rates of forest were positive and declined 
with increased forest coverage. The validation of the land changes using an independent dataset 
indicated an overall accuracy of 78.1% and a Kappa statistic of 75.7%.  
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Figure 4. Annual change rates of deforestation and reforestation with standard error in 2000–2010 
against forest coverage at the scales of 0.75 km (A), 1.5 km (B), and 3 km (C). Freq. indicates the land 
proportion of each category of forest coverage.  

3.4. LCLUC Along the Slope Gradient 

The distribution of LCLU along the slope gradient showed similar patterns in 2000 and 2010 
(Figure 5A,B). Herbaceous agriculture/pasture and urban areas dominated the flat regions with the 
slopes lower than 5°. Forested wetlands and water were mainly at the areas with slopes lower than 
3° and decreased quickly with the increase of slope. Forests started to take over herbaceous cover 
when slopes are moderate, i.e., 5°–15°, and increased steadily with the slope. Woodlands distributed 
evenly across the slope gradient. Herbaceous covers decreased but forests, urban area, and 
woodlands increased from 2000 to 2010 across the slope gradient (Figure 5D). Changes in land cover 
were prominent with the slopes of 1°–10° and then declined with the slope (Figure 5D).  

Land conversions also differed along the slope (Figure 6). The loss of forest to other land cover 
types presented a decreasing trend with the increase in slope, while the loss of herbaceous cover 
showed a reversed trend (Figure 6A). Bare grounds showed the largest percentage of conversion. The 
conversion of woodland was steady around 60% along the slope gradient. The percentage of 
conversion to forests increased largely along the slope, which reached over 30% when slopes are 
greater than 20° (Figure 6B). In contrast, the percentage of conversion to herbaceous cover steadily 
declined. The gain of urban land was concentrated on relatively flat slopes (Figure 6B), indicating 
urban sprawl was much more intense on gentle slopes than on steep slopes.  
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Figure 5. The proportions and changes in proportions of land cover types along the slope in 2000–
2010. (A) proportions in 2000; (B) proportions in 2010; (C) areas in each slope category (km2); and (D) 
changes in proportions from 2000 to 2010.  

 
Figure 6. Percentage of land conversion along the slope. (A) Percentage of loss of major land cover 
types to others; and (B) Percentage of gain of major land cover types from others.  
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3.5. LCLUC Within and Surrounding the Protected Areas 

The proportion of each LCLU type in protected areas varied among the three ecological life 
zones (Figure 7). In the dry forest ecological life zone (DF), forest (37.5%), herbaceous 
agriculture/pasture (24.5%), and woodland (17.6%) were dominant inside the protected areas in 2000. 
From 2000 to 2010, the land changes within the protected areas in DF mainly showed the increments 
of woodland (43.8%) and forested wetland (43.6%), but the decreases of bare ground (42.3%) and 
herbaceous agriculture/pasture (17.7%) (Figure 7 and Table 3). Forest (36%), forested wetland (19.2%), 
herbaceous agriculture/pasture (18.3%), and water (17%) dominated the protected areas in the moist 
forest ecological life zone (MF) in 2000. During the decade, forest and forested wetland expanded by 
8.1% and 17%, respectively, while herbaceous agriculture/pasture declined by 31.3% in MF (Table 3). 
Forest accounted for 95.3% of the protected areas in the wet forest ecological life zone (WF) in 2000, 
and continued to expand slightly (1.3%) with the decreases in the herbaceous cover and woodland 
during the decade. Within the protected areas, the percentages of urban expansion in DF (11.6%) and 
WF (15.4%) were similar but doubled in MF (30.2%) (Table 3).  

 
Figure 7. Proportion of land cover types within protected areas in the ecological life zones of dry 
forest (DF), moist forest (MF), and wet forest (WF) in the years of 2000 and 2010. BARE, bare ground; 
HERB, herbaceous agriculture/pasture; FORS, forest; FWET, forested wetland; URBN, urban area; 
WATR, water; WOOD, woodland.  

Table 3. Changes of land cover (LC) types inside and outside the protected areas (km2). PA, protected 
areas. DF, MF, and WF indicate dry, moist, and wet forest ecological life zones, respectively.  

