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Abstract: The cross-range resolution of forward-looking phase array radar (PAR) is limited by the
effective antenna beamwidth since the azimuth echo is the convolution of antenna pattern and
targets’ backscattering coefficients. Therefore, deconvolution algorithms are proposed to improve the
imaging resolution under the limited antenna beamwidth. However, as a typical inverse problem,
deconvolution is essentially a highly ill-posed problem which is sensitive to noise and cannot ensure a
reliable and robust estimation. In this paper, multi-channel deconvolution is proposed for improving
the performance of deconvolution, which intends to considerably alleviate the ill-posed problem of
single-channel deconvolution. To depict the performance improvement obtained by multi-channel
more effectively, evaluation parameters are generalized to characterize the angular spectrum of
antenna pattern or singular value distribution of observation matrix, which are conducted to compare
different deconvolution systems. Here we present two multi-channel deconvolution algorithms
which improve upon the traditional deconvolution algorithms via combining with multi-channel
technique. Extensive simulations and experimental results based on real data are presented to verify
the effectiveness of the proposed imaging methods.

Keywords: forward-looking imaging; angular resolution; ill-posed problem; multi-channel
deconvolution; constrained iterative deconvolution; maximum a posteriori-based deconvolution

1. Introduction

Synthetic aperture radar (SAR) and Doppler beam sharpening (DBS) have a wide range of
applications on civil and military fields to achieve high cross-range resolution [1–6]. However, traditional
SAR and DBS cannot focus on the area along the flight direction with high azimuth resolution due to the
symmetrical and small Doppler bandwidth. Bistatic forward-looking SAR (BFSAR) can break through
the limitations of traditional monostatic SAR and achieve high-resolution imaging of forward-looking
terrain. However, it is difficult to implement in practice due to the large range cell migration (RCM)
and 2-D variation of Doppler characteristics [7]. In the forward-looking area, phased array radar
(PAR) based on scanning radar imaging is widely used. The angular resolution θ is limited by the
real aperture size D with θ = λ/D for a raw PAR imaging system, where λ is the wavelength [8].
Thus, approaches to improving angular resolution include enlarging physical antenna aperture and
increasing emission frequency, but constrained by the antenna weight, size and other physical factors.

Since the received signal in azimuth can be modeled as a mathematical convolution of
targets’ scattering coefficients and antenna pattern, deconvolution is an efficient method to achieve
angular super-resolution [9]. Unfortunately, deconvolution is inherently an ill-posed problem
under noise environment that typically involves a great number of unknowns due to the receiver
noise and low-pass characteristic of antenna pattern, which brings about amplifying system noise
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and blurring effects [10–17]. Recently, deconvolution algorithms in Bayesian framework or sparse
signal reconstruction have been used in the application of radar imaging to improve cross-range
resolution [18–27], but the tradeoff between robustness and resolution performance cannot be easily
adjusted. In [28–30], a constrained iterative deconvolution (CID) algorithm was proposed to obtain
well-behaved results due to positive constraint, but the angular resolution improvement is still limited
by noise when the signal-to-noise ratio (SNR) is relatively low. Most of deconvolution algorithms
are performed in the case of single channel thus the performance of deconvolution isn’t very well.
Actually, multi-channel deconvolution for monopulse radar has been proposed for ameliorating the
ill-posed problem [31,32]. The multikernel deconvolution was implemented by an inverse filter using
filter coefficients derived by linear programming in [31], it was concluded that antenna sidelobe,
scanning rate were the main factors which influence the SNR after deconvolution for monopulse radar.
Furthermore, [32] studied and emphasized the form of truncated antenna pattern, but the simulation
results showed that the recovery result was seriously contaminated by noise. Above research about
multi-channel monopulse radar imaging cannot be directly applied to scanning radar, the impact of
antenna sidelobe, scanning rate and form of truncated antenna pattern on deconvolution method is
not so significant for scanning radar. There are few papers about multi-channel deconvolution for
PAR imaging while the performance of single-channel deconvolution for scanning radar imaging is
still far from satisfactory. The multi-channel deconvolution may improve the imaging robustness
and practicability while further increase the angular resolution. Therefore, our research focus on
multi-channel deconvolution methods for forward-looking scanning radar imaging in this paper.
Furthermore, the poor characteristic of singular value property for observation matrix or spectrum for
antenna pattern is inherently dominant to the ill-posed problem of super-resolution. Thus, it is worth
studying how above characteristics specifically affect and ameliorate the deconvolution problem when
multiple channels are exploited.

Attentive to the aforementioned consideration, we propose multi-channel deconvolution methods
to achieve angular super-resolution, which intend to ameliorate the ill-condition problem of
single-channel deconvolution. The characteristics of antenna pattern and observation matrix, which
are generalized as three effective measurement factors, conduct us to measure the gain by rational
use of multiple channels. The framework of this paper is organized as follows: Section 2 briefly
establishes the imaging model for forward-looking PAR system. Section 3 reviews the ill-condition
problem of deconvolution. Relationship of angular spatial spectrum of antenna pattern and singular
value distribution of observation matrix will be discussed with evaluation parameters to describe the
performance of deconvolution problem. After establishing multi-channel deconvolution model in
Section 4, we will present two multi-channel deconvolution algorithms, termed as multi-channel
maximum a posteriori-based deconvolution (MMAP) and multi-channel constrained iterative
deconvolution (MCID), which improve upon the traditional MAP [19,20] and CID [28–30] algorithm
via combining with multi-channel deconvolution technique. In Section 5, extensive simulated and real
measured data are presented to validate the effectiveness of proposed methods. Finally, conclusions
are drawn in Section 6.

