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Abstract: Sub-Saharan Africa currently has the world’s highest urban population growth rate of 
any continent at roughly 4.2% annually. A better understanding of the spatiotemporal dynamics of 
urbanization across the continent is important to a range of fields including public health, economics, 
and environmental sciences. Nighttime lights imagery (NTL), maintained by the National Oceanic 
and Atmospheric Administration, offers a unique vantage point for studying trends in 
urbanization. A well-documented deficiency of this dataset is the lack of intra- and inter-annual 
calibration between satellites, which makes the imagery unsuitable for temporal analysis in their 
raw format. Here we have generated an ‘intercalibrated’ time series of annual NTL images for 
Africa (2000–2013) by building on the widely used invariant region and quadratic regression 
method (IRQR). Gaussian process methods (GP) were used to identify NTL latent functions 
independent from the temporal noise signals in the annual datasets. The corrected time series was 
used to explore the positive association of NTL with Gross Domestic Product (GDP) and urban 
population (UP). Additionally, the proportion of change in ‘lit area’ occurring in urban areas was 
measured by defining urban agglomerations as contiguously lit pixels of >250 km2, with all other 
pixels being rural. For validation, the IRQR and GP time series were compared as predictors of the 
invariant region dataset. Root mean square error values for the GP smoothed dataset were 
substantially lower. Correlation of NTL with GDP and UP using GP smoothing showed significant 
increases in  over the IRQR method on both continental and national scales. Urban growth 
results suggested that the majority of growth in lit pixels between 2000 and 2013 occurred in rural 
areas. With this study, we demonstrated the effectiveness of GP to improve conventional 
intercalibration, used NTL to describe temporal patterns of urbanization in Africa, and detected 
NTL responses to environmental and humanitarian crises. The smoothed datasets are freely 
available for further use. 

Keywords: Nighttime lights; urbanization; socio-economic indicators; DMSP-OLS; NPP-VIIRS; 
global public health; Africa 

 

1. Introduction 

Urbanization can be broadly defined as the transition of settlements from rural to urban 
environments and the growth of existing metropolitan areas. The proportion of the world’s 
population living in urban areas is projected to be 66% by 2050 [1] and sub-Saharan Africa currently 
has the world’s highest annual urban growth rate of any continent at 4.2% [2]. Urbanization is 
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known to impact a range of socio-economic issues including public health, education, environmental 
quality, and economic development [3]. The public health effects of urbanization are complex with 
both negative and positive outcomes. For example, numerous studies have indicated that urban 
environments may have a mitigating effect on malaria transmission [4], while at the same time 
increasing the incidence of dengue fever [5]. Thus, innovative and reliable methods and datasets for 
monitoring spatiotemporal changes in urban areas are paramount.  

Nighttime lights imagery (NTL) [6], maintained by the National Oceanic and Atmospheric 
Administration (NOAA), offer a unique viewpoint for studying urban trends. These data, available 
as annual composite images from 1992 to 2013 provide a means for spatiotemporal analysis on a 
global scale. Although noise removal and other corrective processing are applied to the NTL 
imagery by NOAA to make them usable for analyses, inherent shortcomings remain. Foremost 
among these is the lack of inter- and intra-annual calibration between satellites. The satellite sensors 
that collected these data lacked on-board calibration capabilities and a system for recording in-flight 
gain changes [7]. When observing raw imagery, this causes annual fluctuations in recorded 
brightness rather than the gradual increase expected with typical growth in urban populations. 
Elvidge et al. [7] developed an empirical procedure to allow ‘intercalibration’ of the NTL data. Often 
referred to as the invariant region and quadratic regression method (IRQR), this method has been 
applied across a number of settings [8–13]. It is a regression based method that relies on a high gain 
reference image and a reference area where illumination has changed little over time. 

An alternative intercalibration method was developed by Liu et al. [11]. These authors built on 
the IRQR method by applying intra- and inter-annual corrective algorithms and make use of a 
thresholding technique [12] that relies on land use/land cover data to extract urban information. Wu 
et al. [13] presented an alternative strategy for applying the IRQR method that included pixel 
saturation correction and the use of the power-law function for regression analysis. Li et al. [14] used 
an automatic algorithm to extract reference area pixels and entered them into a linear regression 
model where outliers were iteratively discarded to refine the intercalibration equation. Finally, 
Zhang et al. [15] employed a novel sampling strategy along the ‘ridgeline’, i.e., the densest part of 
plots generated between the reference and target images, to derive calibration models. Regardless of 
the approach, the intercalibration methods reviewed here all showed improved performance as 
indicated by their respective evaluation procedures. In general, method evaluation was based on the 
use of GDP, which has demonstrated a positive linear relationship to NTL in various studies [14–17]. 
However, the shortcomings of these alternative intercalibration methods is that they were conducted 
within a limited geographic scope, required multiple reference datasets such as land use/land cover 
or population, and were not sufficiently validated. 

Precisely intercalibrated NTL data is ideal for mapping urban extents as Li and Zhou [18] 
describe in their recent systematic methodology review of this subject. Others, such as Ju et al. [19] 
have focused on the characterization of urban dynamics in China using pixel-based time series 
trajectories to identify five distinct patterns of urban growth. Similarly, Zhang and Seto [20] 
identified urbanization typologies on a worldwide basis and validated the accuracy of their results 
with multispectral imagery. Ma et al. [21] both analyzed and predicted urban development at the 
municipal level using three different regression models to measure the relationships between NTL 
and population, GDP, built-up area, and electric power. Finally, Cauwels et al. [22] applied NTL to 
the concept of urban agglomerations by using a threshold method combined with a segmentation 
function that identifies clusters of contiguously lighted pixels. 

