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Abstract: Rapid urbanization has occurred in northwestern China, threatening the sustainability of 
its fragile dryland ecosystems. A lack of precise urban land-cover information has limited our 
understanding on the urbanization in the dryland. Here, we examined urban land-cover changes 
from 2000 to 2014 in 21 major cities that comprise over 50% of the developed land in arid China, 
using Landsat Enhanced Thematic Mapper Plus and Operational Land Imager data, and a hybrid 
classification method. The 15-m resolution urban land-cover products (including impervious 
surfaces, vegetation, bare soil, and water bodies) had an overall accuracy of 90.37%. Based on these 
new land use products, we found the urbanization in arid China was characterized by the dramatic 
expansion of impervious surface (+13.23%) and reduction of bare soil (−13.41%), while the 
proportions of vegetation (+0.27%) and water (−0.10%) remained stable. The observed dynamic 
equilibrium of vegetated ratio implies an increasing harmonization of urbanization and greening, 
which was particularly important for the sustainability of fragile urban ecosystems in arid regions. 
From an economic perspective, gross domestic product and population were significantly 
correlated with impervious surfaces, and oasis cities displayed a stronger ability to attract new 
residents than desert cities. 

Key words: urban expansion; land-cover change; greening; precise mapping products; arid China  
 

1. Introduction 

Humans have experienced rapid urban expansion. As of 2008, more than half of the world’s 
population lived in urban areas [1]. This number is expected to reach 66 percent by 2050, and this 
ongoing increase is driving the rapid expansion of urban areas [2]. At present, approximately 5% of 
global land has been converted to urban areas; and urbanization has become an important factor in 
land use/cover changes on a global scale [3,4]. By 2030, the area of the world covered by urban land 
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uses will triple compared to 2000 values [5], which will impact global biodiversity [6], climate [7], 
and hydrology [8]. The sustainability of an increasingly urbanized world is closely related to the 
structure of urban landscapes characterized by combinations of different land-cover types. Urban 
land-cover information has become an indicator of the ecological environment and climatic effects 
over different spatial and temporal scales [9–12]. Analysing the land-cover dynamics associated with 
urbanization in arid China also represents a potential avenue for research regarding the impact of 
urbanization on the global environment [12–14]. 

Arid regions are characterized by dry climates, sparse vegetation, water shortages, limited 
precipitation, and extremely fragile ecological environments; these characteristics lead to fragile 
urban ecosystems [15]. These systems are so overwhelmingly dependent on the external 
environment and socio-economic conditions that urban land-cover in arid regions is characterized 
by rapid succession and instability [16]. Background surface substrates show strong spatial 
heterogeneity and low resistance to landscape evolution [17]. A high proportion of the urban 
population is generally concentrated in a few large cities, such as Urumqi; the sustainability of these 
cities is particularly fragile [18]. Accurate urban land-cover information is needed to understand 
fragile urban ecosystems. The economic relationships among cities are weak due to the intervening 
desert, and the urban attraction effects associated with these cities are limited to the local scale. 
However, these cities still have strong administrative relationships, and they tend to become 
regional political, economic, cultural, and traffic centers [19]. Quantitative research into land-cover 
in these administrative centres may support the effective monitoring of dynamic urban change 
patterns across the entire arid region. 

Satellite images with high spatial resolution, such as QuickBird, are widely used to classify 
urban land-cover. However, it is difficult to achieve highly accurate classification results when 
applying automatic classification approaches due to the effects of spectral heterogeneity and the 
shadows casted by buildings and trees within the same surface type [20,21]. Images with moderate 
spatial resolution (such as Landsat images, which are easily accessed and have an appropriate 
spectral resolution) remain an important and popular data source [22]. According to the 
classification method proposed by Ridd, urban land-cover can be classified into three categories 
(excluding water) using the vegetation-impervious surface-soil (VIS) model [23]. Lu combined a 
linear spectral mixture analysis (LSMA) model with VIS to perform mixed pixel decomposition of 
moderate spatial resolution images in urban areas within humid regions [24,25]. However, the 
considerable areas of bare soil within urban areas in arid regions and the similarity between the 
spectral signatures of bare soils with impervious surface areas (ISA) made it especially challenging 
to accurately evaluate the quantity and distribution of information provided by this method. Zhang 
et al. [18] described a method that combined LSMA and decision tree classification scheme to 
improve the accuracy of land-cover classifications during a comparative analysis of land-cover in the 
arid and semi-arid regions surrounding Urumqi and Phoenix. This paper describes a new strategy 
for change detection analysis based on this method to provide accurate and reliable urban 
land-cover information in arid China. 

With population growth and economic progress, the cities in arid China have experienced rapid 
urbanization [26–29]. Ensuring the sustainability of these fragile urban ecosystems requires urban 
land-cover information and change detection technologies that yield high precision results and 
consider socio-economic factors. Therefore, the objectives of this study were to (1) create a 
high-resolution (15 m) urban land-cover dataset for the major cities (i.e., the 21 administrative 
centres) that comprised more than half of the developed land in arid China; (2) use a change 
detection analysis strategy to provide dynamic information on urban land-cover in arid China 
between 2000 and 2014, especially changes in urban greening; and (3) explore the influence of 
socio-economic factors on urban land-cover changes. 
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2. Materials and Methods  

2.1. Study Area 

The arid region of China includes Xinjiang, the northern parts of Gansu and Ningxia, and the 
western part of Inner Mongolia (Figure 1) [30]. The total area of this region is 213.80 × 104 km2. It has 
a typical continental monsoon climate with short spring and autumn seasons, hot and dry summer, 
and long and cold winter. Annual precipitation is generally less than 200 mm, and annual mean 
temperature is approximately 8 °C [31]. The area is characterized by complex terrain and landforms 
with elevations ranging from −191 m to 8507 m. Gross domestic product (GDP) increased by 1010.95 
billion yuan from 2000 to 2014, and urban population increased by 4.46 million people over the same 
period. In 2014, constructed areas of all the administrative centers (a total of 21) comprised 53.31% of 
the total developed land area (including both cities and towns) in arid China. Therefore, our study 
focused on the 21 major cities.  

