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Abstract: High spatial resolution hyperspectral data often used in precision farming applications are 
not available from current satellite sensors, and difficult or expensive to acquire from standard aircraft. 
Alternatively, in precision farming, unmanned aerial vehicles (UAVs) are emerging as lower cost and 
more flexible means to acquire very high resolution imagery. Miniaturized hyperspectral sensors have 
been developed for UAVs, but the sensors, associated hardware, and data processing software are still 
cost prohibitive for use by individual farmers or small remote sensing firms. This study simulated 
hyperspectral image data by fusing multispectral camera imagery and spectrometer data. We mounted 
a multispectral camera and spectrometer, both being low cost and low weight, on a standard UAV and 
developed procedures for their precise data alignment, followed by fusion of the spectrometer data with 
the image data to produce estimated spectra for all the multispectral camera image pixels. To align the 
data collected from the two sensors in both the time and space domains, a post-acquisition correlation-
based global optimization method was used. Data fusion, to estimate hyperspectral reflectance, was 
implemented using several methods for comparison. Flight data from two crop sites, one being 
tomatoes, and the other corn and soybeans, were used to evaluate the alignment procedure and the data 
fusion results. The data alignment procedure resulted in a peak R2 between the spectrometer and camera 
data of 0.95 and 0.72, respectively, for the two test sites. The corresponding multispectral camera data 
for these space and time offsets were taken as the best match to a given spectrometer reading, and used 
in modelling to estimate hyperspectral imagery from the multispectral camera pixel data. Of the fusion 
approaches evaluated, principal component analysis (PCA) based models and Bayesian imputation 
reached a similar accuracy, and outperformed simple spline interpolation. Mean absolute error (MAE) 
between predicted and observed spectra was 17% relative to the mean of the observed spectra, and root 
mean squared error (RMSE) was 0.028. This approach to deriving estimated hyperspectral image data 
can be applied in a simple fashion at very low cost for crop assessment and monitoring within 
individual fields.  
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1. Introduction  

Hyperspectral sensors with many narrow spectral bands have been shown to be able to characterize 
vegetation type, health, and function [1–4]. Compared with multispectral imagery, hyperspectral data were 
reported to perform better in modelling vegetation chlorophyll content [5]. They can also be used to 
calculate narrow band indices for modelling crown temperature, carotenoids, fluorescence, and plant 
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disease [6,7], as well as crop growth period [8], soil status [9], net photosynthesis, and crop water stress [10], 
amongst other vegetation parameters. In precision farming applications, hyperspectral data with high 
spatial resolution are required [4,11], but such data are currently not available from satellite sensors. 
Hyperspectral sensors designed for standard aircraft are generally expensive, and such aircraft require 
significant infrastructure, maintenance, and personnel resources. 

Unmanned aerial vehicles (UAVs) are a rapidly evolving and flexible platform for remote sensing. 
They offer a promising alternative to standard aircraft in terms of timing flexibility and capability to fly 
at very low altitudes, thereby acquiring imagery of very high spatial resolution. Small, low cost UAVs 
are particularly advantageous for applications in small individual farm management. The improvement 
of such UAV platforms and the miniaturization of sensors have stimulated much remote sensing research 
and the development of new systems [12]. For example, Jaakkola, et al. [13] developed a multiple sensor 
platform, with the spectrometer and GPS units weighing 3.9 kg. More recently, hyperspectral sensors of 
about 2 kg or less have been developed for small UAVs [14,15].  

When the total system requirements are considered, however, hyperspectral imaging systems are 
often too expensive and complicated for small applications-based companies or individual farmers 
without aviation and remote sensing systems expertise. Besides the sensor itself, the payload 
requirements also generally include accurate GPS/IMU instrumentation, and an on-board computer for 
effective data collection. These, combined with other sensors such as a standard RGB camera, may 
necessitate a larger and more expensive UAV platform, driving up system costs. In addition, 
hyperspectral sensors acquire data in pushbroom or whiskbroom mode, one image line at a time. The 
image geometry is therefore more affected by UAV rotations than for a frame camera, which acquires 
imagery over a two dimensional space in each exposure. The post-acquisition data processing and cost 
to correct such line-by-line geometric distortions is therefore significant with hyperspectral sensors.  

To develop a means for low cost and simplified acquisition of hyperspectral data, this study took an 
alternative approach. The goal was to fuse the high spectral information content of a low cost miniature 
spectrometer with the high spatial information content of a low cost multispectral camera system. Using 
a spectrometer alone in a UAV can provide excellent spectral information [16], but it can only collect 
samples of a limited number of ground locations, and the footprint in which radiance is collected does 
not contain explicit spatial information as in a raster image. By exploiting the relationship between such 
sample-based spectrometer measured spectra, and image data from a frame-based multispectral sensor, 
hyperspectral data can be estimated at all locations (pixels) in the image where spectrometer data do not 
exist, thereby deriving an estimated hyperspectral image. The estimated hyperspectral image is in a 2D 
frame format, which eliminates the need for the geometric processing required for standard 
hyperspectral line sensors. Moreover, such a system has the potential to cost a fraction of current UAV-
based hyperspectral systems and reuse existing cameras and equipment.  

Challenges of data collection via multiple low cost sensors include sensor calibration, alignment and 
data processing. Calibration of UAV hyperspectral sensor data has been conducted using calibration 
targets in the field [17,18], and lab-based spectrometry with lamp reference sources [19], to evaluate the 
accuracy of observed hyperspectral data and the dominant noise sources, such as dark current, sensor 
temperature, atmosphere, and weather [20]. Sensor alignment has been a consideration for multiple 
sensors of the same type [21], and for different sensors [22]. In low cost UAV multiple sensor systems, it 
is not easy, or possible, to optically align sensors in a mount that will maintain the precise alignment in 
the field over multiple flight hours. Thus, matching data from multiple sensors requires post-flight 
consideration of their spatial misalignment, as well as their data–rate timing differences. Once data 
alignment from the two sensors has been achieved, fusion can be accomplished by using coincident data 
from both sensors (i.e., data acquired at the same locations) as training data to build a model. 
Subsequently, the model can be used to estimate hyperspectral reflectance at other locations where only 
the multispectral camera has acquired data.  
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The objectives of this research were to develop methods for (1) alignment of data collected from a 
spectrometer and a multispectral camera system, (2) fusion of these two data types to provide estimated 
hyperspectral data at each pixel in the multispectral camera imagery.  