The primary objective of this study was to generate an intercalibrated time series of annual NTL 
images at the continental scale for Africa from 2000 to 2013 for use in measuring changes in 
urbanization over time. This particular period was chosen to align with significant reductions in the 
incidence of malaria in Africa, which occurred primarily as a result of scale-up of large-scale 
interventions, but also due to environmental changes and economic development, including 
urbanization [23]. Since substantial inter-annual noise remained even after IRQR intercalibration, we 
evaluated the use of Gaussian process methods (GP) to generate a smoothed series of NTL images 
free of temporal noise signals. We then demonstrated the utility of the smoothed dataset for 
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describing patterns of urbanization in Africa and studying relationships between NTL and economic 
and population indices. 

2. Materials and Methods 

2.1. Data Source 

The Nighttime lights imagery used for this study was produced by the U.S. Air Force as part of 
their Defense Meteorological Satellite Program (DMSP). The Operational Linescan System (OLS) 
sensors on DMSP satellites have specialized low light detection capabilities across visible and near 
infrared wavelengths. During the 22 years spanning 1992 through 2013, six satellites were active and 
their sun-synchronous near-polar orbits provided global coverage twice per day. The NOAA 
National Centers for Environmental Information (formerly National Geophysical Data Center) has 
been the custodian of the DMSP-OLS data archives since 1992. More recently in 2010, NOAA 
produced a complete time series consisting of cloud-free composites made using the archived data 
for each calendar year by satellite. This product is known as the version 4 DMSP-OLS Nighttime 
Lights Time Series and is freely available on the NOAA website [6]. The composites are provided on 
30 arc second image grids spanning from −180 to 180 degrees longitude and from −65 to 75 degrees 
latitude. The digital numbers (DN) have a 6-bit dynamic range with values from 0 to 63. They also 
contain four bands representing distinct levels of data processing: raw average of the DN values, a 
cloud-free coverage tally, average DN of cloud-free light detections multiplied by the percent 
frequency of light detection, and stable lights. We utilized the stable lights band which consists of 
the average of the visible band DN values and represents areas with persistent lighting. It includes 
gas flares from petroleum operations, but ephemeral events such as fires have been discarded and 
background noise from other sources has been removed. 

For this study, the NTL stable lights composites from satellite-years 2000–2013 were used  
(Table 1). Google Earth Engine [24] provided easy access to Version 4 annual composites of the 
DMSP-OLS Nighttime Lights Time Series and the image processing tools required to perform the 
bulk of the analysis. 

Table 1. Stable lights composites for DMSP-OLS satellite-years 2000–2013. 

Year 
Satellites

F-14 F-15 F-16 F-18
2000 F142000 F152000 
2001 F142001 F152001 
2002 F142002 F152002 
2003 F142003 F152003 
2004 F152004 F162004 
2005 F152005 F162005 
2006 F152006 F162006 
2007 F152007 F162007 
2008 F162008 
2009 F162009 
2010 F182010 
2011 F182011 
2012 F182012 
2013    F182013 

2.2. Image Processing 

Not all the variation observed in the stable lights composites of NTL can be attributed to actual 
changes in urbanization [7]. For instance, variation across time and space in the DN values recorded 
can also be explained by human activities other than urbanization, by physical phenomena like the 
refraction of light or by measurement error due to the use of different satellites. Here we explain the 
steps taken to address the different sources of variation. 



Remote Sens. 2017, 9, 713  4 of 23 

 

2.2.1. Intercalibration 

Since the NTL satellites had no standard for calibration of their sensors, the data were 
pre-processed for temporal analysis. Elvidge et al. [7] developed an empirical procedure for 
intercalibration of NTL annual composites from different satellite-years. Also known as the IRQR 
method, it is a regression based method that relies on a reference area where illumination has 
changed little over time and an accurate baseline image dataset. Sicily is the standard reference area 
for intercalibration since it has an even spread of data across the full dynamic range and its 
population is relatively stable with only a 0.17% growth rate from 2001 to 010 [10]. Likewise, satellite 
year F12-1999 has relatively high brightness values and is used as the baseline with images from all 
other satellite years adjusted to match its data range.  

To implement the adjustment, the region of Sicily was resampled on each NTL image to a 
standard 0.825 km grid. This grid cell size was chosen based on the area of a 30 arc second pixel at 
Sicily’s latitude. The relationship between each satellite-year image and the baseline image F12-1999 
was fit using the following quadratic regression model: 

, = + , + ,  (1) 

where Xi,0 is the DN of the ith grid cell in the baseline image, Xi,j is the DN of the ith grid cell in 
satellite-year image j, and the parameters C0, C1 and C2 are the intercept, linear, and quadratic 
coefficients, respectively. For all images, DNs values less than 2 were excluded in keeping with the 
author’s method [7]. Figure 1 shows an example regression scattergram for satellite-year F18-2013 
versus F12-1999 for Sicily. Regression coefficients generated by the model were then used to adjust 
the DN values observed for Africa. For each year, a set of calibrated values were computed using 
Equation (2): 

, = + , + ,  (2) 

where , 	is the calibrated digital number of the ith pixel cell in satellite-year image j of Africa. To 
ensure calibrated DN values were within the 0–63 range, calibrated values that exceeded 63 were set 
to 63 and where the minimum value was greater than zero, the original zeroes were restored to 
preserve the background ‘darkness’ matrix. 