 
Figure 1. The locations of the arid region in China. 

2.2. Methods 

Figure 2 illustrates how Landsat images were used to classify urban land-cover and the 
associated change detection analysis strategy. The VIS model and the LSMA were used to generate 
fraction images of vegetation, soil, low-albedo and high-albedo objects [20]. A decision tree classifier 
was then applied to produce urban land-cover maps of vegetation, soil, water, and ISA. An overlay 
analysis was performed using the urban development boundary and the land-cover maps to extract 
land-cover information within the urban areas. Based on their natural environmental conditions, the 
cities were classified as desert or oasis cities; the cities in these two categories were further classified 
as industrial or non-industrial cities based on their social and economic characteristics (Figure 3). 
Then, the change detection analysis was performed. 
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Figure 2. Strategy for change detection analysis using urban Landsat data. Abbreviations: T1, T2, T3, 
T4, T5, and T6: thresholds (the values of these quantities changed according to the different metrics 
used in the decision tree classifier); MNF: minimum noise fraction transformation; VIS: 
vegetation-impervious surfaces-soil model; LSMA: linear spectral mixture analysis; MNDWI: 
modified normalized difference water index; LSDI: low albedo and soil difference index; NDVI: 
normalized difference vegetation index; ISA: impervious surface areas; and GV: green vegetation. 
The urban land-cover map shows part of the city of Shihezi. Colour descriptions: red: ISA; green: GV; 
yellow: soil; and blue: water body. 

2.2.1. Data Collection and Pre-Processing 

Landsat 7 ETM+ and Landsat 8 OLI (Path: 130–149, Row: 27–34) images from 2000 to 2014 and 
1-m resolution Google Earth maps from 2014 were collected in this study. The Landsat images were 
first examined visually to evaluate image quality [28]. Then, data from July through September were 
analysed to accurately identify areas and spatial vegetation patterns. The Universal Transverse 
Mercator (UTM43–48/44–48 for 7 ETM+/8 OLI) coordinate system was re-projected to the Albers 
Conical Equal Area projection, and the areas and proportions of urban land cover types were 
calculated using the same coordinate system. 

Fast line-of-sight atmospheric analysis spectral hypercubes (FLAASH) was used to conduct the 
atmospheric calibration. FLAASH is a first-principles atmospheric calibration tool that corrected 
wavelengths in the visible through near-infrared and shortwave infrared regions. Unlike many other 
atmospheric correction programs that interpolate radiation transfer properties from a pre-calculated 
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database of modelling results, FLAASH incorporated the moderate resolution atmospheric 
transmission 4 (MODTRAN4) radiation transfer code. The version of MODTRAN4 incorporated into 
ENVI FLAASH was modified to correct errors in the HITRAN-96 water line parameters [32]. 
Therefore, ENVI FLAASH is suitable for use with multispectral sensors (such as those onboard the 
Landsat satellites) and can correct images collected in either vertical (nadir) or slant-viewing 
geometries [33]. 

The urban development boundary (build-up boundary in 2000 and 2014, respectively) was 
determined using the National Land Cover Dataset (NLCD) for China, which was produced by the 
Chinese Academy of Sciences (http://www.resdc.cn/Datalist1.aspx?FieldTyepID=1,3). The reported 
average accuracy for this dataset exceeded 90% [34,35]. Socio-economic data were obtained from the 
National Bureau of Statistics of China (http://www.stats.gov.cn/tjsj/tjgb/ndtjgb/). 

2.2.2. Data Fusion and Extraction of Fraction Images 

The spatial resolution of remote sensing data is a vital factor for efficiently extracting fraction 
images, especially for complex arrangements of land-cover types in urban landscapes [36]. 
Gram-Schmidt spectral sharpening has been shown to be an effective data fusion method for 
integrating multispectral and panchromatic data to create high-resolution datasets from Landsat 
images [37]. Thus, this technique was used in this research [38]. 

Using the VIS model, urban land-cover can be assessed a combination with vegetation, soil, 
low-albedo, and high-albedo objects [28]. Selecting appropriate endmembers for each component is 
a key step in this process. A minimum noise fraction transformation was used to transform the 
multispectral bands into three principal components. Then, four endmembers were identified. A 
fully constrained least-squares solution was used to decompose the Landsat images into four 
fraction maps [23]. 

2.2.3. Urban Land-Cover Classification and Type Division of Cities 

Spectral bands are commonly used to classify land-cover based on spectral signatures and 
fraction values. However, the mixed-pixel problem can make it difficult to separate different land 
use types in arid urban landscapes. For example, the high-albedo fraction image included 
highly-reflective bare soils and ISA, and the low-albedo fraction image contained shadows, dark ISA 
and water. Previous research has shown that the low-albedo and soil difference index (LSDI) can be 
used to distinguish bare soils from ISA [18] and that the modified normalized difference water index 
(MNDWI) can be used to separate water from other land-cover types [39]. Thus, both indices were 
used in this research.  