Notations used in this paper are as follows: Bold-case letters are reserved for vectors and matrices,
e.g., σσσ is a vector, H is a matrix. ∗ is the convolution operation. diag(xxx) is a diagonal matrix with its
diagonal entries being the entries of vector xxx. F and F−1 are Fourier and inverse Fourier transform.
(·)T , (·)H , (·)∗ and (·)−1 denote the transpose, conjugate transpose, conjugate and inverse operation,
respectively.

2. Mathematical Model of Signal

Consider the PAR transmitting the linear frequency-modulated (LFM) signal, the received signal
after motion compensation and range compression for one target with position (r0, θ0) can be written
as [33]:
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y (t, tm) = σ0sinc
[

B
(

t− 2r0

c

)]
h(tm)exp

{
−j4π

λ
r0

}
(1)

where t is the fast time in range, tm is the azimuth time, σ0 is the target’s scattering coefficient. c is the
velocity of electromagnetic wave, h(tm) is the antenna pattern, B and λ denote the bandwidth and
wavelength of transmitted signal, respectively. sinc (t) is the sinc function and defined as sin(t)

/
t.

Since tm = (θ − θ0)
/

θω and t = 2r/c, where θω is the scanning speed of antenna, r is the range
variation. Ignoring the constant terms when only considering the azimuth variation for a fixed range r0:

y (θ; θ0) = σ0 · h(θ − θ0) (2)

The received signal is the superposition integral of all the scattered waves in one range bin,
considering the effect of noise n(θ), one can obtain:

y (θ) =
∫

σ
(
θ′
)

h(θ − θ′)dθ′ + n(θ)

= σ (θ) ∗ h(θ) + n(θ)
(3)

In the angular frequency domain, (3) is recast as:

Y (ω) = σ (ω) · H(ω) + N(ω) (4)

where Y (ω), σ (ω), H(ω) and N(ω) are the Fourier transforms of y (θ), σ (θ), h(θ) and n(θ)
respectively, and ω is the angular spatial frequency.

The received signal (3) could also be expressed in vector form as:

y = Hσσσ + n (5)

where y, σσσ, n represent the received signal, targets’ scattering coefficients and noise vector
with size M × 1, respectively. The matrix H is the convolution operation matrix formed by
h(θ) = [h(1), . . . , h(M)]T, which can be expressed as [34]:

H =


h(1) h(M) · · · h(2)
h(2) h(1) · · · h(3)

...
...

. . .
...

h(M) h(M− 1) · · · h(1)

 (6)

The diagram of signal model for the PAR system is illustrated in Figure 1, the scanning radar
works in a typical forward-looking mode. As shown in Figure 1, the PAR scans a region that contains
three point targets, and the received signal is the convolution result of the targets’ scattering coefficients
and the antenna pattern. The left part of Figure 1 shows the characteristic of σ (θ), h(θ), y (θ), and right
part presents σ (ω), H(ω), Y (ω). The antenna pattern corresponds to the angular impulse response
which can be seen as a low-pass filter. The echo is proportional to the antenna pattern and only
remains the low frequency information which reduces the angular resolution intensely. Since the
targets’ distribution is smoothed by the antenna beam, isolated targets become obscure, and adjacent
targets cannot be distinguished.
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Figure 1. Illustration of signal model for scanning radar system.

3. Ill-Posed Problem of Deconvolution

The mathematical signal model suggests that the targets’ scattering information could be restored
by deconvolution or inverse filter. Unfortunately, deconvolution is equivalent to a linear inverse
problem, which is essentially an ill-posed problem in most practical application scenarios due to the
disturbance of noise and low-pass characteristic of antenna pattern. The direct solution of the inverse
system without reducing the effects of noise will amplify system noise and bring blurring effects clearly.

The research of ill-posed problem for deconvolution is the necessary prerequisite to super-resolution
imaging, which is divided into two parts in detail as follows: Firstly, the essential corresponding
relation between angular spectrum of antenna pattern and singular value decomposition (SVD) [35,36] of
observation matrix is introduced briefly to better describe the deconvolution problem. Then, in order to
get more detailed information and compare different deconvolution systems, three evaluation parameters
will be served to evaluate the property of observation matrix.

3.1. Angular Spatial Spectrum of Antenna Pattern and Singular Value Decomposition of Observation Matrix

As (6) shows, the convolution operation matrix H is a circulant matrix composed of antenna
pattern h(θ), thus the Fourier transform coefficient of h(θ) is the eigenvalue of observation matrix H,
and the corresponding eigenvector of H is the Fourier transform base.

What’s more, the singular value of matrix H is the positive square root of the eigenvalue of the
matrix HHH. Since h(θ) has the conjugated-symmetrical structure, the singular value of observation
matrix γk is equal to the amplitude of angular spectrum of antenna pattern H(k), i.e.,

γk =
√

H(k)H(k)∗ k = 0, 1 · · · , M− 1 (7)

The simulation results illustrated in Figure 2 support above conclusion. Figure 2a shows
the angular spectrum of antenna pattern. Red dotted line in Figure 2b draws the distribution of
sorted singular values. It is disadvantageous to the comparative analysis under different transverse
coordinates, so Figure 2b gives the sorted results of angular spectrum for antenna pattern in black
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solid line. The coincident curves demonstrate the equivalence of them, furthermore, the small singular
values generally represent the high frequency information by comparing Figure 2a,b.