 

Figure 1. Scatterplot F18-2013 vs. F12-1999 with the fitted quadratic relationship. 

2.2.2. Gaussian Process Smoothing 

Once the satellites have been intercalibrated, there are still discrepancies between DN values at 
the same location-year recorded by different satellites. The occurrence of such discrepancies 
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suggests that the observed data are in fact a noisy realization of an actual but unobserved NTL 
signal. This relationship can be expressed as  

, = , + ,  (3) 

where ,  is the observed NTL signal, and ,  is the actual and unobserved NTL signal of the ith 
pixel at satellite-year  and ,  the associated observation error. The intercalibration step does not 
eliminate the error term, rather, it results in the error being rescaled to the same magnitude across 
the different satellite-years. 

Gaussian process methods [25] are commonly used with models similar to that in Equation (3) 
for solving inference problems in time series [26–28] where the aim is to distinguish an unobserved 
signal or latent function from noisy data. The main assumptions of such models are that the noise 
terms ,  are independent and identically distributed, while the realizations of the latent function ,  are not independent and follow a multivariate normal distribution. In our case, the second 
assumption guarantees that the observations and latent function are correlated across time.  

Here we estimated ,  by fitting a Gaussian process with a covariance kernel [29] composed of 
a linear and an exponentiated quadratic term to each of 22 satellite-years (Table 1). While the first 
kernel implements the estimation of the NTL trend across time, the second allows identification of 
non-constant increments/decrements of the DN values. Additional details on our use of Gaussian 
process modeling and kernel function types can be found in Appendix A. 

2.2.3. Annual Averaging 

From 2000 to 2007, there were multiple satellites operating in any given year (Table 1). For the 
uncalibrated (UC) and intercalibrated (IC) test cases used throughout this study, DN values for each 
satellite during this time period were intra-annually averaged to produce a single annual image. 

2.2.4. Gas Flare Removal 

Gas flares are present in the stable lights band of the Version 4 NTL dataset and, given they are 
not generally associated with human settlements, they were removed. In a previous study, Elvidge 
et al. [30] estimated flare volume and evolution and mapped their locations and extent. As part of 
this study, flare locations as polygonal masks have been made available on NOAA’s website as 
shapefiles, a common spatial data format [6]. These were downloaded, merged, and used to mask all 
known flares. While these have not been updated since 2009, this dataset represents the best estimate 
of the locations of gas flares available. Since most gas flares in African occur in marine environments 
or the remote Sahara Desert, newer flares should not result in significant inaccuracies. 

2.2.5. Blooming Correction 

Probably the most serious non-temporal errors in the NTL images are caused by ‘overglow’ and 
‘blooming’, which is the diffusion of urban light into rural areas and the magnification of light by 
reflective surfaces such as water and sand, respectively. In either case, the errors are not entirely due 
to reflected light. Additional sources of this error are the composite building process and image 
registration errors [31]. It was noted that overglow occurring on a single image dataset can be 
compounded in composite images. Also, numerous small errors in geo-registration may cause 
brightly lit urban cores to grow slightly at their peripheries. In both cases, the result is 
overestimation of urban extents and settlements on land and their deceptive extension into 
uninhabitable aqueous environments. 

Pixel blooming caused by water reflectance from inland water bodies and coastal waters was 
accounted for by masking via the World Water Bodies and World Countries datasets [32], 
respectively. Mediating urban overestimation due to overglow is considerably more problematic. 
Typical solutions to this problem involve use of low light thresholding which is intended to filter out 
a portion of the lowest predicted DNs. The goal of these somewhat empirical approaches are to 
remove ‘noise’ associated with overglow from the urban boundaries without fragmenting the urban 
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core or excluding genuine smaller settlements [33]. We have chosen to forgo the use of thresholding 
due to its uncertain efficacy. 

2.2.6. Re-Projection 

NTL composites are produced on a 30 arc second grid, so the land surface area of the pixels 
naturally differs according to their geographic latitude. For example, in Kampala, Uganda which is 
essentially on the Equator, a pixel represents approximately 0.86 square kilometers, whereas in Cape 
Town, South Africa (34°S latitude) pixels represent 0.71 square kilometers. This becomes 
problematic with spatial analysis requiring surface area measurements. When investigating 
temporal changes in urbanization, this is quite often the case. Thus, the processed NTL composites 
were projected to the Mollweide equal-area map projection for analytical purposes. This is a pseudo 
cylindrical map projection where the accuracy of area representation takes precedence over the 
accuracy of angle and shape. The composites were projected to a 1 km cell size using the nearest 
neighbor re-sampling technique. This step was only applied to the imagery used for the urban 
growth analysis described below. 

2.3. Method Validation and Urban Growth Analysis 

To determine relative success of the intercalibration method, the ‘sum-of-lights’ index (SOL) [7] 
was calculated for each satellite year. The SOL is simply the sum of the predicted DNs for an NTL 
image within a region of interest. Once calculated by region, it is plotted as a time series. Success is 
indicated by a relative convergence of SOL values in years where two satellite products are 
available, and a relatively continuous growth trend across the time series (Figures 2 and 3). 