2. Methodology 

2.1. The Conceptual Framework of Data Acquisition and Fusion 

The remote sensing system for the proposed data fusion process includes a multispectral imaging 
sensor and a spectrometer; for our purposes, they are mounted on a small UAV as shown in Figure 1, but 
they could be mounted on any in situ or airborne platform. Mounting the two sensors is conducted to 
visually achieve alignment of their optical axes (e.g., with the spectrometer and camera housings 
parallel). The multispectral sensor acquires 2D multiple band images from separate cameras, each with 
a specific bandpass filter, while the spectrometer collects one full spectrum sample per measurement 
within a near circular footprint determined by the angle of view (optics) and the platform altitude and 
orientation. The details of our experimental UAV system, settings and camera configuration are further 
described in Section 3. Given an appropriate frame rate or GPS-controlled camera triggering is used, the 
multispectral camera images should cover the required area; for most applications a mosaic must be 
produced from multiple images. The spectrometer samples will cover a set of footprints, each being much 
larger than the multispectral image pixels, and these footprints may not cover the whole study area, due 
to the spectrometer data rate and UAV velocity. The goal is to associate individual reflectance 
measurements from the 1D spectrometer, with pixels in the 2D multispectral images that fall within the 
field of view of the spectrometer. The approach taken in this study was to develop post-acquisition 
processing methods to optimize the alignment of the data from the two sensors, by evaluating their 
timing and spatial correlations. Details are provided in Section 2.2. 

Multispectral
Camera

UAV

Spectrometer

900nm
800nm
720nm
680nm
550nm
490nm wavelength

reflectance

Multispectral image

Spectrometer 
footprintFOV

 
Figure 1. Illustration of unmanned aerial vehicle (UAV) flight system and the concept of data fusion. 
“FOV” stands for field of view. 

Once data alignment has been optimized, fusion of the two data types is conducted by cross 
calibrating coincident sample points of full spectrum spectrometer data and multispectral image data, 
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and using that relationship to estimate full spectrum reflectance at all pixels in the multispectral camera 
images. Many spectra acquired by the spectrometer are selected to build a training dataset of 
representative ground features (e.g., soil, corn, wheat). A small proportion of the measured spectra can 
be set aside as independent reference data to assess the accuracy of the estimated hyperspectral imagery. 
More details about the data fusion methods are explained in Section 2.3. 

2.2. Alignment of Spectrometer and Multispectral Camera Data 

The data from the two sensors need to be aligned before fusion is implemented, due to misalignment 
caused by sensor timing differences and inclined optical axes. This study assumes that the highest data 
correlation should be found when the multispectral camera and spectrometer data are optimally aligned. 
Since data misalignment occurs in both the time domain and spatial domain, this study employs a global 
alignment procedure that considers both time and space offsets simultaneously.  

Spectrometer data are acquired in raw format as arbitrary intensity units. A white barium sulfate 
disc representing close to 100% Lambertian reflectance is used before and after flights to measure 
reference intensity. Reflectance of ground targets is calculated as  ′( ) = ( , )( , )  (1) 

where 	 ′ is nominal surface reflectance,  is wavelength, I is the radiance intensity recorded by the 
spectrometer for ground target surfaces (S) and the white reference (R), respectively. Dark noise 
(measured with the lens cap on) is subtracted from all intensity readings I at each wavelength before 
reflectance is calculated. A second skyward pointing spectrometer attached with cosine corrector (180° 
field of view or “FOV”) that can be on the UAV or on the ground (to minimize UAV weight) measures 
downwelling irradiance. Nominal reflectance ′  is further adjusted for illumination conditions as 
measured by the skyward pointing spectrometer: ( ) = ( ) × ( )( ) = ( ) × ( , )( , )  (2) 

where E is the downwelling irradiance [23] measured by the skyward spectrometer. E(S) and E(R) are 
measured at the same time as the air-unit intensity (I) measurements of the target surfaces (S) and white 
reference (R), respectively. The sum of irradiance over all wavelengths as a coefficient is used to represent 
the total sun irradiance at a given moment. 

For the multispectral sensor, each spectral band has a transmittance function over a wider range of 
wavelengths than the spectrometer bands. For instance, the red band of the camera used in this study is 
centered at 680 nm, with a Gaussian transmittance distribution between 660 and 700 nm [24]. To make 
the reflectance of the multispectral data comparable to the spectrometer data, a convolution of the 
spectrometer reflectance over the wavelength range of each multispectral band is required: 

′ = ( , ) ∙ ( )( , ) ∙ ( )  (3) 

where ′  is the nominal convoluted reflectance corresponding to multispectral band b, and Tb(λ) is the 
transmittance function over band b within the wavelength range λmin to λmax.  

In addition, the spectrometer footprint approximates a circle on the ground that covers multiple 
pixels of the multispectral image, as illustrated in Figure 2. To produce spatially comparable data, the 
mean of the multispectral imagery pixel intensity values (V) within the spectrometer footprint is 
calculated: 
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( , ) = 1 ( , ), , ∈ ( − , − ) <  (4) 

where V is the multispectral image pixel value (intensity), (x, y) and (i, j) are image coordinates using the 
multispectral image center as the origin, dist is the 2D distance based on X and Y directions, and n is the 
number of pixels within the given footprint area of radius r. In nadir view, assuming UAV rotations are 
negligible, r is constant for a given flight where the sensors are mounted at fixed positions on the UAV.  