(a)                                                                                    (b)

Figure 2. Illustration of singular values and Fourier transform coefficients.

Theoretically, we can restore the targets’ scattering information according to (4) by
direct deconvolution:

σ̂(ω) = (Y (ω)− N(ω)) /H(ω) = σ(ω)− N(ω)/H(ω) (8)

The recovery results are different with the true targets because of the last term N(ω)/H(ω).
As shown in Figure 3, even if slight noise will cause tremendous consequences due to the division
operation by small singular values, which results in the ill-posed problem of angular super-resolution.
Here, we circle distribution set of effective singular values with blue ellipse: (1) Small singular
values cannot be utilized to increase resolution effectively but amplify noise to an unacceptable
level. Comparing Figure 3b,d, we can find that the noise amplification becomes more serious with
the deterioration of SNR from 65 dB to 45 dB. Especially in Figure 3c, erroneous results dramatically
increase to 35 dB with the increase of noise, which have covered up the useful information and ruined
the reconstruction results. (2) Large singular values can be used for recovering scatterers’ information
precisely, which can be seen from Figure 3a,c that the recovery results are almost coincident with the
accurate results. However, they cannot further improve the angular resolution since the large singular
values correspond to the low frequency information.

3.2. Evaluation Criteria of Deconvolution Problem

Through above analysis, we notice that the ill-posed problem of deconvolution is derived from
the non-uniform distribution of singular values. In order to measure the performance of different
deconvolution systems, objective assessment parameters are given to evaluate the deconvolution
matrix H.

The first parameter is condition number, which is an important index to measure the numerical
stability of linear equation. The definition of condition number [37] of H is:

κ(H) =
γ0

γM−1
(9)

where γ0 is the largest singular value and γM−1 is the smallest singular value. The condition number
of H in Figure 2b is 80.67 dB, thus direct deconvolution is a severely ill-posed problem.

Besides the difference between minimum and maximum singular values, the average of singular
values is significant for inverse system as well, which can represent the magnification of noise after
direct deconvolution. The noise n(θ) is assumed as stationary, zero mean, white, and Gaussian, with

E[n(θ)n(θ + θτ)] = σn
2δ(θτ) (10)
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Figure 3. Singular value analysis. (a,c) are shown in the angular frequency domain; (b,d) are the
comparison figures of estimated and true values; (a) SNR = 65 dB; (b) Least square solution of (a);
(c) SNR = 45 dB; (d) Least square solution of (c).

The output noise variance σno
2 after deconvolution can be written as follow according to (8):

σno
2 =

1
2π

∫ ∞

−∞

∣∣∣∣ 1
H(ω)

∣∣∣∣2Ni
2(ω)dω (11)

Substituting (10) into (11):

σno
2 = σn

2
∥∥∥∥ 1

H(ω)

∥∥∥∥2

2
(12)

After normalization, we can use A(H) to characterize the magnification of system noise
after deconvolution:

A(H) = 10log10

M−1

∑
i=0

∥∥∥∥γ0

γi

∥∥∥∥2

2
(13)

The output SNR after direct deconvolution for Figure 2b will decline 103.7 dB.
Most importantly, we also want to obtain the percentage of effective singular values, which also

can be viewed as bandwidth of passband, defined as:

BSNR(H) =
I

M
× 100% (14)

where I meets following requirements: γI ≥ γ0 − SNR and γI−1 < γ0 − SNR. BSNR is associated
with signal-to-noise ratio circumstance. The B30db of Figure 2b is 3.74%, which means the percentage
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of effective singular values is about 3.74% when SNR is 30 dB. In particular, this parameter will drop
constantly with the increase of noise level.

4. Multi-Channel Deconvolution

Deconvolution of single-channel convolution equation is intractable and sensitive to noise, but the
inversion of a set of simultaneous convolution equations may ameliorate the ill-condition problem
of single-channel deconvolution. Existing researches on multi-channel deconvolution are limited to
monopulse radar [31,32] which is distinguished from phased array scanning radar: (1) The major
concerns including the antenna sidelobe, scanning rate and form of truncated antenna pattern are of
little importance to the deconvolution problem for phased array scanning radar. (2) The multi-channel
deconvolution methods of above researches are so simple that cannot handle noise well, so it is difficult
to be applied to practical solutions, such as inverse filter or Wiener filter. In this section, we will
establish multi-channel deconvolution model and propose multi-channel deconvolution methods to
achieve angular super-resolution for phased array scanning radar. Comparing the multi-channel with
single-channel by evaluating various performances of angular impulse response or convolution matrix
with proposed evaluation criteria, we will analyse the gain acquired by multi-channel system.

4.1. Multi-channel Deconvolution Model

The imaging model of multi-channel forward-looking scanning radar is illustrated in Figure 4.
The received echo of each channel in angular frequency domain can be expressed as:

Y1(ω) = σ (ω) · H1(ω) + N(ω)

Y2(ω) = σ (ω) · H2(ω) + N(ω)
...