For procedural validation, the IRQR and Gaussian process time series were compared as 
predictors of the satellite F12-1999 annual composite image of Sicily. Given the assumption that NTL 
values have not changed in Sicily 2000–2013, the F12-1999 image can be considered the 
gold-standard ‘observed’ values for 2000–2013 in our study. When the IRQR and GP time series are 
similarly considered ‘predicted’ values, the mean squared error (MSE) measurement can be used to 
validate and compare methods. Given that the Gaussian process calculations were based on the 
entire time series, MSEs were calculated using data from all years. 

This enhanced intercalibration method was also used to evaluate the positive association of the 
intercalibrated and processed NTL time series to GDP and urban population on a continental and 
country-wise basis. These relationships have been demonstrated in earlier studies [34,35] and 
therefore are used as an indication of the efficacy of our own methods. Statistics for GDP per country 
were sourced from the World Bank [36] using the US dollar price in July 2016 as the benchmark. 
Corresponding urban population data were also obtained from the World Bank [37]. The correlation 
of SOL to these factors was compared both before and after intercalibration. The relationship 
between uncalibrated and annually averaged (UC), intercalibrated and annually averaged (IC), and 
intercalibrated and Gaussian process smoothed (GP) NTL with GDP and UP was estimated using 
linear regression. Models were fit at continental scale and for sub-Saharan African countries. Since 
GDP and UP data were not available for Somalia and Western Sahara, they were not included in the 
continental analysis. 

The amount of growth in urban and rural settlements was also calculated both in absolute and 
proportional terms. Total urban and rural statistics are based on the area represented by all ‘lit’ 
pixels (DN > 0), whereas urban agglomerations were defined as contiguously lit pixels with an area 
>250 km2 (~97 mi2).  
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Figure 2. Uncalibrated sum-of-lights by satellite-year for Africa. 

 

Figure 3. IRQR calibrated sum-of-lights by satellite-year for Africa. 

Figure 4 provides a flow chart outlining the work flow for NTL intercalibration, image 
processing procedures, and validation and analysis. Figure 5 provides an enhanced view of the 
intercalibrated 2013 nighttime lights image for continental Africa. 
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Figure 4. Work flow for NTL image processing procedures (yellow) and validation/analysis products 
(red). 

 

Figure 5. Intercalibrated 2013 nighttime lights imagery for Africa. 
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3. Results 

As described above in Materials and Methods, the regression based IRQR intercalibration 
method relies on a reference area where illumination has changed little over time and an accurate 
baseline image dataset. Using Sicily as the reference area and satellite year F12-1999, regression 
models were generated for all satellite-years (Table 2). Following gas flare removal and blooming 
correction, these regression coefficients were used to adjust the raw DN values for NTL images of 
Africa. These steps were followed by Gaussian Process smoothing to produce the final 
intercalibrated time series. 

Table 2. Regression coefficients for intercalibration. 

Satellite Year     
F12 1999 0 1 0 1 
F14 2000 1.2445 1.3076 −0.0051 0.9334 
F14 2001 0.3811 1.3103 −0.0050 0.9461 
F14 2002 1.2242 1.1542 −0.0030 0.9262 
F14 2003 0.8802 1.2381 −0.0039 0.9444 
F15 2000 0.1832 1.0418 −0.0010 0.9410 
F15 2001 −0.7078 1.1191 −0.0015 0.9617 
F15 2002 0.1354 0.9587 0.0008 0.9662 
F15 2003 0.3589 1.4992 −0.0078 0.9336 
F15 2004 0.7187 1.3200 −0.0050 0.9485 
F15 2005 0.7567 1.2666 −0.0040 0.9377 
F15 2006 0.9387 1.2660 −0.0040 0.9409 
F15 2007 1.6464 1.2480 −0.0038 0.9056 
F16 2004 0.3607 1.1809 −0.0032 0.9153 
F16 2005 0.1794 1.3906 −0.0060 0.9402 
F16 2006 0.1955 1.1322 −0.0017 0.9233 
F16 2007 0.9177 0.8841 0.0017 0.9483 
F16 2008 0.6750 0.9773 0.0001 0.9456 
F16 2009 1.9043 0.9740 −0.0007 0.8381 
F18 2010 2.9053 0.4593 0.0070 0.8404 
F18 2011 3.1449 0.6453 0.0036 0.8129 
F18 2012 2.1239 0.5975 0.0054 0.9369 
F18 2013 2.1382 0.6683 0.0039 0.9372 

3.1. Method Evaluation 

3.1.1. Sum-of-Lights Index 

Figures 2 and 3 show SOL plotted for uncalibrated and IRQR (only) NTL series, respectively. 
Successful intercalibration is indicated by a relative convergence of SOL values in years where two 
satellite products are available. Another indication of successful intercalibration is a clear continuous 
growth trend in light values across the time series. Figure 3 illustrates how IRQR calibrated datasets 
for Africa visually comply with these criteria, despite noticeable discontinuity introduced by satellite 
F18. 

When annual averaging was applied in addition to IRQR intercalibration, it resulted in a 
smoother SOL growth trend between most years, with exceptions occurring in the transition years 
between satellite F16 and F18 (2008–2010). However, when Gaussian process smoothing was applied 
using all intercalibrated satellite-year images, it yielded a smooth trajectory of continuous SOL 
growth (Figure 6). 
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Figure 6. Sum-of-Lights after annual averaging and Gaussian process smoothing (Africa). 

3.1.2. Validation Using the Invariant Region 

For procedural validation, the uncalibrated (UC), IRQR intercalibrated (IC), and GP smoothed 
time series were compared as predictors of the invariant region dataset: satellite-year F12-1999. The 
mean squared error was calculated for each of these test cases using DN values for Sicily (Table 3).  