Based on the fraction images, a decision tree classifier was used to classify urban land-cover 
types. The MNDWI and band5 (ETM+)/band6 (OLI) were used to extract the water bodies. The 
normalized difference vegetation index (NDVI) and vegetation component were used to extract 
green space; and LDSI and vegetation component were used to identify ISA. Remaining areas were 
mainly bare soil, but may also contain other land-cover types. In the next step, unsupervised 
classification was applied to divide the remaining areas into 100 categories, which were allocated 
manually to bare soil, ISA, green land, and water bodies. During these steps, appropriate threshold 
values (identified as “T” in Figure 2) were used according to the actual spectral signatures of each 
city (Table 1). Then, an overlay analysis was performed using the urban development boundary and 
the land-cover maps to extract land-cover information within urban areas. 

For each city, we generated a 3-km buffer beyond the 2014 urban build-up boundary. The 
proportions of four land-cover types within this buffer zone were then calculated [40]. We defined 
oasis cities as those where vegetation accounted for more than 51.5% of the area; all other cities were 
classified as desert cities. Then, the oasis and desert cities were subdivided into industrial and 
non-industrial cities depending on whether their GDPs were dominated by secondary industries 
(Different types of cities were shown in Figure 3). 
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Table 1. The thresholds used in the decision tree classifier. 

ID City 
2000 2014 

T1 T2 T3 T4 T5 T6 T1 T2 T3 T4 T5 T6 
1 Urumqi 0.02  600  0.28 0.00 0.10 0.39 0.08 1700 0.31 0.03  0.10  0.35 
2 Karamay 0.10  950  0.33 0.02 0.08 0.58 0.05 1600 0.35 0.02  0.08  0.34 
3 Shihezi 0.10  600  0.26 0.04 0.08 0.41 0.08 1450 0.27 0.02 0.08 0.48 
4 Turpan 0.00  500  0.35 0.00 0.10 0.45 0.00 1450 0.31 0.05  0.08  0.41 
5 Hami 0.00  1100  0.32 0.02 0.10 0.23 0.10 1850 0.32 0.02  0.10  0.42 
6 Changji 0.00  700  0.37 0.00 0.10 0.48 0.02 2750 0.32 0.00  0.10  0.44 
7 Yining 0.00  950  0.34 0.00 0.08 0.45 0.00 1600 0.26 0.00  0.08  0.42 
8 Tacheng 0.04  800  0.33 0.02 0.10 0.35 0.05 1400 0.29 0.02  0.10  0.41 
9 Altay 0.00  650  0.31 0.03 0.10 0.49 0.02 1550 0.27 0.00  0.08  0.44 

10 Bole 0.02  650  0.41 0.00 0.12 0.38 0.00 1200 0.24 0.00  0.08  0.53 
11 Korla 0.00  1150  0.42 0.00 0.10 0.21 0.10 2900 0.34 0.04  0.08  0.32 
12 Aksu 0.10  700  0.32 0.04 0.10 0.50 0.02 1100 0.29 0.02  0.10  0.62 
13 Atush 0.00  500 0.31 0.00 0.08 0.55 0.00 1200 0.29 0.02  0.06  0.43 
14 Kashi 0.01  900  0.44 0.02 0.15 0.42 0.05 1850 0.33 0.00  0.10  0.30 
15 Hetian 0.05  700  0.41 0.02 0.10 0.30 0.00 1200 0.28 0.01  0.08  0.38 
16 Jiayuguan 0.00  700 0.29 0.00 0.10 0.37 0.02 1850 0.25 0.00  0.08 0.40 
17 Jinchang 0.12 950 0.26 0.04 0.08 0.29 0.10 1250 0.28 0.02  0.10  0.36 
18 Wuwei 0.02  900  0.28 0.00 0.08 0.50 0.00 1300 0.31 0.01  0.10  0.52 
19 Zhangye 0.07  650  0.31 0.02 0.10 0.57 0.00 1450 0.27 0.00  0.08  0.38 
20 Jiuquan 0.01 1100 0.28 0.00 0.08 0.59 0.00 1350 0.31 0.00  0.08  0.39 
21 Alxa Left 0.08  700  0.26 0.00 0.07 0.48 0.10 1950 0.34 0.02  0.08  0.32 
Notes: T1: MNDWI; T2: Band5 (ETM+) or Band6 (OLI); T3: GV, NDVI; T4: LSDI; T5: GV2; T6: S. 

2.2.4. Accuracy Evaluation 

To match the number of sampling points with the size of urban areas, the linear decomposition 
was used to allocate the 6000 sampling points, of which 50 points for minimum city, 988 points for 
maximum city. At the city scale, stratified random sampling was adopted to represent different 
urban land-cover compositions of different cities.  

It is challenging to separate ISA from bare soil other land cover types in dryland. Unlike 
conventional LSMA that identifies the ISA by simply adding up the low albedo and high albedo 
component [41–43], our study used the LDSI to locate ISA and conducting additional unsupervised 
classification to identify the land-cover types for “unknown areas”. We chose Korla, a typical 
dryland city with median land area and population size among the investigated cities, as an example 
to compare the accuracy of our modified LSMA method with that of the conventional LSMA. Table 2 
indicates that the modified LSMA method produced higher overall classification accuracy (86.65%) 
compared to conventional method (82.59%), with both the user’s and producer’s accuracies of the 
ISA and Soil types being improved. 