Following the above steps, the acquired signals from the multispectral camera and spectrometer are 
comparable spectrally and spatially. The correlation (determination coefficient, R2) between the two data 
sets is then calculated to determine the best alignment; i.e., the alignment for which the R2 between the 
datasets is maximized (Equation (5)).  max (∆ , ∆ ) : = (∆ ), (∆ , ∆ )  (5) 

where the f is the linear correlation with its coefficient of determination R2, ρb and V were as previously 
defined. Note that while ρb is reflectance and V intensity, their relationship is linear, so V does not have 
to be converted to reflectance to be correlated against ρb. Δt is the misalignment due to time offset of the 
sensors, and Δθ is the view angle misalignment between the sensors. Both contribute to the offset of the 
spectrometer footprint in the horizontal and vertical directions (Δx, Δy) from the multispectral image 
center. This misalignment in both time and spatial domains (Δt, Δθ), expressed as (Δt, Δx, Δy), is 
optimized simultaneously.  
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Figure 2. Need for alignment of the multispectral camera and spectrometer data. Δx and Δy are the offsets 
between the spectrometer data closest to the center of a multispectral image and the pixels at the center of 
the image. The offsets are caused by timing differences between the two sensors and by misalignment of 
the sensors’ optical axes. The goal was to determine and correct for Δt, Δx, and Δy before performing 
fusion of the two data types.  
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Reasonable search ranges for both the time and space domains are initially set for the optimization. 
The time domain search range is defined as the time shift from the initial multispectral camera–
spectrometer data match according to their nominal time tags; 10 s before and after this initial match was 
used in this study. As illustrated in Figure 2, the method uses the time of multispectral images as the base, 
while shifting the timeline of spectrometer data in steps equal to the spectrometer data collection interval 
(0.2 s). In the space domain, the search range is defined around the multispectral camera image center. A 
search range at an interval of 5 pixels (about 8 cm) in both the X and Y directions out to ±100 pixels from 
the multispectral image center was defined. For each interval in the search ranges of both the time and space 
domains, R2 was calculated; the maximum R2 within the searching range according to Equation (5) 
corresponds to the optimized time offset from its initial matched time (Δt) and the optimized spatial 
offset from the multispectral camera image center (Δx, Δy).  

2.3. Fusion of Spectrometer and Multispectral Camera Data 

Suppose  represents the intensity recorded by the multispectral camera in m spectral bands, and 
 represents the reflectance recorded by the spectrometer in n bands; observation of a given location 

with both the multispectral camera and the spectrometer can be expressed as 

 = [ , ], = , , , … , , = , , , … ,  (6) 

After a flight, each location on the ground is covered by a multispectral camera pixel, thus  is 
known for all l ground locations. However, there is only a limited number of k locations represented by 
the spectrometer measurements. The measurement matrix for a flight Obs, is therefore comprised of pairs 
of measurement locations ,  to , 	 , as well as multispectral camera measurements  to , 
for which there are no spectrometer measurements, as shown in Equation (7): 

 = …
…

 = 

,, 	, 	…, 	 , ?…, ?
 (7) 

The first k measurements from both sensors can be used as training data to predict the unknown 
spectral reflectance in the remaining (l − k) ground (pixel) locations, where only  exists. Methods to 
estimate hyperspectral reflectance at unknown locations in recent studies include spline interpolation 
[25,26], Bayesian imputation [8,27], missing data imputation methods [28,29] based on principal component 
analysis (PCA), and others. Spline interpolation simply exploits the high correlation between spectral bands 
to interpolate the hyperspectral band reflectance from the limited number of multispectral bands. Bayesian 
estimation [8,27] assumes that, given the a priori covariance of the hyperspectral bands, a full spectra can 
be inferred from the multispectral imagery using Bayesian imputation. Bayesian imputation estimates a 
missing hyperspectral value as the mean value of the predictive based on a posterior conditional 
distribution (hyperspectral conditional on multispectral). The PCA-based data imputation method selected 
for this study, compresses the data into a few explanatory latent variables, and imputes unknown 
hyperspectral reflectance based on the latent structure of the data set [28–30]. Specifically, PCA-based 
imputation methods first calculate a PCA model from both multispectral and hyperspectral data (unknown 
hyperspectral data are filled with zeros in this stage); this PCA will then be employed to impute and replace 
unknown hyperspectral bands with known multispectral data as input. Iteration is then carried out until 
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the difference between the newly imputed hyperspectral data and the previous ones are smaller than a 
specified tolerance, thus indicating convergence.  

This study implemented these three groups of fusion methods. In the PCA methods, we tested slightly 
different methods as defined in [29], including trimmed scores regression (TSR), known data regression 
(KDR), known data regression with principal component regression (KDR–PCR), KDR with partial least 
squares regression (KDR–PLS), projection to the model plane (PMP), filling in the missing data with the 
predictions obtained from previous PCA models iterated recursively until convergence (IA), modified 
nonlinear iterative partial least squares regression algorithm (NIPALS), and data augmentation (DA). In 
the Bayesian methods, three different approaches to perform stochastic sampling: Gibbs, expectation 
maximization (EM), and iterative conditional modes (ICM), were employed to estimate hyperspectral data 
based on multivariate normal distribution and maximum likelihood estimation [27]. 

Apart from these three categories of hyperspectral prediction approaches, there have been many 
studies on the data fusion of hyperspectral imagery and multispectral imagery (e.g., [31,32]). 
Hyperspectral–multispectral (HS–MS) image fusion, however, is a different problem from the 
hyperspectral prediction studied here. In HS–MS data fusion, 	  and  are both known for all locations 
in the image but with different spatial resolution. By contrast, in this study, 	  is known at all pixels, but 

 exists only at a set of sample locations within the image (Figures 1 and 2).  

3. Study Site, UAV System, and Flight Design 

3.1. Study Site 

In the application and evaluation of the data fusion approach, UAV flights were conducted over an 
experimental farm on 21 July 2016, near London Ontario, Canada. A hexa-copter (DJI Spreading Wings 
S800) was used with take-off weight (including sensors) of 6 kg. For the lightweight sensors used in this 
study (Sections 3.2 and 3.3), an even smaller and lower cost UAV could be used. The major ground cover 
types were crops, bare soil, and gravel roads, with smaller extents of other short vegetation, trees and 
buildings. The planned and actual UAV flight paths are shown in Figure 3a,b, where two flights were 
conducted over a tomato field (Site 1), and a larger field of corn and soybean (Site 2), respectively. The 
flight speed was 5 m/s, and the flight altitude was 30 m and 50 m above ground for Site 1 for Site 2, 
respectively. The sky was clear during the flights with negligible sun illumination variation. 