Table 3. MSE for intercalibration test cases vs. F12-1999. 

Case UC IC GP
MSE a 22.76 18.22 11.38 

a Mean squared error. 

Whereas conventional intercalibration exhibited considerably lower MSE than the uncalibrated, 
the Gaussian process approach was clearly the best predictor of the reference dataset with an MSE 
half that of the UC test case. While these results are not evidence of improved accuracy, they do 
substantiate the use of Gaussian process smoothing to produce refined NTL time series while 
observing the principles of the IRQR method. 

3.2. Correlation of SOL with GDP and Urban Population 

In terms of the relationships between the NTL layers (UC, IC and GP) and GDP and urban 
population, the UC layer showed the least correlation, while IC and GP case adjustments each 
incrementally increased the strength of the relationship. The regression results and 
root-mean-squared error (RMSE) values for continental Africa are listed in Table 4. The coefficients 
of determination indicate that the SOLs in the GP case have a stronger linear relationship with GDP 
than those from the IC case. Thus, when Gaussian process smoothing was applied,  increased 
from 0.92 to 0.98 and from 0.90 to 0.9997 for GDP and urban population, respectively. 
Corresponding RMSE values also decreased dramatically. The high  and relatively low RMSE 
value for the Gaussian process SOL vs. urban population clearly indicates the advantage of this 
enhanced intercalibration method. Figures 7 and 8 graphically illustrate these improvements. 
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Figure 7. Linear regression results for Africa SOL vs. GDP. (UC) Uncalibrated and annually 
averaged. (IC) Intercalibrated and annually averaged. (GP) Intercalibrated and Gaussian process 
smoothed. 

 
Figure 8. Linear regression results for Africa SOL vs. Urban Population. (UC) Uncalibrated and 
annually averaged. (IC) Intercalibrated and annually averaged. (GP) Intercalibrated and Gaussian 
process smoothed. 

Table 4. Coefficient of determination and RMSE for SOL vs. GDP and urban population. 

Intercalibration Test Cases 
GDP Urban Population 

RMSE a RMSE b 

Uncalibrated (UC) 0.847 990,522 0.803 1,122,507 
Intercalibrated (IC) 0.925 360,601 0.902 412,637 

IC + Gaussian process (GP) 0.983 158,827 0.9997 22,241 
a Root-mean-squared error. 



Remote Sens. 2017, 9, 713  12 of 23 

 

Regression analyses performed at the country level yielded similar results. Figures 9 and 10 
display regression results for these analyses. The GP test case is shown to perform notably better 
than the IC case in nearly all cases with positive with correlation coefficients ranging from 0.72 to 
0.997 for GDP and 0.76 to 0.9996 for urban population. The Gambia and Eritrea were two exceptions 
where the correlation coefficient for the IC method exceeded that of our GP method in the case of 
GDP. 

 

Figure 9. Correlation coefficient by sub-Saharan country SOL vs. GDP. Columns are sorted by 
correlation coefficient values for GP test case in decreasing order. 

 

Figure 10. Correlation coefficient by sub-Saharan country SOL vs. urban population. Columns are 
sorted by correlation coefficient values for GP test case in decreasing order. 

Other exceptions were the notably poor and negative correlations of SOL to both GDP and UP 
for Zimbabwe and the Central African Republic. Figures 11 and 12 illustrate these atypical temporal 
patterns of SOL in relation to GDP and UP. 
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Figure 11. Temporal patterns of SOL, GDP, and UP for Zimbabwe, where SOL is inversely correlated 
with GDP (  = −0.50) and UP (  = −0.87). 

 
Figure 12. Temporal patterns of SOL, GDP, and UP for the Central African Republic, where SOL is 
inversely correlated with GDP (  = −0.57) and UP (  = −0.39). 

3.3. Urban Growth Analysis 

The absolute and percent changes in lit and agglomerated area for the 2000–2013 time period 
have been calculated to model total settlement (urban and rural) and urban growth, respectively. 
These are shown in Table 5 and illustrated as bar graphs in Figures 13 and 14. The red bars represent 
absolute change in lit area and the blue bars indicate change in agglomerated area. In general, the 
growth in total lit area per country exceeds that of agglomerations, though it is possible for growth 
in urban agglomerations to be greater than growth in total lit area. Although this seems counterintuitive, 
given that agglomerations have been filtered by size, merging of small urban clusters over time can 
produce such results. This can be illustrated with an example of growth analysis in Kenya’s Nairobi 
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metropolitan area (Figure 15). Note that in Figure 15a the lit area in the year 2000 is derived from all 
cluster sizes, whereas in Figure 15b agglomerations in 2000 only include two clusters that exceed the 
250 km2 filtering threshold. In both cases, the yellow areas outside the dashed lines of the year 2000 
polygons represent the area of absolute change. In this case, the urban/peri-urban communities 
surrounding Mount Kenya merged with greater Nairobi by 2013. Consequently, agglomerations 
increased by 3936 km2, while lit area increased by only 2919 km2. Countries displaying greater 
growth in agglomerated than lit area include Cote d’Ivoire, Swaziland, Lesotho, and Djibouti 
(Figures 13 and 14). 

 

Figure 13. Sub-Saharan countries with significant growth in lit and agglomerated area (>2500 km2 
lit), 2000–2013. Columns are sorted by lit area growth in descending order. 

 
Figure 14. Sub-Saharan countries with minimal growth in lit and agglomerated area (<2500 km2 lit), 
2000–2013. Columns are sorted by lit area growth in descending order. 
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Table 5. Absolute and percent change in lit and agglomerated area, 2000–2013. 