YN(ω) = σ (ω) · HN(ω) + N(ω)

(15)

where hi(θ), i = 1, 2, · · ·N is the antenna pattern of channel i, Hi(ω) is the spatial spectrum of hi(θ).
The sum of above Equations (15) can be written as:

N

∑
i=1

Yi(ω) = σ (ω)
N

∑
i=1

Hi(ω) (16)

Targets’ azimuthal scattering coefficients can be calculated by following formula:

σ̂(ω) =
N

∑
i=1

Yi(ω)/
N

∑
i=1

Hi(ω) (17)

It can be noted that multi-channel deconvolution system changes the antenna pattern from H(ω)

to ∑ Hi(ω), which may bring improvements to the performance of deconvolution.

  

Channel 1:        

Channel 2:

Channel N:

1 ( )h

2 ( )h

( )Nh
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+
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1( )y

2 ( )y
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Figure 4. Multi-channel imaging model for forward-looking scanning radar.
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4.2. Multi-channel Deconvolution Analysis

As mentioned above, multi-channel deconvolution system ∑ Hi(ω) is helpful to performance
improvements compared with single-channel H(ω). In this section, we will illustrate this problem
with uniform linear arrays.

For simplicity, we suppose there are two M-elements uniform linear arrays with intersensor
spacing d working on wavelength λ. There is a nonzero translation D0 between the two identical
subarrays. Then the antenna pattern of first subarray can be obtained by:

h1(θ) = e−j(M−1
2 β)

sin
(

Mβ
2

)
M sin

(
β
2

) (18)

where β = 2πd sin θ
/

λ.
Since the two subarrays have consistent formation, translation D0 makes the difference of phase

shift between them. Thus the antenna pattern of second subarray is:

h2(θ) = e−j2π
D0 sin θ

λ e−j(M−1
2 β)

sin
(

Mβ
2

)
M sin

(
β
2

) (19)

Considering the azimuth angle changes from −10◦ to 10◦ in forward-looking scanning radar
imaging, we have approximate formula that sin θ ≈ θ. Thus, (18) can be simplified as:

h1(θ) ≈ e−jπd(M−1
λ )θsinc

(
πMd

λ
θ

)
(20)

In addition, angular spectrum of h1(θ) is:

H1(ω) = F{h1(θ)} ≈


λ

Md ,
∣∣∣ω + π(M−1)d

λ

∣∣∣ < πMd
λ

0,
∣∣∣ω + π(M−1)d

λ

∣∣∣ > πMd
λ

(21)

Similarly, angular spectrum of h2(θ) is:

H2(ω) ≈ H1(ω +
2πD0

λ
) (22)

It can be noted that the passband of two antennas is 2πMd
/

λ with a translation 2πD0
/

λ:

BSNR(H1) = BSNR(H2) (23)

The improvement of effective singular values for multi-channel deconvolution system
2
∑

i=1
Hi (ω)

can be written as:

BSNR(ΣH)

BSNR(H1)
=

{
Md+D0

Md , 0 ≤ |D0| < Md
2 , |D0| ≥ Md

≥ 1 (24)

Obviously, when D0 ≥ Md, the synthesis channel H1(ω) + H2(ω) will achieve the maximum
bandwidth utilization. Multi-channel is superior to single-channel since wider passband implies
more effective singular values, the increased effective singular values are favorable to restoring the
targets’ scattering information, which is particularly important to the deconvolution system. The κ(H)

and G(H) are very difficult to calculate, so the criterion of constructing multi-channel system is to
maximize pass-band bandwidth.
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4.3. Multi-channel Deconvolution Method

The performance of multi-channel direct deconvolution algorithm is still affected by noise since we
cannot effectively improve κ(H) and G(H), which means the ill-posed problem still exists. Inspired by
above analysis, improved deconvolution methods are proposed based on the traditional algorithms
via combining with multi-channel deconvolution technique to handle with the ill-posed problem and
exploit the strengths of multiple channels.

In order to extend the single-channel deconvolution algorithm to multi-channel, we must consider
the two expressions of multi-channel deconvolution for Equations (4) and (5). Although the two
equations are equivalent for the same deconvolution model, there are some distinctions when designing
the multi-channel deconvolution algorithms. Thus we propose MMAP algorithm for Equation (5)
based on [20] and MCID algorithm for Equation (4) based on [28] to improve the angular resolution.

4.3.1. Multi-Channel Maximum A Posteriori-Based Deconvolution

According to Equation (15), the received echoes could be expressed in vector form as:

y1 = H1σσσ + n
y2 = H2σσσ + n

...
yN = HNσσσ + n

(25)

Obviously, (25) can be equivalently rewritten as following linear model:

ẏ = Ḣσσσ (26)

where

ẏ = [y1, y2, · · · , yN ]
T; Ḣ = [H1, H2 · · · , HN ]

T (27)

where ẏ is the echo vector of size NM× 1 and the size of convolution operation matrix Ḣ is NM×M,
the increasing equations are conducive to a better performance of deconvolution. Nevertheless, large
number of equations suffer from heavy computational burden, which cannot be tolerated in the real
time processing system. To overcome above difficulty, we rewrite Equation (25):

N

∑
i=1

Yi(ω) = σ (ω)
N

∑
i=1

Hi(ω) (28)

We can reformulate (28) via inverse Fourier transform:

N

∑
i=1

yi(θ) = σ (θ) ∗
N

∑
i=1

hi(θ) (29)

In addition, (29) can be simplified as:

ẏ(θ) = σ (θ) ∗ ḣ(θ) (30)

where ẏ(θ) is defined as
N
∑

i=1
yi(θ) and ḣ(θ) is defined as

N
∑

i=1
hi(θ). Therefore, the received signal could

be expressed in vector form:

ẏ = Ḣσσσ + n (31)

where ẏ, σσσ, n are vectors of size M× 1 and the size of matrix Ḣ is M×M. It can be noted that the new
convolution operation matrix of multi-channel is favorable to large-scale computing without extra
calculation burden.