 
(a)                                            (b) 

Figure 3. The study site with the planned flight path (a), and the actual flight path (b) draped over a 
Google Earth image, taken on a later date (3 September 2016). (Site 1 at bottom left: tomato field; Site 2 in 
upper right: corn and soybean fields). 
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3.2. UAV Spectrometer and Multispectral Camera Systems 

The UAV spectrometer was an Ocean Optics STS–VIS model, which is 40 mm × 42 mm × 24 mm and 
weighs 60 g. It has a 1024 bands, each of 0.46 nm full bandwidth, over the spectral range from about 350 
nm to 800 nm. The FOV was 1.5° using a fiber optic cable (length: 25 cm, core size: 400 μm) and 
collimating lens. The integration time is manually set between 100 ms and 1000 ms (1 s), depending on 
illumination conditions; for this flight under sunny summer conditions, it was set to 200 ms. A full 
radiance spectrum was recorded every 0.2 s during the flight. The spectrometer was controlled by a 
Raspberry PI 3 Model B microcomputer (22.9 cm × 17.5 cm × 4.8 cm), which was remotely operated 
through a 2.4 GHz wireless network when the UAV was on the ground, to input the appropriate 
spectrometer settings before the flight. A 3000 mAh Lithium ion battery was used to power the 
spectrometer system, which lasts about 3.0 h. As the Raspberry PI computer could not log real world 
time in its default settings, an external DS3231 Real Time Clock was connected to it to keep time to a 
precision of one second. Each spectrum recorded included a local time (millisecond accuracy) relative to 
the time the PI computer was powered on. The whole spectrometer system weighs about 180 g. 

The multispectral camera (TetraCAM miniMCA) is comprised of an array of six 1280 × 1024 pixel 
10-bit cameras mounted in a case with dimensions of 131.4 mm × 78.3 mm × 87.6 mm, and a weight of 
700 g. It was configured with spectral bands at 490 nm, 550 nm, 680 nm, 720 nm, 800 nm and 900 nm. The 
bandwidth for all spectral bands was 10 nm (full-width at half maximum). The 900 nm band was not 
used in this study, since the spectrometer sensitivity does not extend beyond 800 nm. The lens focal 
length was 9.6 mm, providing a FOV of 38.26° and 30.97°, horizontally and vertically, respectively, which 
corresponded to 20.8 m × 16.6 m image extent when flying at 30 m above ground, and 34.7 m × 27.7 m at 
50 m altitude. The nominal ground pixel size was approximately 1.6 cm × 1.6 cm at 30 m altitude and 2.7 
cm × 2.7 cm at 50 m altitude. The aperture setting was f/3.2. The spectrometer footprint was 0.78 m 
diameter at 30 m altitude and 1.3 m at 50 m altitude, corresponding to a diameter of 48 multispectral 
pixels, and an area of about 1810 pixels. Camera images were acquired every 2 s. Once acquired, all six 
bands were simultaneously transferred to each camera’s compact flash memory card, and then spatially 
aligned through its default software (PixelWrench 2), based on a pre-defined alignment file. The camera 
system tags a nominal time to each image, which is inaccurate unless the camera is linked to an external 
GPS. There is also a relative millisecond level internal clock record (as for the spectrometer) for each 
image with time set to zero at camera power on.  

On the ground, Datalink (900 Mhz) and GroundStation 4.0 software served as the flight control 
system, which provided real time monitoring of the UAV status such as flight speed, altitude, and 
battery. The hexa-copter was operated in automatic pilot mode with pre-defined waypoints. A second 
Ocean Optics STS–VIS spectrometer with cosine corrector was pointed skyward to record downwelling 
sun and sky irradiance, as stated earlier. This, and the UAV spectrometer, were configured pre-flight 
through a wireless network and web page where integration time and other acquisition parameters were 
manually set.  

To calibrate the data radiometrically and geometrically, ground reference objects and targets were 
used. The white reference disc (ASD Spectralon, 9.2 cm diameter, U.S. Pharmacopeial Convention (USP) 
for USP 1119) was used to calibrate the spectrometers before and after each flight, and to calculate 
reflectance (Equation (1)). Around 10 other targets, consisting of white background with black strips 
across the diagonals, were distributed evenly throughout the study site. Their locations were measured 
using a GPS to assist in geo-referencing, and mosaicking of the multispectral images.  

4. Results: Data Alignment and Fusion to Produce Estimated Hyperspectral Imagery  

A sequence of 128 multispectral images (multispectral image ID: 2573–2700) obtained in Site 1, and 
a similar sequence of 228 images (ID: 2873–3100) obtained at Site 2 together with their corresponding 
hyperspectral data as “samples”, were employed to analyze the performance of the data alignment and 
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fusion. The multispectral camera and spectrometer data were processed using the method described in 
Section 2. According to Equation (5), correlations were calculated for samples from the multispectral 
camera and spectrometer data. The alignment was conducted in both time and space domains (Δt, Δx, 
Δy), which produced a four-dimensional R2 matrix. R2 was calculated separately for each spectral band, 
and the maximum average R2 within the search range was taken as the optimized time alignment. 

Both the multispectral camera and spectrometer write a millisecond level timestamp into their 
acquired data files, and at the same time, acquire data files with a real world time tag (in seconds), 
provided by the operating system. The time of the two sensors was initially matched using their real 
world time tags, with an accuracy of about 1 s. Then, the more accurate local millisecond timestamps 
were used in the optimization. In the spatial domain, the mean value of the multispectral image bands 
according to Equation (4), was calculated for each offset within the search range. Specifically, the image–
spectrometer data pairs were used to calculate R2 between the two data types, by iteratively shifting the 
spectrometer timeline by 0.2 s within a range ±10 s and an interval of 5 pixels, in both the X and Y 
directions, out to ±100 pixels of the multispectral image center, as illustrated in Figure 2. Multiple groups 
of methods as described in Section 2.3 were employed to fuse the hyperspectral data and multispectral 
imagery. 