Table 2. Comparing the accuracy of our method and the conventional linear spectral mixture 
analysis method, using the Korla city as an example. 

Classified 
Data 

Classified Data Reference 
Totals 

Classified 
Totals 

Number 
Correct 

Producer’s 
Accuracy 

User’s 
Accuracy ISA GV Soil Water 

ISA 197 2 28 0 243 227 197 81.07% 86.78% 
GV 14 94 6 0 103 114 94 91.26% 84.21% 
Soil 32 7 121 1 155 161 121 78.06% 75.16% 

Water 0 0 0 15 16 15 15 93.75% 100% 
Conventional Method: Overall Classification Accuracy = 82.59% (i.e., 427/517) 

ISA 208 1 21 0 243 230 208 85.60% 90.43% 
GV 11 96 5 0 103 112 96 93.20% 85.71% 
Soil 24 6 129 1 155 160 129 83.23% 80.63% 

Water 0 0 0 15 16 15 15 93.75% 100% 
Our Method: Overall Classification Accuracy = 86.65% (i.e., 448/517) 
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2.2.5. Change Detection Analysis 

Different scales of urban land-cover information with differing levels of detail can be used to 
identify dynamic land use changes in arid China. Different urbanized regions helped the researchers 
understand the impacts of different urbanization levels on land-cover. Landscape ecological indices 
can effectively reflect the spatial form of urban land-cover types [44]. Therefore, the change detection 
analysis strategy contained three parts. First, information about changes across the entire arid region 
was obtained, and the differences between oasis and desert cities were analysed. In addition, the 
differences between industrial and non-industrial cities were compared in both areas. Second, 
different levels of urbanization including completed urbanization (“old urban districts”) and 
ongoing urbanization (“new urban districts”) were examined. Finally, landscape pattern changes in 
the land-cover types were highlighted at regional and urban scales. 

2.2.6. Landscape Pattern Analysis 

Many landscape ecology indices exist; however, no any single index is able to provide a 
comprehensive quantitative description of land-cover patterns. On the other hand, the use of 
multiple indices sometimes includes repeated or redundant information [44]. Five landscape indices 
were selected for use (Table 3): patch density (PD), largest patch index (LPI), landscape shape index 
(LSI), aggregation index (AI), and Shannon’s diversity index (SHDI).  

Table 3. Detailed information on the landscape indices implemented in Fragstats 4.2 [45]. 

Index Abbreviation Expression Comments 

Patch Density PD 
(10,000)(100)i

n
PD

A
=   

i
n : number of patches of type i  
A = total landscape area (m2) 

Expresses the number of patches per 
unit area and facilitates comparisons 
among landscapes of varying sizes. 

Largest Patch 
Index 

LPI 
1

max( )
(100)

n

ijj
a

LPI
A

==   

ij
a  = area (m2) of patch ij  

A = total landscape area (m2) 

Quantifies the percentage of total 
landscape area represented by the 
largest patch. A simple measure of 
dominance. 

Landscape 
Shape Index 

LSI 

*
*

1

0.25
0.25

m

ik
k

e
E

LSI or
A A
== =


  

*E  or *

ik
e  = total length (m) of edge  

A = total landscape area (m2). 

Provides a standardized measure of 
total edge or edge density that adjusts 
for the size of the landscape. The 
expression on the left is for the class 
level; the expression on the right is for 
the landscape level. 

Aggregation 
Index 

AI 

1

[ ] [ ( ) ]
max max

m
ii ii

i
iii ii

g g
AI or P

g g=

=
→ →  

ii
g  = number of like adjacencies for type i 

max →
ii
g  = maximum ii

g   

i
P  = proportion of landscape type i 

Shows the frequency of different pairs 
of patch types, or is an area weighted 
mean class aggregation index, where 
each class is weighted by its 
proportional area in the landscape. 
The expression on the left is for the 
class level; the expression on the right 
is for the landscape level. 

Shannon’s 
Diversity 

Index 
SHDI 

1

( )
m

i i
i

SHDI P In P
=

= −   

i
P  = proportion of the landscape 
occupied by patch type (class) i 

A popular measure of diversity in 
community ecology that is applied to 
landscapes here. 

2.2.7. Impacts of Economic Conditions on Urban Land-Cover Change 

The ISA has become an indicator of the conversion from natural surfaces to artificial land 
during urbanization; this conversion changes the proportions of land-cover types within urban areas 
[19]. We analysed whether ISA and socio-economic conditions (i.e., GDP and population) were 
positively correlated. A positive correlation would indicate that socio-economic factors have had 
driving effects on urbanization and urban land-cover changes. In addition, GDP density was used 
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to determine whether the local economies had experienced significant growth. Population density 
was used to explore the ability of oasis and desert cities to attract new residents. 

3. Results 

3.1. Analysis of Urban Land Cover Classification Results 

The overall classification accuracy for land-cover types in arid China was 90.37% (Table 4). 
Most misclassifications occurred among ISA, bare soil and water. This error was reasonable because 
complex building materials and different surface colors resulted in a broad spectral signature for the 
ISA. Dark ISA had a low spectral reflectance that was easily confused with shadows and water, 
while light ISA was highly reflective and had similar spectral characteristics to bare soil. Thus, 
accurately distinguishing between these surface types was a challenge. Although LSDI and MNDWI 
were used to improve the classification accuracy, the producer’s accuracy and user’s accuracy for 
bare soil were still the lowest compared to the other land-cover types. At the city scale, the overall 
accuracy and kappa coefficient ranged from 86.00% to 93.22% and from 0.796 to 0.896, respectively. 