Remote Sens. 2017, 9, 703 10 of 26

The estimated value for σσσ, which satisfies the MAP criterion:

σ̂̂σ̂σ = arg min
σσσ

{
p
(
ẏ
/

σσσ
)

p (σσσ)
}

(32)

Referring to photon theory, the received signal ẏ is measured by means of particles, in general,
photons. In the case of radioactive decay, the measurement of photons is described by a Poisson
distribution [38]. Similarly, the Poisson distribution is an appropriate statistical model for the true
scattering σσσ likewise:

P
(
ẏ
/

σσσ
)
=

M

∏
i=1

(
M
∑

j=1
Hijσj

)ẏi

e
−

M
∑

j=1
Hijσj

ẏi!
; P (σσσ) =

M

∏
j=1

(
σ̂j
)σj e−σ̂j

σj!
(33)

where
M
∑

j=1
Hijσj is the mean value of actual ith value ẏi in ẏ, σ̂j is the mean value of the j position in the

scattering σ̂̂σ̂σ [39].
Substituting (33) into (32) and taking the logarithm of arg min

σσσ

{
p
(
ẏ
/

σσσ
)

p (σσσ)
}

, we can obtain the

iterative formula [20]:

σ̂̂σ̂σk+1 = σ̂̂σ̂σk

[
(Ḣ)

T
(

ẏ
Ḣσ̂̂σ̂σk

)]
(34)

Besides the Poisson distribution, sparse prior information based on compressed sensing has also
been applied to forward-looking imaging since the number of strong scattering targets is sparse relative
to the imaging area grids [25,26,33]. However, sparse-based method can only serve as an auxiliary
mean of imaging since it shows high sensitivity and unreliable performance in real data processing.

4.3.2. Multi-Channel Constrained Iterative Deconvolution

Then, we will introduce the proposed MCID method. After multiplied by the term
N
∑

i=1
H∗i (ω),

Equation (28) can be written as:

N

∑
i=1

Yi(ω)
N

∑
i=1

H∗i (ω) = σ (ω)
N

∑
i=1

Hi(ω)
N

∑
i=1

H∗i (ω) (35)

Above expression can be simplified as:

Ẏ(ω)Ḣ∗(ω) = σ (ω) Ḣ(ω)Ḣ∗(ω) (36)

where Ẏ(ω), Ḣ(ω) are the Fourier transforms of ẏ(θ), ḣ(θ), respectively.
The targets’ backscattering coefficients can be calculated by Landweber iteration [40]:

σ̂(ω)k+1 = aY′ + (1− aH′)σ̂(ω)k (37)

where: Y′ = Ḣ∗(ω)Ẏ(ω) , H′ =
∣∣Ḣ(ω)

∣∣2 and a satisfies ‖1− aH′‖ < 1.
However, above result suffers from Gibbs’ oscillations and similar “ringing” artifacts caused by

the absence of noise, which typically results in that the enhanced results have some negative values.
To handle this problem, the positive constraint P {·} is forced to the iterative intermediate value since
the magnitude of σ cannot be negative on physical grounds. The modified recursion can be written as
follow [28]:

σ̂(ω)k+1 = F
{

P
[
F−1(aY′ + (1− aH′)σ̂(ω)k)

]}
(38)
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5. Simulation and Real Data Processing

In this section, we present experimental results with simulation and real data to demonstrate the
effectiveness of proposed deconvolution algorithms for angular super-resolution.

5.1. Multi-Channel Configuration

First of all, we give the configuration of multi-channel in simulation and real data processing.
There are N channels with the same transmitter utilizing narrow beam but different receivers as
Figure 5 shows.

: Receiver

: Transmitter

1 2

Channel 1 Channel Channel 

...
d

... ...

1 ( )1 2N+ N

r
M

( )1 2N+ N

Figure 5. Diagram of transmitter and receivers.

Each channel is composed of Mt-elements uniform linear array transmitter and Mr-elements
linear array receiver with Hamming weighted, where Mt = NMr is the number of transmitter’s
array elements and Mr is the number of receiver’s array elements. Channel 1, Channel (1 + N)/2
and Channel N utilize the echo signal of the first, middle and last receiver, respectively. In
addition, the difference lies in the space interval between receivers. The space interval between channel
1 and channel (1 + N)/2 is D1 and the space interval between Channel 1 and Channel N is D2,
where D2 = 2D1 = Mtd(N − 1)

/
N. Under the circumstance of Figure 5, the beamwidth of

antenna pattern mainly depends on the transmitter. Applying the same configuration of transmitter,
expression (24) is still applicable to this system: D1 < Mtd and D2 < Mtd, so it is unable to effectively
utilize bandwidth. Fortunately, D2 will approach Mtd with the increasing of N.

In the simulation and experiments, there are 7 channels and the beamwidth of antenna pattern
is 1.4◦. Figure 6 shows the angular spectrum of antenna pattern for different channels when N = 7.
As noted in Figure 6, the angular spectrum of antenna patterns for different channels are distributed
in different scopes. There is a little overlap between Channel 1 and 7, while the angular spectrum
of Channel 4 overlaps neighboring Channel 1 and 7. The three objective assessment parameters are
exploited to compare the capability of different systems in Table 1.
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Figure 6. Angular spectrum of antenna patterns.
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Table 1. Parameters of different channels.