LC Type Overall DF MF WF 
Inside PA 

BARE −3.7 (−44.4%) −3.2 (−42.3%) −0.4 (−56.3%) −0.1 (−98.6%) 
HERB −14.4 (−25.8%) −5.2 (−17.7%) −7.0 (−31.3%) −2.1 (−56.1%) 
FORS 3.6 (1.0%) −3.4 (−7.4%) 3.6 (8.1%) 3.4 (1.3%) 
FWET 7.7 (23.8%) 3.7 (43.6%) 4.0 (17.0%) −0.04 (−35.7%) 
URBN 0.4 (19.4%) 0.1 (11.6%) 0.3 (30.2%) 0.04 (15.4%) 
WATR −2.4 (−8.4%) −1.3 (−17.3%) −1.1 (−5.1%) −0.02 (−45.2%) 
WOOD 8.8 (22.1%) 9.3 (43.8%) 0.7 (6.8%) −1.2 (−13.4%) 

500 m buffer outside PA
BARE −5.1 (−60.5%) −2.4 (−59.0%) −2.5 (−60.5%) −0.2 (−96.1%) 
HERB 30.0 (−23.3%) −6.8 (−16.0%) −14.4 (−22.7%) −8.8 (−38.6%) 
FORS 15.2 (6.4%) 1.8 (9.3%) 6.0 (9.4%) 7.5 (4.8%) 
FWET 2.3 (14.7%) 1.5 (25.3%) 1.1 (11.6%) −0.3 (−65.6%) 
URBN 7.2 (23.8%) 1.8 (19.7%) 5.1 (26.3%) 0.4 (18.4%) 
WATR −0.8 (−7.7%) −0.7 (−15.2%) 0.0 (<0.1%) −0.04 (−4.9%) 
WOOD 11.1 (18.1%) 5.0 (25.3%) 4.7 (25.4%) 1.4 (6.1%) 



Remote Sens. 2017, 9, 731 11 of 20 

 

1 km buffer outside PA
BARE −9.2 (−60.9%) −4.5 (−61.5%) −4.4 (−59.2%) −0.3 (−87.6%) 
HERB −62.4 (−23.0%) −15.7 (−17.0%) −28.1 (−22.0%) −18.7 (−35.9%) 
FORS 30.0 (7.0%) 5.0 (14.3%) 10.4 (8.5%) 14.5 (5.3%) 
FWET 3.0 (13.3%) 2.4 (29.5%) 1.1 (7.9%) −0.5 (−60.2%) 
URBN 16.1 (24.7%) 4.1 (22.8%) 11.2 (25.9%) 0.8 (20.7%) 
WATR −1.2 (−9.0%) −0.9 (−14.3%) −0.2 (−3.8%) −0.1 (−6.7%) 
WOOD 23.6 (19.7%) 9.6 (24.9%) 9.9 (27.2%) 4.2 (9.2%) 

Within the protected areas, the percentages of conversion to forests, i.e., 
reforestation/afforestation, from bare ground, herbaceous cover, or woodland were the highest in the 
wet forest zone, followed by the moist forest zone (Figure 8 and Table A3). The percentages of 
conversion to forests were the highest within the protected area, and decreased to some extent at the 
500-m and 1-km buffers outside in the wet and moist forest zones (Figure 8).  

 
Figure 8. Land conversion to forests within and outside the protected areas in 2000–2010. BARE_F, 
HERB_F, and WOOD_F indicate conversions to forests from bare ground, herbaceous cover, and 
woodland, respectively. Within PA, 500 m buffer, and 1 km buffer indicate inside, 500 m buffer 
outside, and 1 km buffer outside the protected areas, respectively.  

4. Discussion 

4.1. Land Cover Land Use Mapping in the Tropics 

Accurate and in-time monitoring of tropical land cover/use changes is urgent due to the rapid 
deforestation/reforestation in the tropics [7] and the essential roles of tropical ecosystems in the global 
carbon cycles [18,47,48]. However, persistent cloud covers, inaccessibility to tropical forest sites, and 
complex topography and landscapes limited the up-to-date mapping of land cover/use in Puerto 
Rico. To provide LCLUC information in the new century and improve the accuracy, we created 
cloud-free composite imageries choosing from all available Landsat images during dry seasons, 
integrated high-resolution DEMs from different sources, and made a comprehensive ground-
truthing dataset based on the high-resolution images and orthophotos. We further integrated the 
optical Landsat data with the L-band SAR data for mapping the land cover in 2010 due to the cloud-
penetrating ability of active long-wavelength radar [19]. We achieved very high accuracy in the 
mapping with the Kappa statistic of 90.8% and 90.5% for 2000 and 2010, respectively.  