3.2. Analysis of Urban Land-Cover Changes between 2000 and 2014 

3.2.1. Dynamic Characteristics of Urban Land-Cover in Arid Region of China 

The results (Table 5) showed that urban build-up boundary area increased from 844.83 km2 to 
1270.39 km2 in 2000–2014, which represents an increase of 425.56 km2. During this period, ISA 
increased by 376.40 km2 (an increase of 13.18% in urban areas), which suggests that urban living 
space became more compact. Bare soil decreased by 11.08 km2 (a decrease of 13.33% in urban areas), 
which indicates that urbanization in this region has increased the capacity of fixed sand and dust. 
While the urban proportions of vegetation (+0.27%) and water (−0.10%) remained stable, indicating 
that important ecological services within urban spaces had been maintained. The ISA and bare soil 
were dominated by different types of urban land-cover and changed at similar change rates. 

3.2.2. Changes of Spatial Distribution and Land-Cover in Different City Types 

As showed in Figure 3 and Table 6, the spatial distribution of urban land-cover types in oasis 
cities indicated that new urban areas primarily expanded into vegetated areas, and that the total 
urban area increased by 43.70%. In contrast, in desert cities, urban areas expanded significantly into 
the surrounding desert, and the total urban area increased by 62.90%. Regarding dynamic change of 
land-cover types, the expansion of ISA and vegetation caused the decreases of bare soil in oasis 
cities. The ISA increased, while vegetation and bare soil decreased in desert cities. The difference 
was the fraction of vegetation increased for 2.66% in oasis cities and decreased by 1.62% in desert 
cities. Furthermore, the changes in land-cover types between non-industrial cities and industrial 
cities in both oasis and desert regions also varied, especially for vegetation (Table 4). The changes in 
vegetation correlated with the city’s surrounding environment (oasis or desert) and economic 
attributes (industrial and non-industrial). 
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Table 4. Accuracy evaluation of urban land-cover classification in arid China. 

Classified Data 
Classified Data Reference 

Totals 
Classified 

Totals 
Number 
Correct 

Producer’s 
Accuracy 

User’s 
Accuracy 

 
ISA GV Soil Water   

ISA 2553 37 182 5 2819 2777 2553 90.56% 91.93%   
GV 68 1445 45 0 1524 1558 1445 94.82% 92.75%   
Soil 198 42 1248 1 1475 1489 1248 84.61% 83.81%   

water 0 0 0 176 182 176 176 96.70% 100%   
Overall Classification Accuracy = 90.37% (i.e., 5422/6000), Overall Kappa Statistics = 0.854   

City Urumqi Shi Hezi Korla Yi Ning Ha Mi Chang Ji Zhang Ye Karamay Aksu Ka Shi  
NSP 988 578 517 412 368 333 293 264 266 260  

OCA:% 93.22 91.00 86.65 88.83 89.95 92.19 89.76 92.42 89.47 90.77  
Kappa 0.896 0.862 0.796 0.828 0.846 0.880 0.842 0.884 0.837 0.858  

City Alxa Left  Jin 
Chang 

Jiu Quan Jia Yuguan Bo Le Wu Wei He Tian Ta Cheng Altay Turpan Atush 

NSP 243 254 210 190 199 151 143 122 92 67 50 
OCA:% 88.89 88.98 89.05 90.53 89.45 92.72 89.51 89.34 90.22 89.55 86.00 
Kappa 0.832 0.829 0.830 0.854 0.839 0.887 0.838 0.837 0.851 0.840 0.783 

Abbreviation: NSP—Number of Sampling Point; OCA—Overall Classification Accuracy. 
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Table 5. Dynamic characteristics of urban land-covers between 2000 and 2014. 

ID City 
Build-Up 

Area Change 
(km2) 

ISA GV SOIL WATER△A 
(km2) 

△f 
(%) 

△A 
(km2) 

△f 
(%) 

△A 
(km2) 

△f 
(%) 

△A 
(km2) 

△f 
(%) 

1 Urumqi 96.13 108.96 12.36 8.45 −1.29 −22.09 −11.03 0.81 −0.03 
2 Karamay 23.04 13.36 13.42 4.06 3.72 5.48 −16.67 0.13 −0.47 
3 Shihezi 47.23 43.02 16.77 8.84 2.64 −4.16 −18.4 −0.45 −1.02 
4 Turpan 3.56 2.43 8.74 −0.36 −7.74 1.47 −1.16 0.03 0.16 
5 Hami 17.14 16.4 14.97 1.06 −0.87 −0.29 −14.07 −0.01 −0.04 
6 Changji 16.48 15.03 11.74 7.5 11.48 −6.23 −23.46 0.19 0.24 
7 Yining 34.63 29.6 16.78 6.73 1.12 −1.72 −17.76 0.03 −0.12 
8 Tacheng 2.34 4.96 19.67 −0.35 −3.42 −2.25 −16.21 −0.01 −0.03 
9 Altay 5.6 5.53 23 1.76 8.14 −1.71 −31.19 0.01 0.06 
10 Bole 13.66 8.52 12.84 −1.11 −10.67 6.1 −0.86 0.15 −1.31 
11 Korla 39.63 26.26 11.02 3.35 −2.03 9.3 −9.13 0.72 0.14 
12 Aksu 9.02 13.67 22.77 0.83 −0.96 −5.78 −22.37 0.31 0.58 
13 Atush 1.06 2.27 21.42 0.6 6.21 −1.79 −27.28 −0.02 −0.36 
14 Kashi 11.39 13.6 19.87 3.11 4.03 −5.06 −22.88 −0.26 −1.01 
15 Hetian 6.32 7.65 23.39 −0.53 −6.89 −0.8 −16.46 0.00 −0.04 
16 Jiayuguan 13.14 11 8.78 5.18 8.46 −3.34 −17.75 0.29 0.5 
17 Jinchang 20.54 12.71 8.75 0.12 −8.5 7.69 −0.21 0.02 −0.03 
18 Wuwei 10.86 7.3 6.12 2.73 8.58 0.6 −15.49 0.22 0.8 
19 Zhangye 16.18 11.59 14.24 2.32 2.37 2.31 −15.8 −0.05 −0.8 
20 Jiuquan 19.17 12.35 13.5 1.75 −1.95 4.96 −11.74 0.11 0.19 
21 Alxa Left 18.44 10.19 10.65 1.79 −3.67 6.23 −7.38 0.22 0.4 
22 Total 425.56 376.4 13.18 57.81 0.24 −11.08 −13.33 2.43 −0.1 