Country 
Total Area of Lit Pixels (km2) Area of Urban Agglomerations (km2)

2000 2013 Change a % Chg 2000 2013 Change % Chg
South Africa 202,098 240,581 38,483 19 156,608 192,501 35,893 23 

Nigeria 68,470 96,054 27,584 40 41,870 58,744 16,874 40 
Sudan 24,622 49,307 24,685 100 16,449 33,055 16,606 101 
Angola 7086 21,845 14,759 208 3800 10,884 7084 186 

Mozambique 5566 16,119 10,553 190 1439 6777 5338 371 
Ethiopia 8888 17,866 8978 101 2129 5403 3274 154 
Kenya 14,194 22,527 8333 59 8289 15,410 7121 86 
Ghana 23,708 30,384 6676 28 15,134 21,451 6317 42 

Tanzania 10,228 15,272 5044 49 3238 5662 2424 75 
Congo, DR 6105 11,020 4915 81 2745 4489 1744 64 

Cote d’Ivoire 39,350 43,443 4093 10 18,737 23,493 4756 25 
Niger 3864 7804 3940 102 975 1710 735 75 

Botswana 7946 11,869 3923 49 2134 4811 2677 125 
Senegal 6226 10,083 3857 62 2790 4815 2025 73 

Congo, R 2371 5800 3429 145 1622 2919 1297 80 
Namibia 9611 12,960 3349 35 2692 4219 1527 57 

Chad 1127 4393 3266 290 233 1180 947 406 
Zambia 10,667 13,726 3059 29 5870 7455 1585 27 

Burkina Faso 3086 5820 2734 89 741 1509 768 104 
Mali 3444 6163 2719 79 803 1224 421 52 

Gabon 3206 5372 2166 68 707 2335 1628 230 
Benin 3354 5464 2110 63 1511 2930 1419 94 

Cameroon 6672 8621 1949 29 2423 2705 282 12 
Swaziland 5180 7060 1880 36 3818 6204 2386 62 

Malawi 4819 6583 1764 37 1895 1482 −413 −22 
Eq Guinea 158 1753 1595 1009 0 631 631 - 

Uganda 4055 5604 1549 38 1834 2508 674 37 
Liberia 490 2029 1539 314 252 510 258 102 

Rwanda 694 1948 1254 181 346 905 559 162 
Mauritania 1912 3070 1158 61 699 891 192 27 

Lesotho 1562 2681 1119 72 344 1588 1244 362 
Sierra Leone 371 1132 761 205 0 280 280 - 

Togo 2431 3167 736 30 1164 1408 244 21 
Somalia 1495 2210 715 48 0 614 614 - 
Guinea 2275 2973 698 31 511 476 −35 −7 
Gambia 445 1030 585 131 300 548 248 83 

Madagascar 2931 3468 537 18 710 925 215 30 
Burundi 501 961 460 92 275 398 123 45 
Eritrea 1512 1938 426 28 417 506 89 21 

Central Afr Rep 829 1175 346 42 266 266 0 0 
Djibouti 408 677 269 66 0 340 340 - 

Guinea Bissau 197 216 19 10 0 0 0 - 
Zimbabwe 19,625 16,847 −2778 −14 10,270 9287 −983 −10 

a Sorted by absolute change in lit area, descending order. 
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Figure 15. Example of lit area growth (a) versus agglomerated area growth (b) in the Nairobi 
metropolitan area. 

4. Discussion 

For the first time, we report here on the production of an intercalibrated open access NTL 
dataset spanning continental Africa 2000–2013 using a GP statistical approach. This improved 
dataset can be applied to a broad range of disciplines including public health, economic 
development, and environmental monitoring. While NTL data offer an opportunity to measure and 
map the human footprint, in its raw format, these data are difficult to interpret and can lead to 
spurious conclusions. 

Gaussian process smoothing, the key enhancement of our intercalibration method, yielded a 
more intuitively smooth increase in SOL over Africa and was less noisy than that produced by using 
IRQR and annual averaging alone. While there is no gold standard short of calibration with known 
light sources as ground truth [38] against which to validate this approach, the SOL plots indicate a 
relatively effective intercalibration. However, what is achieved through IRQR intercalibration is not 
the elimination of errors, but their re-scaling such that they have the same magnitude across 
satellite-years. Through the use Gaussian process methods, independent temporal noise signals 
have been separated from latent functions in the annual NTL datasets. We have attempted to 
validate the GP method results against the premises of the conventional IRQR method. That is, the 
assumption that the reference dataset for the invariant region represents the NTL brightness across 
the time series. While invariably information is lost in the process, the overall result is an NTL time 
series for Africa that is standardized and comparable across both time and space. 

The success of intercalibration with GP smoothing was also evaluated by comparing the 
resultant time series to known indicators of urbanization: GDP and UP. Improvements in the 
correlations found between the SOL and these indices when using the GP method provide further 
support for its use. When the same relationships are explored on a national basis, it provides 
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sub-regional insights into urban and economic growth patterns, as well as the consequences of 
political and humanitarian events. While we have not compared GDP/UP figures to NTL values in 
countries outside Africa, we would expect similar relationships in these countries. The country based 
regression analysis for sub-Saharan Africa yielded generally positive results with only a few 
exceptions. The GP method performed notably better than the IC method in nearly all cases with 
correlation coefficients exceeding 0.9 for 80% and 90% of the countries for GDP and urban 
population, respectively. The exceptions were The Gambia and Eritrea, where positive correlation 
coefficients for the IC method exceeded that of our GP method for the GDP regression. For Eritrea, a 
partial explanation for this anomaly is the fact that GDP data for 2012–2013 are unavailable. 
However, also at the root of this data omission are a series of military disputes and border disputes 
with Ethiopia and Djibouti during our study period. In the case of The Gambia their economy, and 
therefore GDP, struggled between 2000 and 2004 and the unsmoothed IC dataset reflected this short 
term trend more accurately than the globally smoothed GP case. 