In this study, we applied the Median summary on the cloud/shade removed scenes to create the 
consistent cloud-free optical imagery composites. This method makes full use of available images 
and has been proved to be effective and reasonable [37]. Our results also showed that classifiers with 
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TOA reflectance tend to concur higher accuracy than those using corresponding surface reflectance 
(Table 1). The limited atmospheric observations in the montane landscapes with persistent cloud 
cover might fail the retrieval of aerosol optical thickness, which tends to make surface reflectance 
products problematic [49]. The addition of L-band PALSAR significantly, but not substantially, 
enhanced the accuracy of LCLU mapping. However, the SAR data may be important for the high 
peaks in eastern and central mountains where cloud persists for most of the year to obscure the 
signals of optical sensors. The variable importance test using the Boruta algorithm also confirmed the 
important role of SAR in the classification (Figure A3). The recognition capability of SAR may overlap 
with that of the optical sensor in the classification. However, the active microwave of SAR can 
penetrate clouds and provide all-weather images in day and night. Therefore, the function of SAR is 
to supplement the obscured optical signals in the eastern and central mountains with persistent cloud 
cover. Adding SAR to the classification helped improve the accuracies of urban and forest land cover 
types (Table A2) with strong vertical structure, a feature found for SAR in the previous studies [50]. 
With the recent free-access to SAR data, such as Sentinel-1, the optical-SAR fusion for LCLU mapping 
of tropical regions will help improve the accurate and timely monitoring of tropical LCLUC.  

Forest coverages are not always in consensus in reports or literature due to the difference in the 
images used, classification methods, spatial resolution, forest definition, and the scales of the studies. 
We reported that the forested area in 2000 is 3,993.6 km2, which is very close to the 4,068 km2 reported 
in a local scale study in 2000 by the USDA Forest Service using the same types of images [29], but 
lower than the 4,541 km2 reported by the world bank [51]. The national scale study of land cover 
dataset in 2001 reported the tree cover at pixel level [52]. The forested area in 2001 is 3,524 km2 when 
forest is defined as tree cover greater than 50%, but 4,077 km2 when the criteria changed to 30%. The 
trend of forest expansion in 2000–2010 is in consensus with those from the World Bank and the 
national land cover data in 2001 and 2011. The magnitude of net forest gain in our study, i.e., 311.5 
km2, is comparable to the value of 296 km2 reported by the World Bank. The combined expansion of 
508.8 km2 of forests and woodlands is higher than that of 268.5 km2 reported in a coarse-scale study 
using MODIS images [53], largely due to the coarse resolution of the latter that limits the detection of 
fine-scale forest changes. 

4.2. Patterns in Land Cover Land Use Changes 

Our analysis revealed that in the first decade of the new century forests/woodlands recovery 
and urban expansion continued in the tropical island of Puerto Rico, mostly converted from 
herbaceous cover and bare ground (Table 2). However, compared to the previous decade, the forest 
changes slowed down (Figure 3) [31,54].  

Existing LCLUC studies emphasized the socioeconomic drivers for forest changes, such as the 
economic shift and the rural-to-urban migration [25,26,30,31]. However, natural disturbances, such 
as hurricanes and landslides, could also substantially alter the land cover in tropical islands. 
Hurricane is considered the major natural disturbance in Puerto Rico. Strong wind with a hurricane 
landfall could sweep through the forest and cause severe defoliation, stem and branch breakage, and 
tree uprooting [55]. In addition, the associated heavy rainfall could trigger mudslides or landslips on 
steep slopes [56]. When we compared the spatial pattern of forest change in 2000–2010 (Figure 3B) 
with that in 1991–2000 (Figure 3A), we found that the early deforestation clusters in 1991–2000 in the 
eastern part of the island turned into clusters of reforestation later in 2000–2010. Coincidentally, these 
eastern regions (such as Humacao and Yabucoa) were the areas hit directly by the Hurricane Georges, 
which made a landfall here and then swept across the entire island in 21–22 September 1998 with 
sustained winds of 184 kph and rainfall up to 720 mm. Our analyses revealed that half of the 
reforestation in 2000–2010 came from the woodlands, and to some extent, the forest recovery from 
the damage of Hurricane Georges might contribute to this transition. Further analyses incorporating 
long-term ground surveys, such as the LTER Luquillo studies, would be needed to test this 
hypothesis.  