Notes: ISA—Impervious Surface Area; GV-Green Vegetation; △A was defined as the difference of 
ISA (or GV, Soil, Water) area in 2014 and 2000; △f (△fraction) was defined as the difference between 
the ratio of ISA (or GV, Soil, Water) area and urban-up area in 2014 and the corresponding ratio in 
2000. 

 
Figure 3. Land-cover maps of the 21 major arid cities in China in 2000 and 2014. In this picture, the 
scale was set at fixed value of 5 km, and its length varied with the size of each city, respectively. 
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Table 6. Changes in urban build-up area and land-covers during 2000–2014 by city types. 

Changes in Oasis Cities Desert Cities 
Build-up +43.70%  +62.90%  

ISA +14.59%  +14.98%  
GV +2.66%  −1.62%  

Bare soil (%) −17.17%  −13.24%  
Water −0.09%  −0.12%  

Changes in Industrial Cities Non-Industrial Cities Industrial Cities Non-Industrial Cities
Build-up  +58.32%  +38.21%  +74.12%  +25.18%  

ISA +10.85%  +17.09%  +12.42%  +21.81%  
GV +7.79%  −0.76%  −2.70%  +1.25%  

Bare soil −18.77%  −16.10%  −9.48%  −23.26%  
Water +0.13%  −0.24%  −0.24%  +0.20%  

3.2.3. Changes of Land-Cover Transfer in Different Urbanization Levels 

Changes of land-cover transfer in different urbanization can be summarized in Table 7. In old 
urban districts, ISA increased by 191.44 km2, of which 22.17% was formerly vegetation and 77.83% 
was previously bare soil. Thus, the contribution from bare soil was 3.51 times that of vegetation. A 
large amount of bare soil had already disappeared. In addition, the area converted from bare soil to 
vegetation equalled 88.38% of the lost vegetated area; thus, the proportion of vegetation in old urban 
districts only slightly decreased by 0.48%. However, in new urban districts, 41.76% of the new ISA 
was converted from former vegetation and 58.24% from previous bare soil. The contribution from 
bare soil was 1.39 times that of vegetation, which indicates an increasing loss of vegetation in new 
compared to old urban districts. With the conversion of bare soil to vegetation also decreasing, the 
fraction of vegetation substantially decreased by 9.96% in new urban districts.  

Table 7. Land cover transfer matrix for different urbanization levels during 2000–2014 (units: area, 
km2). 

Old Urban District ISA GV Soil Water 2000 Total 
ISA 414.76 0.00 0.00 0.00 414.76 
GV 42.45 65.43 0.30 0.45 108.63 
Soil 148.99 38.18 126.27 0.75 314.19 

Water 0.00 0.31 0.75 6.19 7.25 
2014 total 606.20 103.92 127.32 7.39 844.83 

New Urban District ISA GV Soil Water 2000 Total 
ISA 15.97 0.00 0.00 0.00 15.97 
GV 70.85 31.98 0.88 0.56 104.27 
Soil 98.82 29.76 173.94 1.13 303.65 

Water 0.00 0.00 0.31 1.36 1.67 
2014 total 185.64 61.74 175.13 3.05 425.56 

3.2.4. Patterns of Landscape Change 

Between 2000 and 2014, the urban landscape in arid China has become more integrated (PD = 
−0.51; SHDI = −0.09; Figure 4a). The fragmentation of all land-cover types increased, except for that 
of ISA (Figure 4b). During this period, the urban landscape became more complex in oasis industrial 
cities (PD = +0.91) and desert non-industrial cities (PD = +1.40). However, it became less complex 
(more integrated) in oasis non-industrial cities (PD = −0.98) and desert industrial cities (PD = −0.63). 
All indices (LPI, AI, LSI) showed increasing trends and SHDI decreased. However, the LPI, AI, and 
SHDI showed opposite tendencies in desert non-industrial cities. because the degree to which the 
desert non-industrial cities expanded was relatively small (+25.18%) and land-cover changes were 
primarily concentrated in old urban districts; thus, these changes increased the degree of land-cover 
fragmentation (PD = +1.40), reduced the LPI (−0.17) and AI (−1.93), and increased the SHDI (+0.02), 
reflecting increasing complexity (Figure 4c). 
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At the land-cover types, the process of urbanization increased the AI and LPI, and decreased 
PD for ISA. The conversion of bare soil and vegetation to ISA caused both to be embedded in ISA, 
which led to opposite landscape changes (Figure 4d–f). An interesting commonality between all of 
the land-cover types was that LSI values reflected increasing complexity (Figure 4g). However, the 
desert industrial cities showed different trends in the LPI for soil and the PD for green vegetation 
(GV). The main reason for this result was that spatial agglomeration associated with the distribution 
of bare soil increased the LPI (+0.14), and relatively small vegetation patches resulted in a lower PD 
(−0.15) in new urban districts within desert industrial cities compared to other city types. 