Among the national statistics there were two countries with notably poor negative correlations 
to both GDP and UP: Zimbabwe and the Central African Republic. Notable is Zimbabwe’s unusual 
patterns with the SOL decreasing from 2000 through 2011 when it begins to recover. This pattern 
coincides with a disputed presidential and parliamentary election in 2008 preceded by periods of 
political unrest. The GDP trended slightly downward during the lead up to the election and then 
rose sharply thereafter. However, UP rose steadily from 2000 to 2013, even while SOL was 
decreasing. The Central African Republic also displays an unusual pattern, with relatively low SOL 
values, an urban population that rises steadily, and GDP that rises but drops abruptly in 2013 in 
response to a coup d’état. In general, anomalies such as these can be traced to the effects of insurgent 
warfare, political unrest, and humanitarian crises on nighttime lighting. Bennett and Smith [39] 
studied socioeconomic changes that caused reductions in NTL in post-Soviet Russia and war-torn 
Syria, while Li et al. [40] observed similar reductions as a result of the Islamic State of Iraq and Syria 
(ISIS) insurgency in Northern Iraq. Humanitarian crises often come in the form of drought, famine, 
earthquakes, and tropical storms. Gillespie et al. [41] examined the effects of tsunami damage in 
Sumatra (2004–2008) using NTL imagery. Several authors have suggested NTL based metrics for 
monitoring at risk populations. For instance, Coscieme et al. [42] propose an NTL based index of 
regional disparity and Li et al. [43] similarly suggest a nighttime light variation index (NLVI) to 
predict the risk of armed conflicts. All these insights underscore the potential for well calibrated 
NTL data as a tool for monitoring the regional effects and outcomes of such events. 

Urban growth analysis using the improved NTL time series data indicate that the extent of 
urban growth appears to vary widely across African countries, with an overall trend of increasing 
areas of the continent being lit, particularly around urban agglomerations. We have described basic 
patterns of urban growth in Africa by computing changes in the area of lit NTL pixels and 
agglomerated pixels (>250 km2) on a national basis. The lit area serves as an indicator of overall 
growth of human settlements, whereas the agglomerations are meant to be a measure of large 
metropolitan areas, a proxy for urbanization. 

Most sub-Saharan countries exhibited substantially greater growth in lit area than 
agglomerated lit area. Exceptions included Cote d’Ivoire, Swaziland, Lesotho, and Djibouti which all 
showed greater growth in agglomerated area. In Cote d’Ivoire, this may be due the effects of civil 
wars occurring in 2002 and 2011, with increased agglomerated area resulting from migration away 
from centers of conflict to urban areas. In the case of Swaziland and Lesotho, this is likely related to 
their proximity to South Africa which has the highest growth rates. In both cases, lit area growth was 
concentrated along borders with South Africa and internal major roadways. Thus, merging of 
smaller, patchy urban areas caused a relatively high increase in agglomerated area. In the case of 
Djibouti, most growth in lit area occurred in the city of Djibouti causing it to surpass the 250 km2 
threshold. 

A variety of other anomalous patterns are expressed by countries with minimal growth in lit 
area many of which likely reflect human events, as previously discussed. Zimbabwe uniquely showed 
decreases in both lit and agglomerated area which were likely the effects of persistent political 



Remote Sens. 2017, 9, 713  18 of 23 

 

unrest during the study period. Malawi increased in lit area while decreasing its agglomerated area, 
apparently due to disaggregation of the city of Zomba metropolitan area. Finally, other notable 
anomalies are the Central African Republic and Guinea Bissau. The Central African Republic had no 
change in agglomerated area, while Guinea Bissau had no agglomerated area as of 2013 despite a 
modest 19% increase in lit area. In both of these situations, annual growth patterns may be attributed 
to their relatively sparse populations and the margin of error associated with the processed NTL 
data. 

While we have demonstrated the utility of our enhanced approach to intercalibration of NTL 
imagery, for the purpose of this study we focused on imagery up to 2013. Continued growth in NTL 
applications hinge on new NTL data sources such as the Visible Infrared Imager Radiometer Suite 
(VIIRS) of the National Polar-Orbiting Operational Environmental Satellite System launched in 2011 
[44–46]. Although nighttime lights imagery from VIIRS are superior to DMSP-OLS data in both 
spatial resolution (0.5 km) and dynamic range (14-bit), it is currently only available as monthly 
composites and only since 2014. Furthermore, VIIRS data processing methods are relatively 
unexplored, with relatively few publications to date that make use of the imagery. Thus, DMSP-OLS 
will likely remain the de facto standard for nighttime lights based investigations for a number of 
years. As part of this study, integration of VIIRS data with DMSP-OLS data was briefly explored as 
way to extend the time series to 2015. However, the relative complexity of data processing necessary 
to interface the two datasets was prohibitive and deemed beyond the scope of this study. Future 
research on data processing of VIIRS imagery and their integration with DMSP-OLS data is vital if 
NTL based research and application development is to continue. Toward this end, release of a VIIRS 
NTL time series of processed annual composites similar to DMSP Version 4 would be of great 
benefit to the scientific community. 