Channel κ(H)/dB G(H)/dB B30db/%

1 70.28 93.28 3.74
4 80.67 103.69 3.74
7 76.45 99.45 3.74

1 and 4 90.36 111.42 5.24
1 and 7 72.51 95.50 6.98

1, 4 and 7 114.53 120.92 6.98
All channels 103.09 126.07 6.98

Important conclusions of the multi-channel deconvolution systems are as follows:

1. Multi-channel system will have better performance than single-channel for the parameter B30db,
the increasing effective singular values are favorable to restoring the targets’ scattering information
which is particularly important to the deconvolution system. Since there is less spectrum overlap
between Channel 1 and 7, the result of Channel 1 and 7 is superior to Channel 1 and 4 due to the
high bandwidth utilization. What’s more, the synthetic channel of all channels and Channel 1, 4
and 7 have the same quantity of bandwidth because the whole spectrum of Channel 4 is covered
by Channel 1 and 7. The coincidence of partial pass band spectrum will result in unsatisfactory
bandwidth utilization and unoptimal properties of deconvolution, which suppresses more useful
high frequency information accordingly.

2. It is worth noting that the improvement of κ(H) and G(H) is not obvious, which means that
the ill-posed problem of deconvolution still exists. However, it doesn’t indicate that multiple
channels provide little or no advantage on deconvolution system. Conversely, multiple channels
have overwhelming dominance over individual channel since the richer information of effective
singular values is conducive to angular super-resolution. Considering above three parameters,
we can find the synthetic channel of Channel 1 and 7 achieves the best performance.

It should be pointed out that the superiority of multi-channel system is enhanced through
increasing the aperture size as shown in expression (24), thus the performance improvements will be
still limited by the physical aperture of receivers. It was therefore not surprising that the performance
of all channels has not been further improved than Channel 1 and 7, because the whole physical
aperture can be obtained by Channel 1 and 7. Although these numerous redundant or overlapping
information from all channels cannot ameliorate above three parameters, it will promote the SNR by
improving signal power.

In practical application, comparing with single-channel, multi-channel deconvolution methods
put forward some requirements on imaging system including channel uniformity and relatively
complicated receiver circuit, a poor channel uniformity will not guarantee the reliability of the
performance boost for multi-channel deconvolution. It needs to be clarified that since the multi-channel
configuration is based on multi-channel receivers with the same transmitter and the cost of receiver is
much cheaper than transmitter, multi-channel deconvolution won’t bring much hardware overhead.
Therefore, multi-channel is worthy of study for the substantial benefits to the deconvolution problem.

5.2. Simulations

The multi-channel deconvolution system utilizes Channel 1 and Channel 7 in Figure 6. The antenna
pattern and the scattering information of targets are given by Figures 7 and 8, and the 3 dB width of
the real beam is about 1.4◦. Angular spectrum of antenna pattern is shown in Figure 8a. There are
four targets located from −10◦ to 10◦ of the forward-looking area with azimuth position −1.5◦, −1◦, 2◦

and 3◦ in Figure 8b. The antenna pattern of synthetic channel is illustrated in Figure 8c according to
expression (29). The echo signal of multi-channel and single-channel are illustrated in Figure 8d. After the
convolution effect of antenna pattern, the high-frequency part of the true scene is lost which results in
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low resolution of received signal. Since there is little frequency spectrum overlap between Channel 1
and 7, the effective physical aperture of synthetic channel will be significantly improved. As noted
in Figure 8c, the beam width of synthetic channel is narrower than single-channel, more specifically,
the beam width of synthetic channel is 1/2 of single-channel, which is conducive to beam sharpening
and super-resolution. The improvements can be seen obviously from the comparison of echo signals in
Figure 8d: the multi-channel system can distinguish the adjacent targets while single-channel cannot.
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Figure 7. Antenna pattern. (a) Envelope information; (b) Phase information.
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Figure 8. Scattering information and comparison charts of single and multiple channel. (a) Angular
spectrum of antenna pattern; (b) Scattering information; (c) Antenna pattern; (d) Echo signal.

In Figures 9 and 10, we give the comparison charts of single-channel and proposed multi-channel
deconvolution results with different Gaussian white noise. Compared with the received signals,
the recovery results become clearer and distinguishable by removing the effect of antenna pattern.
However, we can find that the noise influences the recovery results of single-channel from the top
part and middle part of Figure 9, which will cause many false targets while the proposed MCID and
MMAP results suppress the false targets and obtain more reliable results as shown in the bottom part
of Figure 9. With the decrease of SNR, the performance degradation of single-channel deconvolution
becomes more serious, the super-resolution result is distorted apparently and includes many false
targets as shown in Figure 10a–d. Meanwhile, the advantages of multi-channel become more apparent
with the increasing noise as shown in Figure 10e–f. Above gains in performance benefit from the
increasing effective singular values of multi-channel, which are conducive to super-resolution imaging
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and mitigating the ill-posedness of deconvolution problem. It can be seen from Figures 9 and 10 that the
multi-channel deconvolution is less affected by SNR, which can keep performance of super-resolution
with various conditions. Overall, compared with the traditional algorithm, simulation results prove
that proposed algorithms have made some significant progress.