 
 

 

Figure 4. Landscape index change characteristics from 2000 to 2014. Abbreviations: patch density: 
PD; largest patch index: LPI; landscape shape index: LSI; aggregation index: AI; Shannon’s diversity 
index: SHDI. The meaning of color columns: (a,b) light grey for the time of 2000 in arid China, dark 
grey for the time of 2014 in arid China; (c–g) golden yellow for desert non-industrial city in 2000, 
brown for desert non-industrial city in 2014, sunny yellow for desert industrial city in 2000, orange 
yellow for desert industrial city in 2014, light green for oasis non-industrial city in 2000, dark green 
for oasis non-industrial city in 2014, light blue for oasis industrial city in 2000, dark blue for oasis 
industrial city in 2014. 

  



Remote Sens. 2017, 9, 730  13 of 18 

 

3.3. Analysis of the Relationship between Socio-Economic Conditions and Urban Land-Cover Changes 

The correlation between GDP and ISA was significant (R2 = 0.7838, P < 0.05), and GDP density 
reflected a positive change from 2000 to 2014 (Figure 5). Therefore, the economy in arid China 
developed rapidly, causing the ISA to increase sharply. With the increasing of ISA, the extent of the 
urban area and the ratio of land-cover types also changed. In addition, GDP density was closely 
related to urban area. GDP density increased the most in desert industrial cities (+8.234), followed by 
oasis industrial cities (+4.648), non-industrial oasis cities (+3.599), and non-industrial desert cities 
(+2.567). These results are consistent with the proportional changes in the urban areas of these city 
types (+74.12%, +58.32%, +38.21%, and +25.18%, respectively), as shown in Table 4.  

 
Figure 5. Socioeconomic characteristics related to urban land-cover changes. Abbreviations: NDIC: 
non-desert industrial city; DIC: desert industrial city; NOIC: non-oasis industrial city; OIC: oasis 
industrial city. The symbol △ represents a change. 

Population growth also significantly increased ISA (R2 = 0.9173, P < 0.05). However, the 
population density increased by an average 11.82% in oasis cities (industrial cities: 2.39%; 
non-industrial cities: 18.24%), whereas it decreased by an average 2.36% in desert cities (industrial 
cities: −1.76%; non-industrial cities: −4.45%). These results indicate that oasis cities had a strong 
ability to attract new residents (+3.15 million), especially non-industrial oasis cities (+2.50 million). 
However, desert cities were primarily characterized by industries and surrounded by fragile natural 
environmental conditions. The urban area of the studied desert cities greatly increased by 62.90% 
and population growth was relatively small (+1.31 million), which led to a lower population density. 

4. Discussion 

4.1. Comparison of Urban Land-Cover Changes among Different Regions 

Information related to urban land-cover change helps researchers understand rapid 
urbanization in arid region of China. This paper found the impervious surface area in urban areas 
increased by +13.23% and bare soil decreased by −13.41%, while vegetation (+0.27%) and water 
(−0.10%) remained stable (Table 3). These results differed from the findings obtained by Yan et al. 
(2015) [23], who indicated that ISA increased and GV decreased in the city of Urumqi. The analysis 
of land-cover dynamics in Yan et al.’s study was focused on the period from 1990 to 2010 and 
focused on a single city. We found that the fractions of ISA in the major cities of arid China ranged 
from 41% to 75% in 2014, with a mean value of 62%, which was significantly lower than that (75%) 
identified in the humid cities of eastern China (including Beijing, Guangzhou, etc.), but closer to the 
ISA fraction (56%) of American cities (including Chicago, New York, and Los Angeles [26]). This 
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difference in ISA% between the western and eastern cities in China might be related to the city 
population density, which was much lower in the dryland cities of western China than in the 
eastern cities [46,47]. Additionally, many studies that analyse dynamic urban land-cover 
characteristics were based on fixed areas (survey areas, image boundaries or pre-defined areas) 
[43,48,49], while the results reported in this paper considered changes to the built-up areas and thus 
provide more detailed information. 

4.2. The Urbanization Characterized by Expansion of ISA and Reduction of Bare Soil 

This study showed that the urbanization in arid China was characterized by the dramatic 
expansion of ISA and reduction of bare soil. It had only a minor effect on green ecosystems, such as 
vegetation productivity and coverage. By contrast, the urbanization in humid cities of eastern China 
was a different situation, in that the ever-expanding ISA usually took up a large number of 
farmland, green land and water bodies, resulting in the degradation of ecosystem services[50]. As 
we know, rapid urbanization has occurred in most parts of China in the past three decades due to 
growing population and economy, especially in eastern China [41,42]. In the context of limited land 
and ecological resources, this study suggests that urban expansion should be promoted in western 
China and strictly controlled in eastern China. This could be addressed by reducing farmland 
reclamation in western China and protecting farmland in eastern China [51]. However, the land use 
changes in China currently run against this proposal. Dramatic urban expansion and sharply 
farmland loss occurred in eastern China, while urban areas and farmland both increased in western 
China. Therefore, we suggest that, a comprehensive analysis of urban land-cover changes and their 
ecological impacts in different eco-regions be used to adjust urban and agricultural land 
management strategies to promote urbanization in western China. Besides, it is also in line with the 
economic development project entitled “New Silk Road Economic Belt”.  