4.1. The Data Alignment Procedure 

4.1.1. Profile of Time Domain Alignment 

The profiles of R2 of multispectral–spectrometer data pairs at the ideal alignment (Δt = −0.2, Δx = 45, 
Δy = 5) at Site 1, and (Δt = −1.2, Δx = 85, Δy = −20) at Site 2, along the time domain, are given in Figure 4.  

(a) 
 

(b) 

Figure 4. Linear correlation between sample pairs of multispectral camera intensity and spectrometer 
reflectance at Site 1 (a) and Site 2 (b). Each subfigure includes five curves representing the five 
multispectral bands, plus a thicker line representing the average R2. Each curve is the correlation for the 
given band at 0.2 s interval time offsets over the ±10 s range. The maximum average R2 and its 
corresponding time offset are given in the upper left of each graph. 

According to Figure 4, the best correlation for both sites was obtained for small time shifts of 1.2 s 
or less from their initial timeline match based on the nominal time tags; the time shift was not constant 
between the two sites because the sensors were reset or restarted before each flight. Furthermore, in cases 
where sensors have inaccurate clocks (more common for low-cost sensors), or they stay offline for a long 
time, their clocks may diverge from real world time, thereby rendering time alignment critical.  

Either the individual bands, or their average at both sites, provides a clear unimodal R2 distribution 
over the time offset range. Site 2 has a lower R2 compared with Site 1, but still exhibits an obvious peak 
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value. An explanation for the lower Site 2 correlations is that it had a larger population and more cover 
types (soybean, corn, soil, etc.), compared with Site 1. An analysis using a subset of samples in Site 1 
(start, end, and the entirety of the flight) also reveals a similar trend, where lower sample numbers 
produced higher R2. 

The correlation scatterplot for each spectral band with samples from the entire Site 1 flight at −0.2 s 
time offset, is provided in Figure 5. The distribution of samples in each band is quite similar, with R2 
values ranging from 0.90 to 0.99.  

 
(a) (b) 

 
(c) 

 
(d) (e) 

 

Figure 5. Per band multispectral camera-spectrometer regression for the optimal time alignment at Site 1 
for spectral bands at 490 nm, 550 nm, 680 nm, 720 nm, and 800 nm (a–e), respectively. “DN” is digital 
number, the intensity units of the multispectral camera signal. 

4.1.2. Profile of Spatial Domain Alignment 

The profile of R2 distribution along the spatial domain at the ideal time offset (−0.2 s) in Site 1, is 
shown in Figure 6a, and the profiles over the X and Y directions are given in Figure 6b. A peak R2 value 
that was closest to the multispectral image center was selected; the resulting offset was Δx = +45, Δy = +5 
pixels with R2 = 0.946 as shown in Figure 6a.  

For Site 1, since the spectrometer footprint in the multispectral images for Site 1 was a circle with 
diameter of 48 pixels, a Y offset of 5 pixels is minor, especially considering the search interval was 5 
pixels. This almost negligible offset probably resulted from fixing the spectrometer against the camera 
housing; rotational misalignment in the Y direction more than this small amount was not possible. In the 
X (flight) direction, however, the spectrometer was mounted by visually aligning the fiber optic cable 
and head with the vertically oriented edges of the camera body. The resulting 45 pixel offset in the X 
direction is not unexpected, and almost the same length as the footprint diameter. This spatial offset 
corresponds to 1.4° angular difference in the X direction between the multispectral camera and the 
spectrometer. Furthermore, Figure 6b shows an obvious R2 peak in the Y direction, but a plateau in R2 in 
the X direction. A possible explanation is that the flight lines (X direction) were parallel to rows of tomato 
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plants in the site, causing R2 to be unchanged for certain offsets as both sensors detected radiance from 
the same row(s), but with a slight offset.  

 
(a)  (b) 

Figure 6. Site 1 data alignment. (a) The distribution of R2 between the multispectral camera image 
brightness and spectrometer reflectance for spatial domain offsets (Δx, Δy) up to ±100 pixels at time offset 

 = −0.2 s. (b) the separate X (left) and Y (right) profiles through the optimal location. 

After data alignment in Site 1, an optimized parameter set, (Δt = −0.2, Δθ = 1.4°) or (Δt = −0.2, Δx = 
45, Δy = 5) was obtained, with R2 of 0.946 between the multispectral camera image brightness and 
convoluted spectrometer reflectance. A similar trend of smaller Y offset was also found for the Site 2 data 
(Δx = 85, Δy = −20). Results from both sites show the need for the time and spatial domain alignment 
procedure. The resulting well-aligned data from the two sensors were then combined in the fusion 
procedure, as described in the next section. 

4.1.3. Global Optimization vs. Two-Step Optimization  

The global optimization of both time and space domain simultaneously involves intensive 
computation. To evaluate time and space offsets separately, the multi-hyperspectral data alignment was 
also optimized in a two-step process with the time domain processed first followed by the spatial domain. 
The alternative two-step optimization procedure starts by presuming that the spectrometer and camera 
are perfectly aligned first as shown in Equation (8).  max (∆ , ∆ = 0) → max (∆ , ∆ = 0, ∆ = 0 ) (8) 

After the alignment in the time domain where an optimized time offset ̅ is retrieved, the second 
step is alignment in the spatial domain, where (∆ , ∆ ) is optimized, as described in Equation (9), to 
obtain the best spatial shift ( ̅ , 	 ). Together with the optimized time offset retrieved in the first step, the 
alignment in both time and spatial domains is achieved via a combination of ( ̅, ̅ , ). max (∆ = ̅, ∆ ) → max (∆ = ̅, ∆ , ∆ ) (9) 

This alternative two-step optimization was implemented and compared using the 128 
spectrometer/image data samples of Site 1. The two-step optimization approach first reached ̅ = −0.2 s 
in the time domain and then ( ̅ , 	 ) = (45, 5), which is the same alignment solution as the global 
optimization. The computation time using both approaches is reported as in Table 1.  