Forest cover changes mostly occurred at the low-density secondary forests or near the forest 
edges. The annual rates of deforestation and reforestation in 2000–2010 reached the largest where 
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forest coverages were less than 20% (Figure 4). Most of the large forest patches are protected by 
local/federal governments or non-government organizations, so that little deforestation happened. 
LC distributions and their conversions are strongly related to topography slope (Figures 5 and 6). 
Forested wetlands were mainly distributed in gentle slopes, and urban and bare lands were mainly 
in the gentle to moderate slopes. LCLUC varied along the slope gradients in 2000–2010. The 
proportion of herbaceous cover decreased with the slope gradients (Figure 5A,B). The development 
of urban areas was dominant in the flat coastal regions to avoid high cost and risk of landslides on 
the steep slopes (Figures 5D and 6B). Forests and woodlands took over the herbaceous cover and 
expanded on the steep slopes, i.e., 15–25°, mostly through secondary successions (Figures 5 and 6).  

Protecting ecosystems with diverse landscapes is important for biodiversity conservation and 
ecosystem services provision [54]. We evaluated the changes in LC within the protected area and the 
immediate neighborhood in the wet, moist, and dry forest life zones. Forests and woodlands 
increased within the protected areas in all three life zones. The proportions of conversions to forests 
from the bare ground, herbaceous cover, or woodlands are the highest within the protected area in 
the wet forest zone which has 95% forested area. These conversion proportions are also higher within 
the protected area than those in the immediate buffer zones of 500 m or 1 km in the wet or moist 
forest zones (Figure 8), indicating the effective protection and restoration of the natural resources. 
However, the urban expansion rates within the protected area and in the buffers of 500 m and 1 km 
in the moist forest zone are higher than those corresponding in either the dry or the wet forest zone 
(Table 3). As major cities are distributed in the coastal moist forest zone, the more interference with 
and exposure to urban development might render the protected areas in moist forest more vulnerable 
to human activities than those in wet or dry forest zone. Current protected areas only cover 8%, i.e., 
445 km2, of the forests and woodlands of the island in 2010, therefore, more efforts should be done to 
preserve the remaining forests, especially in the moist and dry forest zones.  

In the first decade of the new century, for the first time, the human population declined in Puerto 
Rico according to the US Census [50]. However, urban areas continued to expand mostly through the 
conversion of herbaceous cover (Table 2). The emigration continues and accelerates after 2010 due to 
the economic stagnation. The further decline in human population would slow down the 
urbanization and might render additional forest recovery in this tropical island.  

5. Conclusions 

Tropical forests play an important role in the global land-atmosphere interactions and have been 
experiencing rapid deforestation or reforestation. Accurate and timely monitoring of forest changes 
in tropics is limited by persistent cloud covers. By taking the advantages of the cloud-penetrating 
capability of SAR signals, we integrated the L-band PALSAR with the optical Landsat images and 
achieved a high-accuracy land cover mapping of the tropical island Puerto Rico. Forest recovery and 
urban expansion continued in the new century despite a declining population, however, forest 
changes (deforestation and reforestation) slowed down compared to those in the last century. The 
clustered reforestation in the east and southeast coincided with the areas experiencing the hurricane 
landfall just before the new century, suggesting forest recovery via secondary succession. 
Implementing forest conservation effectively promotes forest recovery within the protected areas. 
However, since only 8% of forests/woodlands are currently protected, more efforts are still in need, 
especially for the protection of the moist and dry forests.  
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Appendix A 

Table A1. The land cover classification scheme adopted for the reference data collection. 