4.3. Increasing Harmonization of Urbanization and Greening in Arid China 

The present study showed that the fractions of vegetation in arid cities remained essentially 
steady from 2000 to 2014 (Table 3). In other words, the processes of urbanization and greening were 
increasingly harmonized, which was particularly significant for the sustainability of fragile urban 
ecosystems in arid regions. The land-cover transfer matrix included the conversion of bare soil to 
vegetation and then to ISA (Table 5), indicating that vegetation was an intermediate stage in the 
urbanization process. In this conversion process, the vegetation equilibrium represents unchanged, 
lost, and new vegetation, which were measured at rates of 39.31%, 22.94%, and 37.75%, respectively. 
Meanwhile, the fractions of vegetation decreased slightly (−0.48%) in old urban districts and 
decreased sharply (−9.96%) in new urban districts (Table 5). In addition, urban vegetation 
experienced considerable fragmentation with patches becoming isolated from each other by the 
ever-expanding impervious surfaces (Figure 3). The increases in AI and LSI indicated intensified 
interactions between humans and the ecological space. This suggests that, under the arid climate 
and relatively fragile ecosystems, rapid urbanization causes the urban ecological environment to 
become more sensitive to human disturbances in arid regions compared to other eco-zones [52]. In 
this process, the incorporating greening into the process of urbanization plays a vital role in 
maintaining ecological service, improving the living environment, and preventing erosion. 

This paper also showed that vegetation was particularly sensitive in both oasis and desert cities 
(Table 4). In oasis areas, vegetation represents a potential impediment to urban expansion (43.70%), 
because it is required to maintain ecological services in arid regions. Within these urban areas, 
vegetated areas increased by 61.27% compared to itself during the study period. In desert areas, 
where urban areas expanded by 62.90%, urbanization was characterized by significant expansion 
into the desert with no obstacles. In these cities, vegetated areas itself increased by 39.21%, and new 
vegetation was primarily planted in desert area at great economic cost due to the extremely fragile 
ecological environment [53]. The increase of vegetation itself was obvious in both areas. However, 
the process of greening in desert cities, particularly in desert industrial cities, was slower than that in 
oasis cities (Table 4). These findings suggest that a large amount of vegetation needs to be planted to 
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improve the living environment of desert cities and to increase their ability for attracting new 
residents, which is conducive to the sustainable development of fragile urban ecosystems and 
socio-economic conditions in desert cities. 

4.4. Environmental Effects 

The environmental effects of urban land-cover changes in arid regions were notably different 
from those in humid regions because of the large areas of bare soil around and within arid urban 
areas. These environmental effects included a change in the nature of region’s role in the carbon 
cycle. With the rapid urbanization of arid China from 2000 to 2014, low-density bare soil carbon 
“sources” turned into ISA carbon “sinks” [11], and high-density vegetation carbon “sources” 
experienced an unstable dynamic equilibrium due to the process of land-cover conversion. Another 
effect of land-cover changes was the inversion of urban heat island phenomenon (UHI) in the warm 
seasons. In humid areas, there was positive correlation between ISA and land surface temperatures 
(LST). The ever- expanding ISA increased the urban heat island effect [49,54]. However, in arid 
region, the lower albedo of bare soil compared to ISA caused bare soil to absorb more energy in the 
daytimes and to therefore had a higher temperature [55]. In arid China, the urban LST displayed a 
decreasing trend in response to the transformation of bare soil (−13.41%) to ISA (+13.23%) during the 
daytimes in warm seasons. It is noteworthy that urban heat scape could be very complex in the 
winter season, when prominent heat island effect was found in the industrial areas while cool island 
effect was found in urban residential areas in a coastal industrial city [46]. Although the arid urban 
areas in the northwestern China are far from sea, and thus avoid the complex interactions between 
the maritime-climate and land-cover feedbacks, the impacts from snow cover on urban climate can 
also complicate the urban heat scape in the winter time. 

5. Conclusions 

Four land-cover types (impervious surfaces, vegetation, bare soil, and water bodies) were 
extracted from Landsat data using a hybrid classification method for all cities that serve as 
administrative centers in arid China. The new 15-m resolution urban land-cover products had an 
overall kappa coefficient of 0.85 and a classification accuracy of 90.37%. The process of urbanization 
in this region has been characterized by the dramatic expansion of ISA and reduction of bare soil, 
while vegetation levels remained in a dynamic equilibrium. The fractions of vegetation decreased 
slightly in old urban districts and decreased sharply in new urban districts. The changes in 
vegetation correlated with the city’s surrounding environment (oasis or desert) and economic 
attributes (industrial and non-industrial). From an economic perspective, socio-economic conditions 
showed significant positive correlations with ISA and affected urban land-cover changes. Oasis 
cities had a stronger ability to attract new residents than desert cities. To ensure the sustainability of 
fragile urban ecosystems in arid China, the harmony between urbanization and greening should 
made a priority. In addition, urban and agricultural land management strategies should be properly 
adjusted to promote urbanization in western China. 
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