The results were generated using a laptop with Intel CoreTM i7-5600U CPU @2.60 GHz, 12 GB RAM, 
and SSD drive, running a Windows 7 Professional 64-bit operation system. As in Table 1, the pre-
processing stage used a large amount of time, because the convoluted multispectral band average values 
according to Equation (Error! Reference source not found.) were calculated at each possible (Δx, Δy) in 
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the spatial search range. The global optimization consumed 16.9 min while the two step-approach used 
16.5 s; i.e., the two-step approach was about 60 times faster than the global optimization. The two-step 
optimization reported R2 = 0.81 for the first step (time-domain optimization) and then R2 = 0.95 for the 
second step, which equals that for the global optimization. Finally, a hyperspectral image (556 by 506 
pixels after resampling) was generated using the data fusion approach in 8.5 min.  

Table 1. Computation time consumption in optimization strategies. 

Optimization Methods Pre-Processing Time Domain Space Domain Data Fusion * 
Global 

24.3 min 
16.9 min

8.5 min 
Two-step  1.9 s 14.6 s 

* Data fusion to generate hyperspectral (HS) image used the PCA_TSR method reported later in Table 2. 

4.2. The Performance of Multispectral-Spectrometer Data Fusion 

4.2.1. Accuracy of Data Fusion 

To predict full spectra at locations with only multispectral data, the PCA modelling method was 
implemented according to Equations (6) and (7), where m = 5 multispectral camera bands and n = 840 
spectrometer bands within the wavelength range of 400 nm to 800 nm. The l = 128 samples of 
spectrometer and multispectral camera data taken from the optimal image location as determined in the 
previous section, were used as reference data in Equation (7). For validation purposes, 21 random  
samples of the spectrometer reflectance measurements were set aside, to be compared with predicted 
spectra. Thus k = 107 training data samples were used in the PCA imputation. Following experimentation 
with similar PCA methods [27–29], trimmed scores regression, based on the PCA method, was adopted 
in this study, because of its balance between prediction quality and robustness with data structure 
complexity and computation time [29]. The first three principal components were used in this procedure. 
According to suggested default values given in [28], the maximum number of iterations was set at 10, 
and the convergence tolerance was set at 0.0001. The 21 validation (observed) spectra, the corresponding 
predicted spectra, and the difference between them are shown in Figure 7a–c, respectively.  

In Figure 7, the 21 validation spectra include vegetation (crops), soil, and some combined soil–
vegetation data. The predicted curves in b have similar shapes and reflectance ranges, when compared 
with the observation curves in a. The absolute values of the “predicted–observed” residuals shown in c 
are all less than 0.1. The mean error, as a percentage of the residuals to the corresponding observations 
for the 21 validation samples is 9.48%, while the mean absolute error is 19.9%. According to Figure 7c, 
peak residuals usually occur around 680–700 nm, where reflectance of vegetation and soil has large 
contrast. 
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(c) 

 

Figure 7. The observed (a) and predicted (b) reflectance spectra and the corresponding residuals (c). Each 
spectrum is given a random color. 

4.2.2. Stability of Data Fusion Parameters 

In addition, to test the impact of data fusion method parameters on accuracy, using Site 1 data, the 
data fusion step was run many times with each parameter changed as a sequence, and the corresponding 
RMSE of estimated hyperspectral spectra was computed. Specifically, the two PCA-based data fusion 
parameters were tested: iteration times (5–120, default 10), convergence tolerance (10−5–10−3, default 10−4), 
and the training sample number was also changed from 10, to 120. Figure 8 shows the impact of variations 
in converge tolerance on RMSE to be minor, while for RMSE was stable for numbers of iterations above 
20. The number of training samples significantly affected RMSE; RMSE dropped after about 50 training 
samples among the 128 samples tested with the Site 1 data. 

 
Figure 8. The impact of data fusion parameters on hyperspectral data fusion.  

4.2.3. Comparison of Data Fusion Methods 

To quantitatively compare the different data fusion methods described in Section 2.3, general 
accuracy evaluation measures, together with ones specifically designed for hyperspectral imagery, were 
used. In the results presented below, “ME” is the percent Mean Error, (predicted spectra–observed 
spectra)/observed spectra; “MAE” is the percent Mean Absolute Error; “RMSE” is the Root Mean Square 
of Error; and “STD_AE” is the Standard Deviation of the percent Absolute Error. For measures used in 
hyperspectral image quality evaluation [31,32], “SNR” is the signal to noise ratio; “UIQI” is the universal 
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image quality index; “SAM” is spectral angle mapper; “ERGAS” is the relative dimensionless global error 
in synthesis, which calculates the amount of spectral distortion in the image; and “DD” is the degree of 
distortion. With the exception of SNR and UIQI, smaller values are better for all measures. 

According to Table 2, PCA-based and Bayesian-based data fusion approaches performed similarly, 
especially the PCA group of methods. The Bayesian imputation with Gibbs sampling reported with the 
best overall performance, and used a slightly longer time than most other approaches. The spline 
approach was the simplest, and produced the worst predicted spectra accuracy. An example of a single 
crop location, estimated using the three fusion methods, Figure 9, illustrates the difference between these 
approaches. When comparing the data fusion result of the two study sites reported in Table 3, the PCA-
based and Bayesian methods performed most consistently. For example, both of them produced MAE of 
around 17%, which means the absolute difference from predicted hyperspectral curves to the observed 
curves are around 17%. The ME is ±3% relative to the observed average in both sites in Table 3. 

 
Figure 9. An example of the three types of data fusion compared with an observed spectrum over a crop 
sample at Site 1. The “PCA” is the “PCA_TSR” approach, “trimmed scores regression” defined in Section 
3.2; the “Bayesian” is the “Bayesian_Gibbs” (Bayesian method with Gibbs sampling [27]) as defined in 
Section 3.2. “MS bands” are the spline interpolated reflectances derived directly from the multispectral 
(MS) camera data.  
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Table 2. Detailed comparison of fusion approaches implemented on the Site 1 data (tomato field). 