Land Cover Abbreviation Description # Samples 
in 2000 

# Samples 
in 2010 

Montane woodland MTWD 
Woody (coffee) plantation, low-
density woodland in mountain 

areas, canopy coverage below 50% 
65 150 

Bare ground BARE 

Non-forested and non-agricultural 
land with less than 10% herbaceous 
cover, including sparsely vegetated 

land, bare soil, bedrock, volcanic 
material, coastal sand dunes 

107 57 

Closed shrubland CLSH 
High-density shrubs, scrub 

generally below 3 m in height, 
canopy coverage around 30%–50% 

45 104 

Herbaceous 
agriculture/pasture 

HERB 
Herbaceous vegetation such as 

crops, pasture, and marsh, tree and 
shrub coverage less than 10% 

560 659 

Forest FORS 

High-density scrub with more than 
50% canopy coverage, trees with 3 

m or more in height, including both 
deciduous and evergreen forests 

605 621 

Urban URBN 

Urban development, including 
residential, commercial, industrial, 

transportation and utility 
infrastructure, green belt (width 

less than 30 m), and other 
developed land 

198 191 

Forested Wetland FWET 
Forested wetland, including 

mangroves and Pterocarpus forest 
180 190 

Water WATR 

Inland water bodies (natural & 
artificial) including reservoirs, 

lakes, rivers, lagoons, and 
drainages. 

95 95 

Coastal woodland FTWD 
Coastal low-density woodland on 

flat land, including fruit trees, 
canopy coverage below 50% 

112 116 

Table A2. Confusion matrix of the classification models for the year of 2010 with different variable 
combinations (C1, surface reflectance (SR) and topographic variables; C2, SR, vegetation indices (VI), 
and topographic variables; C3, Top-of-atmosphere (TOA) reflectance, VI, and topographic variables; 
C4, SR, VI, topographic variables, and SAR; C5, TOA reflectance, VI, topographic variables, and SAR. 
UA, user’s accuracy; PA, producer’s accuracy). 

C1 MTWD BARE CLSH FORS HERB URBN FWET WATR FTWD UA
MTWD 39 0 0 3 1 0 0 0 0 90.7% 
BARE 0 7 1 0 0 1 0 0 0 77.8% 
CLSH 1 0 22 2 2 1 0 0 1 75.9% 
FORS 2 0 1 178 0 0 2 0 8 93.2% 
HERB 1 1 3 1 180 3 0 0 5 92.8% 
URBN 0 1 0 0 7 38 0 0 0 82.6% 
FWET 0 0 0 0 0 0 46 0 0 100.0% 
WATR 0 0 0 0 0 0 0 25 0 100.0% 
FTWD 0 0 3 1 3 0 1 0 19 70.4% 

PA 90.7% 77.8% 73.3% 96.2% 93.3% 88.4% 93.9% 100.0% 57.6%  
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C2 MTWD BARE CLSH FORS HERB URBN FWET WATR FTWD UA
MTWD 39 0 0 3 1 0 0 0 0 90.7% 
BARE 0 9 1 0 2 0 0 0 0 75.0% 
CLSH 1 0 20 2 1 0 0 0 1 80.0% 
FORS 2 0 1 177 1 0 2 0 6 93.7% 
HERB 1 0 4 1 180 3 0 0 5 92.8% 
URBN 0 0 0 0 6 40 0 0 0 87.0% 
FWET 0 0 0 0 0 0 46 0 0 100.0% 
WATR 0 0 0 0 0 0 0 25 0 100.0% 
FTWD 0 0 4 2 2 0 1 0 21 70.0% 

PA 90.7% 100.0% 66.7% 95.7% 93.3% 93.0% 93.9% 100.0% 63.6%  
C3 MTWD BARE CLSH FORS HERB URBN FWET WATR FTWD UA

MTWD 40 0 0 3 0 0 0 0 0 93.0% 
BARE 0 9 0 0 0 1 0 0 0 90.0% 
CLSH 0 0 20 1 2 0 0 0 5 71.4% 
FORS 1 0 0 178 1 0 2 0 4 95.7% 
HERB 2 0 4 1 186 9 1 0 2 90.7% 
URBN 0 0 1 0 3 33 0 0 0 89.2% 
FWET 0 0 0 0 0 0 46 0 1 97.9% 
WATR 0 0 0 0 0 0 0 25 0 100.0% 
FTWD 0 0 5 2 1 0 0 0 21 72.4% 