5. Conclusions 

The NTL dataset has been widely used during the past two decades with the number of related 
publications increasing dramatically as reported in the systematic literature review by Huang et al. 
[47]. With the release of the Version 4 DMSP/OLS Nighttime Lights Time Series dataset by NOAA in 
2010, the publication rate increased further with 25 papers published in 2013 alone. Clearly, these 
numbers speak to both the unique worth of the dataset and the benefits of open access to high 
quality annual NTL composites. Numerous publications have proposed methods to correct 
well-documented calibration deficiencies in the version 4 composites, and here we add our own 
refined technique. 

Here we report on the use of Gaussian process methods to estimate NTL latent functions free 
from noise signals prevalent in IRQR intercalibrated datasets. The method was validated by 
comparing uncalibrated, intercalibrated, and GP smoothed time series as predictors of the invariant 
region dataset. We have also demonstrated the value of the improved time series by investigating 
the established relationship of NTLs to GDP and urban populations, by describing basic patterns of 
urban growth in Africa, and considering its potential to detect and monitor environmental and 
humanitarian crises. Finally, the intercalibrated NTL time series (2000–2013) has been made 
available to global health researchers as well as the broader scientific community in the hopes of 
spawning continued growth in NTL based research (see Supplementary Materials). 

Supplementary Materials: The intercalibrated nighttime lights imagery series (2000–2013) produced as part of 
this study are available online at http://geodata.globalhealthapp.net/. 
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Appendix A 

The Gaussian process smoothing of NTL imagery in this study was implemented at the pixel 
level. That is, for each pixel location in Africa, the dependent variable was the DN values across time 
and the image year is the only covariate. Since the input images were previously intercalibrated 
using the IQRQ method, we did not incorporate the type of satellite as a source of variation into the 
model. 

In Figure A1, we present samples smoothed DN values obtained using this method. It should 
be noted that the IQRQ intercalibrated data points present non-consistent trends and as well as 
discrepancies between observations in the same year. The smoothed curve captures the long term 
trend of the DN values and is free from the inter-annual variation, which we hypothesize is mainly 
noise. Note that although our results are presented from 2000, the smoothing process uses data from 
1998 which helps to provide better estimates on the left tail of the data distribution. 

 
Figure A1. Gaussian process regression on pixel at coordinates using all satellite-year images: (a) 
Coordinates (8.592, 35.668); (b) Coordinates (14.270, 29.981); (c) Coordinates (−13.183, 27.125). 

Appendix A.1. Gaussian Process Regression 

Let ( ) be a collection of random variables such that any finite number of them has a joint 
Gaussian distribution, then ( ) is known as a Gaussian process. A typical setting of a Gaussian 
process regression tries to estimate an unobserved  from a set of observations  corrupted by 
additive noise according to equation = ( ) +  (A1) 

where  is a vector with independent entries (0, ) and : 	 → 	ℝ is a Gaussian process with 
some mean function : 	 → 	ℝ  and covariance kernel : × 	 → 	ℝ . For simplicity, it can be 
assumed a prior mean function of zero, so that the process if fully specified by its covariance kernel. 
Then the predictive distribution of the process at a new set of inputs ∗ has the moments E( ( ∗)| ) = ( ∗, )( ( , ) + )  (A2) 

and var( ( ∗)| ) = ( ∗, ∗) + ( ∗, )( ( , ) + ) ( , ∗) (A3) 

where  is the identity matrix. 
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Appendix A.2. Examples of Covariance Kernels 

Autocorrelated data across time or space is characterized for presenting similar values 
depending on the closeness of the observations. In Gaussian process models, it is the covariance 
kernel that defines the closeness or similarity between observations. It is through the covariance 
kernels that a Gaussian process encodes the behavior of . Next, we present three examples of 
kernels that summarize different functional forms. 

Appendix A.2.1. Linear Kernel 

A covariance kernel that encodes a linear relation between inputs  and output , equivalent 
to a linear regression model, is defined as ( ∗, ) = (1 + ∗ ) (A4) 

where  is a scale parameter (Figure A2). 
 

 
Figure A2. Linear kernel: encodes a linear regression model. It delineates the trend, but cannot 
represent non-constant changes across time. 

Appendix A.2.2. Exponentiated Quadratic Kernel 

An exponentiated quadratic covariance kernel defines an exponential decay in the correlation 
of observations depending on their inputs distance. It is defined as ( ∗, ) = exp ‖ ∗ ‖2 ℓ  (A5) 

where  is a scale parameter and ℓ is the characteristic length-scale of the covariance kernel and 
defines the maximum length at which data can be extrapolated (Figure A3). 
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Figure A3. Exponentiated quadratic kernel: encodes an exponential decay in the autocorrelation. It 
produces a smooth function across time, but cannot represent a constant trend. 

Appendix A.2.3. Composed Linear—Exponentiated Quadratic Kernel 

A composed covariance kernel that combines features from the linear and exponentiated 
quadratic kernels can be obtained by simply adding the kernels as defined by Equations (A4) and 
(A5). 

Below we present examples of the posterior mean produced by the three types of kernels 
reviewed above using a ‘toy’ data set (Figure A4). 

 
Figure A4. Composed kernel: delineates a trend line like a linear model, while allowing smooth 
changes across time. 
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