Category Method Time (s) ME MAE RMSE (10−3) STD_AE SNR UIQI SAM ERGAS DD (10−3) 
 TSR 0.46 3.63% 16.83% 28.947 0.137 14.97 0.960 12.37 22.10 20.751 
 KDR 0.50 5.09% 17.54% 28.954 0.141 14.97 0.961 12.47 22.22 20.896 

PCA PCR 0.49 3.63% 16.83% 28.947 0.137 14.97 0.960 12.37 22.10 20.751 
KDR–PLS 0.67 3.57% 16.78% 28.953 0.137 14.97 0.960 12.37 22.11 20.746 

 PMP 0.50 3.63% 16.83% 28.947 0.137 14.97 0.960 12.37 22.10 20.751 
 IA 0.19 3.63% 16.83% 28.947 0.137 14.97 0.960 12.37 22.10 20.751 
 NIPALS 0.68 4.46% 16.69% 29.357 0.139 14.85 0.959 12.42 22.51 21.039 
 DA 124.20 3.19% 17.40% 28.906 0.146 14.99 0.961 12.43 22.23 20.785 

Bayesian 
Gibbs 38.67 2.80% 17.41% 28.620 0.142 15.07 0.962 12.30 22.02 20.649

EM 1.03 3.25% 17.35% 28.895 0.145 14.99 0.961 12.42 22.23 20.773
 ICM 0.20 3.70% 17.28% 28.910 0.144 14.99 0.961 12.43 22.23 20.769 

Spline * 0.004 −4.28% 116.63% 39.437 28.990 13.29 0.923 14.18 26.71 30.678
* Metrics for the spline approach were calculated in the wavelength range that is valid for the multispectral image (490–800 nm) rather than the full 400–
800 nm range. The accuracy metrics are defined in the text: “ME” is the percent Mean Error, (predicted spectra–observed spectra)/observed spectra; 
“MAE” is the percent Mean Absolute Error; “RMSE” is the Root Mean Square of Error; and “STD_AE” is the Standard Deviation of the percent Absolute 
Error, “SNR” is the signal to noise ratio; “UIQI” is the universal image quality index; “SAM” is spectral angle mapper; “ERGAS” is the relative 
dimensionless global error in synthesis, which calculates the amount of spectral distortion in the image; and “DD” is the degree of distortion [31,32]. Bold 
text indicates best performance in a column.  

Table 3. Evaluation of hyperspectral data and multispectral image fusion result over the two agriculture sites. 

Method #Image #Training #Test Time (Min) AvgR2 Δt (s) Δx (Pixel) Δy (Pixel)
Site 1 (tomato) 128 107 21 40.23 0.946 −0.2 45 5

Site 2 (corn/soybean) 228 185 43 41.25 0.715  −1.2 85 −20  
  Time (s) ME MAE RMSE (10−3) STD_AE SNR UIQI SAM ERGAS DD (10−3)

Site 1 
PCA_TSR 0.46 3.63% 16.83% 28.947 0.137 14.97 0.9597 12.37 22.10 20.751 
Bys_Gibbs 38.67 2.80% 17.41% 28.620 0.142 15.07 0.9617 12.30 22.02 20.649 

Spline 0.004 −4.28% 116.63% 39.437 28.990 13.29 0.9230 14.18 26.71 30.678 

Site 2 
PCA_TSR 0.54 −1.37% 16.99% 27.244 0.284 15.34 0.9651 13.65 21.01 15.903
Bys_Gibbs 91.07 −3.10% 16.80% 27.488 0.309 15.26 0.9652 13.83 20.99 15.586 

Spline  0.05 −4.32% 111.52% 38.474 43.272 13.37 0.9326 15.14 26.37 26.987 
Note: “Method” are data fusion methods listed in Table 2. “#Image/Training/Test” are the number of samples for all, training, and test purposes, 
respectively. “AvgR2” is the average R2 among all the multispectral bands. The optimal alignment, (Δt, Δx, Δy) given as seconds in the time domain and 
pixels in the space domain. “Time” is the computation time in seconds (s) or minutes (min). “PCA_TSR” approach is “trimmed scores regression” in the 
PCA group defined in Section 3.2; “Bys_Gibbs” is the Bayesian method with Gibbs sampling [27] as defined in Section 3.2.
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4.3. Fused Hyperspectral Imagery  

Once this approach to predict the hyperspectral reflectance was developed and evaluated, a 
subset of the multispectral camera images was mosaicked, and then used as input for hyperspectral 
image prediction. Agisoft Photoscan was employed to mosaic the multispectral images. The UAV on-
board GPS/IMU provided the initial positions of each image center to assist the mosaicking process. 
Images for each spectral band, which had been calibrated using a Teflon surface, were then combined 
into a single TIFF file for input to the mosaicking procedure. The red band (680 nm) was set as the 
master band during mosaicking, as the multispectral camera sensitivity was highest in this region. 
The images were geocoded using the WGS84 + EGM96 Geoid coordinate system. The mosaic 
production process was automated; tie points were selected by the software. The default mosaicking 
approach of the software divides data into several frequency domains, which were then blended 
independently, with the blending effect decreasing with increasing distance from the seamline. The 
average control point position error was 1.99 m after bundle adjustment. The resulting false color 
mosaic, the generated hyperspectral image as an image cube, and a vegetation health index map are 
given in Figure 10, covering the area shown by the white polygon in Figure 3.  

 

(a) (b) 

 
(c) 

Figure 10. Data fusion and hyperspectral imagery generation. (a) A preview of the multispectral 
subarea mosaic in false color (RGB: 800 nm, 680 nm, 550 nm). (b) The estimated hyperspectral (HS) 
image cube. (c) An example application of the estimated hyperspectral imagery: mapping a 
narrowband vegetation index, the Photo-chemical Reflectance Index (PRI). 
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A hyperspectral image was then estimated from the multispectral mosaic using the fusion 
imputation methods described in Equations (6) and (7). To demonstrate the utility and advantage of 
such a hyperspectral image, a narrow band index, the Photo-chemical Reflectance Index (PRI) [33] 
was calculated as: (R570 − R531)/(R570 + R531), where R is reflectance extracted from the estimated 
hyperspectral imagery. The resulting PRI map is shown in Figure 9c. Red indicates low 
photosynthetic light use, while green indicates dense vegetation and high light use efficiency. Such 
an index cannot be calculated from multispectral camera data unless specific very narrowband 
interference filters are mounted on individual cameras. Such an approach would require changing 
filters if other indices incorporating different spectral bands were to be derived. In contrast, the 
estimated hyperspectral images allow derivation of a variety of such index maps from a single 
multispectral camera and spectrometer data set. 