To quantitatively assess the quality of reconstructed images by different methods, the relative root
mean square error (RMSE) of recovery result is utilized in Figure 11. It can be seen from the Monte Carlo
curves that the RMSE of multi-channel deconvolution is always lower than single-channel deconvolution,
which verifies the superiority of proposed methods under different level of SNR. Therefore, the proposed
algorithms have excellent stability and work practically in the engineering field.

Furthermore, scene simulations shown in Figure 12 are made to evaluate the validity and
effectiveness of proposed multi-channel deconvolution algorithms. The simulation parameters are
listed in Table 2. Figure 12a is the original scene, including four ships, sea surface and coastline.
Figure 12b is the radar returned signal after pulse compression. It is clear that all targets are smoothed
by the radar antenna pattern with a poor azimuth resolution. Figure 12c,e are the MAP and CID results.
Figure 12d,f are the results of proposed MMAP and MCID. In order to better compare the imaging
quality of different methods, the picture in the red rectangle draws the larger version of some details.
The recovered images of proposed algorithm have a narrower main lobe, they are conducive to target
recognition with clearer object contour compared to traditional methods. Compared with the result
of multi-channel deconvolution, the performance of single-channel deconvolution is always inferior
to multi-channel, which produces overly smooth edges and results in the loss of fine textures in the
reconstructed images. The proposed algorithms perform better both in recovering the missing details
and preserving the edge sharpness.
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Figure 9. Received echo signal and super-resolution results when SNR = 20 dB . (a,b) MAP and CID of
Channel 1; (c,d) MAP and CID of Channel 7; (e) Proposed MMAP; (f) Proposed MCID.
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Figure 10. Received echo signal and super-resolution results when SNR = 10 dB . (a,b) MAP and CID
of Channel 1; (c,d) MAP and CID of Channel 7; (e) Proposed MMAP; (f) Proposed MCID.
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Figure 11. Average RMSE of different algorithms. (a) The RMSE of MAP and proposed MMAP; (b) The
RMSE of CID and proposed MCID.

Table 2. Simulation Parameters

Parameter Value

Carrier frequency X band
Bandwidth 20 MHz

Pulse Repetition Frequency (PRF) 2000 Hz
Closest range 10 km

SNR 30 dB
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To quantitatively assess the performance of reconstructed images in Figure 12 by different
methods, Peak Signal to Noise Ratio (PSNR) [41] and Structural Similarity (SSIM) [42] are reported.
As shown in Table 3, the proposed methods have higher PSNR and SSIM which means the proposed
methods can further improve the angular resolution meanwhile eliminate the false peaks.

Table 3. The PSNR and SSIM of reconstruction results by different methods

Methods MAP CID MMAP/MCID
Channel ( 1 / 7) ( 1 / 7) ( 1 and 7)

PSNR 25.09/ 25.15 25.96/ 25.73 34.98/34.54
SSIM 0.8894/ 0.8887 0.8927/ 0.8936 0.9834/0.9818
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Figure 12. Scene simulations. (a) Original scene; (b) Real aperture imaging result after pulse compression;
(c) MAP; (d) proposed MMAP; (e) CID; (f) proposed MCID.
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5.3. Results with Real Data

The angular resolution enhancement of proposed deconvolution algorithms can be proved by
real data of PAR. The real data are provided by an institution, including several ships, sea surface and
coastline under different instruments and environmental conditions.

Figure 13 depicts the real radar data processing results ofsea surface and coastline. In addition, the
1-D azimuth profile along range gate = 50 axis is illustrated in Figure 14. It can be observed from the
figures that the proposed methods distinguish two targets in the main lobe while traditional methods
cannot. Figure 15 is the real radar data imaging result of three targets. Figure 16 illustrates the 1-D
azimuth profile along range gate = 60 axis of Figure 15. It can be seen that the proposed methods have
better performance of beam sharpening or angular super-resolution. Figure 17 is the real radar data
imaging result of two ships. Figure 18 illustrates the 1-D azimuth profile along range gate = 6 axis of
Figure 17. Our proposed methods have better recovery performance with a clear object imaging. The
results of experiments further prove that multi-channel deconvolution algorithms have better stability
and more significant super-resolution performance than conventional techniques.
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Figure 13. Real radar data of sea surface and coastline. (a) Original real radar data; (b) Result processed
by MMAP; (c) Result processed by proposed MCID.
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Figure 14. Real radar data of sea surface and coastline in range bin. (a) MAP; (b) Proposed MMAP;
(c) CID; (d) Proposed MCID.

To quantitatively assess the performance of reconstructed images by different methods, image
contrast (IC) [43] is selected to measure the quality of experimental results, where high values of IC
generally mean that the image is recovered well. As shown in Table 4, the higher values of IC verify
the superiority of proposed methods. Actually, our proposed methods do not get a very significant
performance boost in the real data. This is mainly caused by two following reasons: (1) Equipments
used in these experiments remain highly imperfect with poor channel uniformity. (2) Besides, some
targets are moving over the sea surface, such as boats and ships, which will bring residual phase
error. Even so, according to above analysis and evaluation results, the multi-channel deconvolution
improves the performance of beam sharpening, super-resolution and reduces the influence of noise at
the same time.
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Table 4. The IC of reconstruction results by different methods

scene MAP Proposed MMAP CID Proposed MCID

Figure 13 6.5498 8.0558 7.6206 8.6797
Figure 15 8.3697 8.7246 7.4844 7.9371
Figure 17 20.0850 20.4325 18.2030 19.1708
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Figure 15. Imaging results of three targets by different methods. (a) Original real radar data;
(b) Proposed MMAP; (c) Proposed MCID.
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(a)
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Figure 16. Imaging results of three targets by different methods in range bin. (a) MAP; (b) Proposed
MMAP; (c) CID; (d) Proposed MCID.
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Figure 17. Imaging results of two ships by different methods. (a) Original real radar data; (b) Proposed
MMAP; (c) Proposed MCID.
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Figure 18. Imaging results of two ships by different methods in range bin. (a) MAP; (b) Proposed
MMAP; (c) CID; (d) Proposed MCID.