PA 93.0% 100.0% 66.7% 96.2% 96.4% 76.7% 93.9% 100.0% 63.6%  
C4 MTWD BARE CLSH FORS HERB URBN FWET WATR FTWD UA

MTWD 38 0 0 2 1 0 0 0 0 92.7% 
BARE 0 9 1 0 2 0 0 0 0 75.0% 
CLSH 2 0 20 0 5 1 0 0 2 66.7% 
FORS 2 0 1 178 1 0 2 0 4 94.7% 
HERB 1 0 4 1 184 2 1 0 2 94.4% 
URBN 0 0 0 0 0 40 0 0 0 100.0% 
FWET 0 0 0 1 0 0 46 0 1 95.8% 
WATR 0 0 0 0 0 0 0 25 0 100.0% 
FTWD 0 0 4 3 0 0 0 0 24 77.4% 

PA 88.4% 100.0% 66.7% 96.2% 95.3% 93.0% 93.9% 100.0% 72.7%  
C5 MTWD BARE CLSH FORS HERB URBN FWET WATR FTWD UA

MTWD 40 0 0 2 0 0 0 0 0 95.2% 
BARE 0 9 1 0 0 0 0 0 0 90.0% 
CLSH 1 0 21 0 3 0 0 0 5 70.0% 
FORS 1 0 2 179 1 0 2 0 4 94.7% 
HERB 1 0 3 1 187 4 1 0 2 94.0% 
URBN 0 0 0 0 0 39 0 0 0 100.0% 
FWET 0 0 0 0 0 0 46 0 1 97.9% 
WATR 0 0 0 0 0 0 0 25 0 100.0% 
FTWD 0 0 3 3 2 0 0 0 21 72.4% 

PA 93.0% 100.0% 70.0% 96.8% 96.9% 90.7% 93.9% 100.0% 63.6%  
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Table A3. Land conversion to forests within and outside the protected areas in 2000–2010. DF, MF, 
and WF indicate dry, moist, and wet forest ecological life zones, respectively. IPA, OPA500m, and 
OPA1km indicate inside, 500-m buffer outside, and 1-km buffer outside the protected areas, 
respectively. 

 From Bare Ground From Herbaceous Cover From Woodland 
 DF MF WF DF MF WF DF MF WF 

IPA (km2) 0.1 0.06 0.09 2.4 4.8 1.7 4.7 4.3 5.1 
OPA500m (km2) 0.1 0.1 0.1 2.4 7.9 6.0 4.6 6.0 9.8 
OPA1km (km2) 0.2 0.2 0.1 5.6 14.0 13.3 9.0 11.2 18.5 

IPA (%) 1.6 7.3 68.0 8.2 21.4 43.5 22.2 42.1 59.3 
OPA500m (%) 2.6 2.7 54.9 5.6 12.5 26.5 23.3 32.5 42.4 
OPA1km (%) 2.3 2.1 42.2 6.0 11.0 25.7 23.4 30.7 40.8 

 
Figure A1. The two digital elevation model (DEM) data around the coastal region of San Juan, Puerto 
Rico. (A). DEM from the USGS National Elevation Dataset; (B). DEM from NOAA National 
Geophysical Dataset which provides details in the coastal region.  
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Figure A2. The overall accuracies of a grid search over the three tuning parameters (i.e., the number 
of trees, NumTrees, the number of variables per split, NumSplit, and the minimum terminal node, 
Node) for the random forest classifier. (A) optimization for the NumTrees and the NumSplit with 
Node of 1; and (B) optimization for the NumTrees and the Node with NumSplit of 6 (i.e., the square 
root of the number of variables).  

 
Figure A3. The importance of the predictive variables assessed by Boruta feature selection algorithm. 
Blue boxplots (i.e., first three boxes from left) correspond to minimal, average, and maximum Z-score 
of shadow features, which are shuffled version of real features introduced to RF classifier and act as 
benchmarks to detect truly predictive variables (The variables colored in green are those detected as 
strongly relevant to the decision variable).  
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