5. Discussion 

The spectrometer footprint was assumed to be consistent in size and shape among samples, 
which is not always true. The UAV platform orientation fluctuated by wind and its own rotation. 
When the platform was tilted, the spectrometer footprint was an ellipsoid rather than a circle, as in 
the nadir case. Furthermore, the integration time brought in a considerable footprint shift at full UAV 
speed. Taking this study as an example, the 0.2 s integration time was equal to 1 m shift at full speed 
of 5 m/s. Hence, the shape of the footprint under the full speed is not a stationary circle, but a moving 
circle dragged through 1 m distance. Furthermore, the UAV needs to frequently accelerate and 
decelerate from one waypoint to another, accumulating the effect of tilt, velocity, and acceleration on 
the irregular shape of footprints. Despite including these sources of uncertainty, the proposed data 
alignment method handled the uncertainty quite well, mainly because the platform inclination 
consistently affects both hyperspectral and multispectral sensors, and the spatial auto-correlation 
with neighboring areas was carried through the observed data, and mitigated the effect of dragged 
footprint shapes.  

The sources of uncertainty in the data fusion stage were numerous. A major source of 
uncertainty in the estimated spectra was the number of training samples, where many samples of 
convolved reflectance corresponded to a very similar multispectral band intensity combination, or 
vice versa. Figure 5 demonstrated such a trend in a linear regression model. Such an ambiguity of 
multispectral-hyperspectral sample pairing undermined the effectiveness of multi-hyperspectral 
data fusion method. Spectral mixing in the spectrometer footprint also complicates the imputation. 
Spectra prediction was poorer for pixels absent from the training set.  

The broader impact of this study is significant. Drone and sensor technology are developing 
rapidly, with many manufacturers, standards, and products. There are compatibility issues among 
various sensors and platforms, due to differences in external computers, ports, triggering methods, 
and data storage methods. It is therefore challenging to operate sensors on a lightweight UAV using 
a single central control system, and impractical for general users (e.g., farmers) without advanced 
hardware and software skills. Accordingly, it is valuable that data from various sensors can be 
aligned post-flight by exploiting the correlations between two or more data types, as proposed in this 
study. Such a post-flight alignment approach allows farmers to use their existing equipment together 
with new sensors and platform, without advanced skills.  

The proposed system has the advantage of very low cost and simple sensor 
positional/orientation control and measurement requirements compared to current hyperspectral 
cameras. It is a software solution that is easy to implement compared to development of a full UAV-
based hyperspectral system. Consequently, it is well suited to precision farming applications on 
individual or small farms by farmers or other users with little remote sensing system expertise or 
funding. Results of this study can benefit precision farming companies, such as A&L Canada 
(http://www.alcanada.com/), which collaborated on this research, to offer services to the agriculture 
industry and farm owners. The system developed and evaluated in this study is expected to enhance 
capabilities to generate the high resolution information on crop condition and other environmental 
parameters needed in precision farming, water, and land use management.  
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6. Conclusions 

This study demonstrated that a multispectral camera coupled with a spectrometer on a UAV 
platform can provide a means to estimate high spatial resolution hyperspectral imagery at very low 
cost for precision farming applications. The study involved two processes: alignment of data acquired 
by the two sensors, and fusion of the aligned data from the two sensors to estimate hyperspectral 
reflectance at all image pixel locations. In the sensor alignment process, as an alternative to more 
expensive and complex hyperspectral cameras, and as an alternative to complex positional and 
orientation measurement and processing, the multispectral camera and spectrometer were simply 
visually aligned in the UAV mount. A software approach was then used to align the datasets by 
determining the location in the image that corresponded to the spectrometer footprint collected 
closest to the image center. This data alignment procedure included analysis of correlations between 
the two data types for samples representing different acquisition timing between the two sensors and 
data offsets, due to sensor misalignment. The best location match for the spectrometer data was taken 
as the image pixels that maximized the correlation between the two data types. Empirical testing was 
conducted using UAV data acquired at 30 m altitude over a tomato farm and 50 m over a 
soybean/corn field with a mix of soil, vegetation and other land cover types. In a global optimization, 
a maximum R2 value of 0.95 was found at a −0.2 s time offset and an offset of 5 and 45 pixels in the X 
and Y directions, respectively, for one test site and −1.2 s, 85 and −20 pixels (X, Y) for the other site. A 
simplified two-step alignment approached was also tested which reaches the same alignment 
solution, but 60 times faster. 

To fuse the multispectral camera and spectrometer data and produce a hyperspectral image, 
reflectance measured by the spectrometer was convolved to match the wider multispectral camera 
bands, and the pixel intensity values in the multispectral images were spatially averaged to match 
with spectrometer footprint. Three groups of spectra estimation methods were implemented; PCA-
based and Bayesian-based estimation reported similar levels of residuals with mean absolute 
differences around 17% relative to the mean of observed spectra, and RMSE around 0.028 for the 
predicted spectra. A simple spline interpolation using the multispectral camera data proved to be 
ineffective in hyperspectral estimation. The tolerance and number of iterations had limited impact on 
the PCA-based data fusion method, which suggests the fusion method is stable. However, training 
sample numbers did have an effect; half of the 128 samples were required in training to maintain a 
stable low RMSE. The results reported for the two different flights over different crop types show 
consistent accuracy of predicted spectra. Using these results, a mosaic of multispectral images for a 
subarea was produced and used to predict the corresponding hyperspectral reflectance data at each 
pixel. The hyperspectral data were then used, as a demonstration, to map of narrowband PRI index, 
which is not possible using multispectral data unless the required narrowband filters (e.g., ±2 nm) 
are installed on individual cameras. 
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