6. Discussion

The poor characteristic of antenna pattern is inherently dominant to the ill-posed problem of
angular super-resolution. Therefore, significant parts of this article explain and analyse the ill-posed
problem of deconvolution in detail. With the increase of noise, the effective singular values of
convolution matrix become less and ill-posed problem of deconvolution will become more serious.
Qualitative analysis on ill-posed problem for deconvolution is of great significance to characterize
different deconvolution systems, so evaluation criteria of convolution matrix such as BSNR(H), κ(H)

and G(H) are proposed to compare different systems.
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To improve the performance of super-resolution, we utilize multiple channels to construct an
improved deconvolution system. In fact, it has been noted that the deconvolution of single convolution
equation is intractable while a set of simultaneous convolution equations can alleviate above problem.
However, the research in this area is confined to monopulse imaging [31,32], which is not applicable
for scanning radar. What’s more, the processed results of multi-channel method in [32] for monopulse
radar have a low output SNR. Therefore, the result of above research is unsatisfactory and goes no
further than simulation experiments. In this paper, multi-channel increases the number of effective
singular values BSNR noticed that BSNR(∑ H) ≥ BSNR(H). For example, the deconvolution result of
Channel 1 and 7 is superior to Channel 1. After considering different channels, we find that more
channels do not lead to a better super-resolution imaging. The key is to construct a system with
maximum effective singular values, for example, the result of Channel 1 and 7 is not worse than the
whole channels since BSNR (H1 + H7) ≈ BSNR (Hall). For this particular case, the performance of
multi-channel deconvolution can completely vie with the full aperture provided the unreduced BSNR.

Since κ(H) and G(H) haven’t been effectively improved, the direct solution of the inverse system
is still affected by noise. Some further improvements including more complete probability models or
stringent limits can alleviate the negative consequences of noise. MAP and CID algorithms are two
representative and practical methods among them. Therefore, to handle with the ill-posed problem
of deconvolution and exploit the strengths of multiple channels, improved deconvolution methods
are proposed based on the traditional MAP and CID algorithms via combining with multi-channel
technique. More concretely, MMAP utilizes the maximum a posteriori criterion to regularize the
inverse problem, the optimal probability based on this statistical theory method can endure noise
disturbance more significantly. MCID adapts a constrained iterative deconvolution algorithm to
obtain well-behaved results exhibiting true super-resolution. Therefore, significant performance
improvements including strong robustness, enhanced angular resolution and better output SNR
are obtained compared with related literatures.

The use of multiple antenna arrays or multiple channels greatly improve the imaging and
detection capability. However, multi-channel deconvolution methods need some requirements on
imaging system comparing with single-channel. Multi-channel receivers require relatively complicated
hardware architectures, but this price is acceptable compared with the achieved performance
improvements. At the multi-channel framework, the channel consistency and velocity estimation
of moving objects are two problems which can not be ignored. In real data processing, unfavorable
channel uniformity or inaccurate speed estimation will make the performance of multi-channel
deconvolution cannot be markedly improved.

7. Conclusions

In this paper, multi-channel deconvolution is presented to improve the angular resolution in
forward-looking phase array radar imaging. The main works and contributions of this paper are
summarized as follows:

1. To better illustrate the performance improvement provided by multi-channel, we analyse angular
spatial spectrum of the antenna pattern and singular value decomposition of the observation
matrix. Evaluation parameters based on above are proposed to judge the performance gains
acquired through multi-channel compared with single-channel. Taking the uniform linear arrays
as an example, the improvements of BSNR(H) for multi-channel are derived and analysed.

2. Multi-channel deconvolution is proposed to obtain angular super-resolution imaging with
better robustness and imaging quality for forward-looking scanning radar. Under this
multi-channel framework, two multi-channel deconvolution methods are developed based
on standard single-channel deconvolution methods. In practice, multi-channel deconvolution
has higher portability reliability and portability compared with existing single-channel
deconvolution algorithms.
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3. To evaluate the performance of proposed methods, extensive simulations have been
designed and developed. Experimental results with real data under different instruments and
environmental conditions have been conducted to validate the performance boost compared with
single-channel deconvolution.

In the future, we will improve our methods by incorporating more priori knowledge into it.
In addition, we will research beamforming design techniques and more complex channels combination
methods to further improve the angular resolution. In practical application, there are two main works
need to be further considered for multi-channel deconvolution:

1. Practically, channels mismatch is commonly existed for the unsatisfactory receiver performance.
The poor channel consistency will deteriorate the performance of multi-channel deconvolution
algorithms, thus study on nonuniformity correction is necessary to ensure the effectiveness of
multi-channel deconvolution.

2. The moving targets in the imaging region will bring residual phase error due to inaccurate
speed estimation. Above phase error will influence the imaging quality, thus better velocity
compensation method will become study emphasis in further research.
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